53
7. 7. Atmospheric neutrinos and Neutrino oscillations Corso Corso “Astrofisica delle particelle Astrofisica delle particelleProf. Maurizio Spurio Prof. Maurizio Spurio Università di Bologna. Università di Bologna. A.a. A.a. 2011/12 2011/12

7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

7.7. Atmospheric neutrinos

and Neutrino oscillations

Corso Corso ““Astrofisica delle particelleAstrofisica delle particelle””

Prof. Maurizio SpurioProf. Maurizio Spurio

Università di Bologna. Università di Bologna. A.a.A.a. 2011/122011/12

Page 2: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

OutlookOutlook

�� Some historySome history

�� Neutrino OscillationsNeutrino Oscillations

�� How do we search for neutrino oscillationsHow do we search for neutrino oscillations

�� Atmospheric neutrinosAtmospheric neutrinos�� Atmospheric neutrinosAtmospheric neutrinos

�� 10 years of Super10 years of Super--KamiokandeKamiokande

�� Upgoing muons and MACROUpgoing muons and MACRO

�� Interpretation in terms on neutrino oscillationsInterpretation in terms on neutrino oscillations

�� Appendix: The Cherenkov lightAppendix: The Cherenkov light

Page 3: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

� At the beginning of the ’80s, some theories (GUT) predicted the proton decay with measurable livetime

� The proton was thought to decay in (for instance) p�e+π0νe

� Detector size: 103 m3, and mass 1kt (=1031 p)

� The main background for the detection of proton decay were atmospheric neutrinos interacting inside the experiment

7.1 Some history

Proton decay

γγγγγγγγ

e Neutrino Interaction

� Water Cerenkov Experiments (IMB, Kamiokande)

� Tracking calorimeters (NUSEX, Frejus, KGF)

� Result: NO p decay ! But some anomalies on the neutrino measurement!

Page 4: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

7.2 Neutrino Oscillations7.2 Neutrino Oscillations

� Idea of neutrinos being massive was first suggested by B. Pontecorvo

� Prediction came from proposal of neutrino oscillations

Neutrinos are created or annihilated as

|ννννe>>>> , |ννννµµµµ>>>> , |ννννττττ>>>> =Weak Interactions (WI) eigenstats

|ν1> , |ν2> , |ν3> =Mass (Hamiltonian) eigenstats

•Neutrinos propagate as a superposition

of mass eigenstates

Neutrinos are created or annihilated as

W.I. eigenstates

Page 5: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

��Weak Weak eigenstateseigenstates ((ννee, , ννµµ, , ννττ)) are expressedare expressed as a

combinations of the mass eigenstates (νννν1, νννν2,νννν3).

� These propagate with different frequencies due to their different masses, and different phases develop with distance

travelled. Let us assume two neutrino flavors only.

� The time propagation: |νννν(t)>>>>= (|ν|ν|ν|ν1>>>> , |ν|ν|ν|ν2>>>> )

=

+≈+=

02

222

ij

iiii

ME

mEmpM

νν

M = (2x2 matrix)

(eq.2)

)(tMdt

di ν

ν= (eq.1)

Page 6: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

eq.1 becames, usingeq.2)

)(2

2

tvE

mE

dt

di i

+=

νν

ν

whose solution is :ti

iiievtv ϖ−= )0()(

(eq.4)

(eq.5)

Time propagationTime propagation

whose solution is : ii evtv = )0()(

+=

ννϖ

E

mE i

i 2

2

with

During propagation, the phase difference is:

νE

tmmi 2

)( 21

22 ⋅−=∆Φ (eq.6)

Page 7: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

|νe> = cosθ |ν1> + sinθ |ν2> θ = mixing angle

Time evolution of the “physical” neutrino states:

• Let us assume two neutrino flavors only (i.e. the electon and the muon

neutrinos).

• They are linear superposition of the n1,n2 eigenstaten:

|νµ> = -sinθ |ν1> + cosθ |ν2> (eq.3)

titi

titie

i

i

evevv

evevv

21

21

)0(cos)0(sin

)0(sin)0(cos

21

21

ϖϖµ

ϖϖ

θθ

θθ−−

−−

+−=

+=(eq.7)

• Using eq. 5 in eq. 3, we get:

Page 8: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

•At t=0, eq. 7 becomes:

)0(cos)0(sin

)0(sin)0(cos

21

21

vvv

vvv e

θθ

θθ

µ +−=

+=

)0(sin)0(cos)0(1 µθθ vvv e −=

• By inversion of eq. 8:

(eq.8)

)0(cos)0(sin)0(2

1

µ

µ

θθ vvv e

e

+=

• For the experimental point of view (accelerators, reactors), a pure muon

(or electron) state a t=0 can be prepared. For a pure νµ beam, eq. 9:

)0(cos)0(

)0(sin)0(

2

1

µ

µ

θ

θ

vv

vv

=

−=

(eq.9)

(eq.10)

Page 9: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

The time evolution of the ννννµµµµ state of eq. 8:

titi ievevv 21 )0(cos)0(sin 22 ϖµ

ϖµµ θθ −− +=

By definition, the probability that

the state at a given time is a νµ is:

20 tP µµνν νν

µµ≡

(eq. 12)•Using eq. 11, the probability:

(eq.11)

( )titi

t

ee

P

)()(22

442

0

2121cossin

cossin

ϖϖϖϖ

µµνν

θθ

θθννµµ

−−− ++

++=≡

−⋅−=2

)(sin2sin1 2122 t

Pϖϖθ

µµνν

i.e. using trigonometry rules:

(eq. 13)

(eq. 14)

Page 10: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

+=

ννϖ

E

mE i

i 2

2

Finally, using eq.5:

−⋅−=ν

νν θµµ E

tmmP

4

)(sin2sin1

21

2222

With the following substitutions in eq.15:

- the neutrino path length L=ct (in Km)

- the mass difference ∆∆∆∆m2 = m22 – m1

2 (in eV2)

- the neutrino Energy Eν ν ν ν (in GeV)

(eq. 15)

⋅∆⋅−=

ννν θ

µµ E

LmP

222 27.1sin2sin1

To see “oscillations” pattern:

227.1

02 π

θ

ν

⋅∆

E

Lm

(eq. 16)

Page 11: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

7.3 How do 7.3 How do

we search we search

for neutrino for neutrino

oscillations?oscillations?

Page 12: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

..with ..with

atmospheric atmospheric

neutrinosneutrinos

• ∆m2, sin22Θ � from Nature;

• Eν = experimental

⋅∆⋅−=

ννν θ

µµ E

LmP

222 27.1sin2sin1

parameter (energy

distribution of neutrino

giving a particular

configuration of events)

• L = experimental

parameter (neutrino path

length from production to

interaction)

Page 13: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Appearance/

Disappearance

Appearance/

Disappearance

Appearance/

Disappearance

Appearance/

Disappearance

Page 14: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

⋅∆⋅−=

ννν θ

µµ E

LmP

222 27.1sin2sin1

Page 15: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

77..44-- Atmospheric neutrinosAtmospheric neutrinos

Page 16: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

The recipes for the evaluation of the The recipes for the evaluation of the

atmospheric neutrino fluxneutrino flux--

ee ννµ

νµπ

µ

µ

++→

+→++

++

Page 17: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

E-3

E < 1015 eVGalactic

5. 1019 < E< 3. 1020 eV

i) The primary spectrum

E-3

spectrum

GZK cut

1015 < E< 1018 eVgalactic ?

E ≥ 5. 1019 eVExtra-Galactic?Unexpected?

Page 18: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

ii)ii)-- CRCR--air cross sectionair cross section

It needs a model of nucleus-nucleus interactions

pp Cross section versus center of mass energy.

Average number of charged hadrons

produced in pp (and pp) collisions versus center of mass energy

Page 19: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

iii) Model of the atmosphere

ATMOSPHERIC NEUTRINO PRODUCTION:

•high precision 3D calculations,

•refined geomagnetic cut-off treatment (also geomagnetic field in

atmosphere)

•elevation models of the Earth

•different atmospheric profiles

•geometry of detector effects

Page 20: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Output: the neutrino (ννννe,ννννµµµµ) flux

See for instance the FLUKA MC:

http://www.mi.infn.it/~battist/ne

utrino.html

Page 21: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

iv) The Detector response

Fully Contained

νννν Partially Contained

νννν

µµµµ

Through going µµµµStopping µµµµ

νννν

µµµµ

νννν

µµµµ

⋅∆⋅−=

ννν θ

µµ E

LmP

222 27.1sin2sin1

Energy spectrum of νννν for each event categoryνννννννν

Energy spectrum (from

Monte Carlo) of

atmospheric neutrinos

seen with different

event topologies

(SuperKamiokande)0

250

500

750

1000

10−2

10−1

1 10 102

103

104

105

FC νµFC νe

PC νµ

Eν (GeV)

up-stop µµµµup-thru µµµµ

νµµ E

Page 22: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Rough estimate: how many ‘Contained Rough estimate: how many ‘Contained

events’ in 1 kton detectorevents’ in 1 kton detector

1. Flux: Φν ~ 1 cm-2 s-1

2. Cross section (@ 1GeV):σν~0.5 10-38 cm2

νµσν~0.5 10-38 cm2

3. Targets M= 6 1032 (nucleons/kton)4. Time t= 3.1 107 s/y

Nint = Φν (cm-2 s-1) x σν (cm2)x M (nuc/kton) x t (s/y) ~~ 100 interactions/ (kton y)

νe

Page 23: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

7.5 10 years of Super-Kamiokande1996.4 Start data taking

1999.6 K2K started

2001.7 data taking was stopped

2001 Evidence of solar ν oscillation (SNO+SK)

1998 Evidence of atmospheric ν oscillation (SK)

SK-I

2001.7 data taking was stopped

for detector upgrade

2001.11 Accident

partial reconstruction

2002.10 data taking was resumed

2005.10 data taking stopped for full reconstruction

2006.7 data taking was resumed

2005 Confirm ν oscillation by accelerator ν (K2K)SK-II

SK-III

SK-IV 2009 data taking

Page 24: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Measurement of contained events and Measurement of contained events and

SuperKamiokande (Japan)SuperKamiokande (Japan)

�� 1000 m Deep Underground1000 m Deep Underground

�� 50.000 ton of Ultra50.000 ton of Ultra--Pure WaterPure Water

�� 11000 +2000 PMTs11000 +2000 PMTs

Page 25: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

� As a charged particle travels, it disrupts the local electromagnetic field (EM) in a medium.

�Electrons in the atoms of the medium will be displaced and polarized by the passing EM field of a charged particle.

� Photons are emitted as an insulator's electrons restore themselves to equilibrium after the disruption has passed.

Cherenkov Radiation

� In a conductor, the EM disruption can be restored without emitting a photon.

� In normal circumstances, these photons destructively interfere with each other and no radiation is detected.

� However, when the disruption travels faster than light is propagating through the medium, the photons constructively interfere and intensify the observed Cerenkov radiation.

Page 26: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Cherenkov Radiation

One of the 13000 PMTs of SK

Page 27: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

How to tell a ννννµµµµ from a ννννe : Pattern recognition

Page 28: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

ννµµ

Page 29: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

ννee

Page 30: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

e or µµµµ

Fully Contained (FC)

µµµµ

No hit in Outer Detector One cluster in Outer Detector

Partially Contained (PC)

Reduction

Automatic ring fitter

Contained event in SuperKamiokandeContained event in SuperKamiokande

Automatic ring fitterParticle IDEnergy reconstruction

Fiducial volume (>2m from wall, 22 ktons) Evis > 30 MeV (FC), > 3000 p.e. (~350 MeV) (PC)

Fully Contained8.2 events/dayEvis<1.33 GeV : Sub-GeVEvis>1.33 GeV : Multi-GeV

Partially Contained0.58 events/day

Page 31: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Contained events. Contained events.

The up/down The up/down

symmetry in SK andsymmetry in SK and

ννννννννµµµµµµµµ/ν/ν/ν/ν/ν/ν/ν/νee ratio.ratio.Up/Down asymmetry interpreted as neutrino oscillations

Expectations: events inside the detector. For Eνννν > a few GeV,Upward / downward = 1

Eνννν=0.5GeV Eνννν=3 GeV Eνννν=20 GeV

Page 32: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Zenith angle

distributionSK:1289 days (79.3 kty)

• Electron neutrinos =

DATA and MC

(almost) OK!

µµµµ /e

DATA

µµµµ /e M C= 0.638 ±±±±

0.017 ±±±± 0.050

Data

• Muon neutrinos =

Large deficit of DATA

w.r.t. MC !

Zenith angle distributions for e-like and µ-like contained atmospheric

neutrino events in SK. The lines show the best fits with (red) and without (blue)

oscillations; the best-fit is ∆m2 = 2.0 × 10−3 eV2 and sin2 2θ = 1.00.

Page 33: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

SK-I + SK-II

0

50

100

150

-1 -0.8 -0.6 -0.4 -0.2 0

cosΘ

Upward through-goingshowering µ

SK-I + SK-II

0

50

100

150

200

-1 -0.5 0 0.5 1

multi-ring e-like

0

100

200

300

-1 -0.5 0 0.5 1

multi-ring µ-like

0

20

40

-1 -0.5 0 0.5 1

PC stop

0

100

200

300

-1 -0.5 0 0.5 1

PC through

0

50

100

150

-1 -0.8 -0.6 -0.4 -0.2 0

cosΘ

Upward stopping µ

0

200

400

600

-1 -0.8 -0.6 -0.4 -0.2 0

cosΘ

Upward through-goingnon-showering µ

Zenith Angle Distributions (SKZenith Angle Distributions (SK--I + SKI + SK--II)II)νµ–ντ oscillation (best fit)

null oscillationSK-I + SK-II

0

100

200

300

400

-1 -0.5 0 0.5 1

Sub-GeV e-likeP < 400 MeV/c

0

100

200

300

400

-1 -0.5 0 0.5 1

Sub-GeV µ-likeP < 400 MeV/c

0

100

200

300

400

-1 -0.5 0 0.5 1

Num

ber

of E

vent

s Sub-GeV e-likeP > 400 MeV/c

0

200

400

600

-1 -0.5 0 0.5 1

Sub-GeV µ-likeP > 400 MeV/c

0

50

100

150

200

-1 -0.5 0 0.5 1

cosΘ

Multi-GeV e-like

0

50

100

150

200

-1 -0.5 0 0.5 1

cosΘ

Multi-GeV µ-like

µ-like

P<400MeV/c

P>400MeV/c

P<400MeV/c

P>400MeV/c

Livetime•SK-I 1489d (FCPC)1646d (Upmu)

•SK-II804d (FCPC)828d(Upmu)

SK-I + SK-II

0

50

100

150

-1 -0.8 -0.6 -0.4 -0.2 0

cosΘ

Upward through-goingshowering µ

SK-I + SK-II

0

50

100

150

200

-1 -0.5 0 0.5 1

multi-ring e-like

0

100

200

300

-1 -0.5 0 0.5 1

multi-ring µ-like

0

20

40

-1 -0.5 0 0.5 1

PC stop

0

100

200

300

-1 -0.5 0 0.5 1

PC through

0

50

100

150

-1 -0.8 -0.6 -0.4 -0.2 0

cosΘ

Upward stopping µ

0

200

400

600

-1 -0.8 -0.6 -0.4 -0.2 0

cosΘ

Upward through-goingnon-showering µ

SK-I + SK-II

0

100

200

300

400

-1 -0.5 0 0.5 1

Sub-GeV e-likeP < 400 MeV/c

0

100

200

300

400

-1 -0.5 0 0.5 1

Sub-GeV µ-likeP < 400 MeV/c

0

100

200

300

400

-1 -0.5 0 0.5 1

Num

ber

of E

vent

s Sub-GeV e-likeP > 400 MeV/c

0

200

400

600

-1 -0.5 0 0.5 1

Sub-GeV µ-likeP > 400 MeV/c

0

50

100

150

200

-1 -0.5 0 0.5 1

cosΘ

Multi-GeV e-like

0

50

100

150

200

-1 -0.5 0 0.5 1

cosΘ

Multi-GeV µ-like

µ-likee-like

NOTE: All topologies, last results (September 2007)

Page 34: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Atmospheric Neutrino Anomaly

Summary results since the mid-1980's:

µµµµ /e D a ta

µµµµ /e M CR’=

Double ratio between the number of detected and expected νµ and νe

Water Cherenkov

Calorimetric

Page 35: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

7.6 Upgoing muons and MACRO 7.6 Upgoing muons and MACRO

(Italy)(Italy)

• Large acceptance (~10000 m 2sr for an isotropic flux)

• Low downgoing µ rate (~10 -6 of the surface rate )

• ~600 tons of liquid scintillator to measure T.O.F. (time resolution ~500psec)

• ~20000 m 2 of streamer tubes (3cm cells) for tracking (angular resolution < 1° )

R.I.P December 2000

Page 36: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

The Gran Sasso National LabsThe Gran Sasso National Labs

http://www.lngs.infn.it/

Page 37: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Neutrino event topologies in MACRONeutrino event topologies in MACRO

In upUp throughgoing

Absorber

Streamer

Scintillator

• Liquid scintillator counters, (3

planes) for the measurement of

time and dE/dx.

• Streamer tubes (14 planes), for

the measurement of the track

Up stop

In down1) 2)

3)4)

Scintillator

position;

• Detector mass: 5.3 kton

• Atmospheric muon neutrinos

produce upward going muons

• Downward going muons ~ 106

upward going muons

• Different neutrino topologies

Page 38: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Energy spectra of Energy spectra of ννννννννµµµµµµµµ events in MACRO events in MACRO

• <E>~ 50 GeVthroughgoing µ

• <E>~ 5 GeV, Internal Upgoing (IU) µ;

• <E>~ 4 GeV , internal downgoing (ID) µ and for upgoing stopping (UGS) µ;

Page 39: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

+1 µµµµ-1 µµµµ

T1

T2Streamer tube track

Neutrino induced Neutrino induced events are events are upwardupward throughgoing throughgoing

muonsmuons, , Identified by the timeIdentified by the time--ofof--flight methodflight method

Atmospheric µµµµ: downgoing

µ µ µ µ from ν:ν:ν:ν: upgoing

( ) =⋅−=L

cTT 211

β

( ) =⋅−=L

cTT 211

β

Page 40: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

MACRO Results: event deficit and

distortion of the angular distribution

- - - - No oscillations

____ Best fit ∆∆∆∆m2= 2.2x10-3 eV2

sin22θθθθ=1.00

Observed= 809 events

Expected= 1122 events (Bartol)

Observed/Expected

= 0.721±±±±0.050(stat+sys)±±±±0.12(th)

Page 41: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

MACRO Partially contained events MACRO Partially contained events

Obs. 154 eventsExp. 285 eventsObs./Exp. = 0.54±±±±0.15

IU

MC with oscillations

consistent with up throughgoing muon results

Obs. 262 eventsExp. 375 eventsObs./Exp. = 0.70±±±±0.19)

ID+UGS

Page 42: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

underground detector

Effects of ννννµµµµ oscillations on upgoing events

νννν

Earth

µ

⋅∆⋅−=νν θ

µµ E

LmP

222 27.1sin2sin1

θ

• If θ is the zenith angle and D= Earth diameter

L=Dcosθ• For throughgoing neutrino-induced muons in

MACRO, Eν = 50 GeV (from Monte Carlo)

ν

νν µµ E

θθθθ cos(θθθθ) ∆∆∆∆m2=0.0002 ∆∆∆∆m2=0.00010 -1,000 0,62 0,89

-10 -0,985 0,63 0,90-20 -0,940 0,66 0,91-30 -0,866 0,71 0,92-40 -0,766 0,77 0,94-50 -0,643 0,83 0,96-60 -0,500 0,89 0,97-70 -0,342 0,95 0,99-80 -0,174 0,99 1,00-90 0,000 1,00 1,00

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

-1,00 -0,80 -0,60 -0,40 -0,20 0,00

cosθ

µµννP

Page 43: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Oscillation ParametersOscillation Parameters

• The value of the “oscillation parameters” sin2θ and ∆m2

correspond to the values which provide the best fit to the data

• Different experiments � different values of sin2θ and ∆m2

• The experimental data have an associated error. All the values of

(sin2θ, ∆m2) which are compatible with the experimental data are “allowed”.“allowed”.

• The “allowed” values span a region in the parameter space of (sin2θ,

∆m2)

⋅∆⋅−=

ννν θ

µµ E

LmP

222 27.1sin2sin1

1.9 x 10-3 eV2 < ∆∆∆∆m2 < 3.1 x 10-3 eV2

sin2 2θθθθ > 0.93 (90% CL)

Page 44: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

“Allowed” parameters region“Allowed” parameters region

90% C. L. allowed regions for νµ → ντ oscillations of atmospheric

neutrinos for Kamiokande, SuperK, Soudan-2 and MACRO.

Page 45: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Why notWhy not ννµµ→→ννe e ??

Apollonio et al., CHOOZ Coll.,Phys.Lett.B466,415

Page 46: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

ννννννννµµµµµµµµ disappearance: Historydisappearance: History�� Anomaly in R=(Anomaly in R=(µµ/e)/e)observedobserved/(/(µµ/e)/e)predictedpredicted

�� Kamiokande: PLB 1988, 1992Kamiokande: PLB 1988, 1992

�� Discrepancies in various experimentsDiscrepancies in various experiments

�� Kamiokande: ZenithKamiokande: Zenith--angle distributionangle distribution

�� Kamiokande: PLB 1994Kamiokande: PLB 1994

�� SuperSuper--Kamiokande/MACRO: Kamiokande/MACRO:

Discovery of Discovery of νν oscillation in 1998oscillation in 1998Discovery of Discovery of ννµµ oscillation in 1998oscillation in 1998

�� SuperSuper--Kamiokande: PRL 1998 Kamiokande: PRL 1998

�� MACRO, PRL 1998MACRO, PRL 1998

�� K2K: First acceleratorK2K: First accelerator--based long based long

baseline experiment: 1999 baseline experiment: 1999 –– 2004 2004

Confirmed atmospheric neutrino resultsConfirmed atmospheric neutrino results

�� Final result 4.3Final result 4.3σσ: PRL 2005, PRD 2006: PRL 2005, PRD 2006

�� MINOS: Precision measurement: 2005 MINOS: Precision measurement: 2005 --

�� First result: PRL2006First result: PRL2006

Page 47: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

See for review:See for review:

�� The “Neutrino Industry”The “Neutrino Industry”�� http://www.hep.anl.gov/ndk/hypertext/http://www.hep.anl.gov/ndk/hypertext/

�� Janet Conrad web pages:Janet Conrad web pages:�� http://www.nevis.columbia.edu/~conrad/nupage.htmlhttp://www.nevis.columbia.edu/~conrad/nupage.html

�� Fermilab and KEK “Neutrino Summer School”Fermilab and KEK “Neutrino Summer School”�� Fermilab and KEK “Neutrino Summer School”Fermilab and KEK “Neutrino Summer School”�� http://projects.fnal.gov/nuss/http://projects.fnal.gov/nuss/

�� Torino web Pages:Torino web Pages:�� http://www.nu.to.infn.it/Neutrino_Lectures/http://www.nu.to.infn.it/Neutrino_Lectures/

� Progress in the physics of massive neutrinos, hep-ph/0308123

Page 48: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Appendice:Appendice:

La radiazione CerenkovLa radiazione Cerenkov

Page 49: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Effetto CerenkovPer una trattazione classica dell’effetto Cerenkov:

Jackson : Classical Electrodynamics, cap 13 e par. 13.4 e 13.5

La radiazione Cerenkov e’ emessa ogniqualvolta una particella carica attraversa un mezzo La radiazione Cerenkov e’ emessa ogniqualvolta una particella carica attraversa un mezzo

(dielettrico) con velocita’(dielettrico) con velocita’ ββc=v>c/nc=v>c/n, dove, dove v v e’ la velocita’ della particella ee’ la velocita’ della particella e nn l’indice di l’indice di rifrazione del mezzo.rifrazione del mezzo.

Intuitivamente: la particella incidente polarizza il dielettrico Intuitivamente: la particella incidente polarizza il dielettrico �� gli atomi diventano dei gli atomi diventano dei

dipoli. dipoli. Se Se ββ>1/n >1/n �� momento di dipolo elettrico momento di dipolo elettrico �� emissione di radiazione.emissione di radiazione.dipoli. dipoli. Se Se ββ>1/n >1/n �� momento di dipolo elettrico momento di dipolo elettrico �� emissione di radiazione.emissione di radiazione.

ββββ<1/n β>β>β>β>1/n

Page 50: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

L’ angolo di emissione L’ angolo di emissione θθcc puo’ essere interpretato qualitativamente puo’ essere interpretato qualitativamente come un’onda d’urto come succede per una barca od un aereo come un’onda d’urto come succede per una barca od un aereo supersonico.supersonico.

β

l light=(c/n)∆tθ

wave front

1)(with1

cos ≥== λθ nnθC

Esiste una velocita’ di soglia Esiste una velocita’ di soglia ββss = 1/n = 1/n �� θθcc ~ 0 ~ 0

Esiste un angolo massimo Esiste un angolo massimo θθmaxmax= arcos(1/n)= arcos(1/n)

La cos(La cos(θθ) =1/) =1/ββn e’ valida solo per un radiatore infinito, e’ comunque n e’ valida solo per un radiatore infinito, e’ comunque una buona approssimazione ogniqualvolta il radiatore e’ lungo L>>una buona approssimazione ogniqualvolta il radiatore e’ lungo L>>λ λ essendo essendo λλ la lunghezza d’onda della luce emessala lunghezza d’onda della luce emessa

lpart=βc∆tθ

1)(with1

cos ≥== λβ

θ nnnC

C

Page 51: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

Numero di fotoni emessi per unita’ di percorso e intervallo unitario di lunghezza d’onda. Osserviamo chedecresce al crescere della λ

sin21

12 2

2

2

222

22 zzNdC=

−= θ

λαπ

βλαπ

λ

dN/dλ

λ

.with 1

sin1

2

2

2

2222

constdxdE

Nd

E

hcc

dxd

Nd

ndxd C

===∝

=

−=

νλ

λλ

θλβλλ

dN/dE

Ε

Il numero di fotoni emessi per unita’ di percorso non dipende dalla frequenza

Page 52: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

L’ energia persa per radiazione Cerenkov cresce con L’ energia persa per radiazione Cerenkov cresce con ββ. Comunque . Comunque

anche con anche con ββ�� 1 e’ molto piccola.1 e’ molto piccola.

Molto piu’ piccola di quella persa per collisione (Bethe Block), al Molto piu’ piccola di quella persa per collisione (Bethe Block), al

( ) ωωβ

ωα dnc

zdx

dE∫

−=− 222 1

1h

Molto piu’ piccola di quella persa per collisione (Bethe Block), al Molto piu’ piccola di quella persa per collisione (Bethe Block), al

massimo 1%massimo 1% ..

medium n θmax (β=1) Nph (eV-1 cm-1)

air 1.000283 1.36 0.208

isobutane 1.00127 2.89 0.941

water 1.33 41.2 160.8

quartz 1.46 46.7 196.4

Page 53: 7.7.Atmospheric neutrinos and Neutrino oscillationsishtar.df.unibo.it/.../7.Neutrini_atmo.pdf · Zenith angle distributions for e-like and µ-like contained atmospheric neutrino events

1)1) EsisteEsiste unauna sogliasoglia per per emissioneemissione di di luceluce CerenkovCerenkov

2)2) La La luceluce e’ e’ emessaemessa ad un ad un angoloangolo particolareparticolare

��Facile Facile utilizzareutilizzare l’effettol’effetto Cerenkov per Cerenkov per identificareidentificare le le particelleparticelle..

Con 1) Con 1) possoposso sfruttaresfruttare la la sogliasoglia �� Cerenkov a Cerenkov a sogliasoglia..

Con 2) Con 2) misuraremisurare l’angolol’angolo �� DISC, RICH etc.DISC, RICH etc.

La La luceluce emessaemessa e e rivelabilerivelabile e’ e’ pocapoca..La La luceluce emessaemessa e e rivelabilerivelabile e’ e’ pocapoca..

ConsideriamoConsideriamo un un radiatoreradiatore spessospesso 1 cm un 1 cm un angoloangolo θθcc = 30= 30oo eded un un

∆∆E = 1 E = 1 eVeV eded unauna particellaparticella di di caricacarica 11..

5.9225.0370sin370

sin

2

22

=×=∆⋅⋅⋅=⇒

=

ELN

c

z

dEdx

dN

cph

c

ϑ

ϑαh

Considerando inoltre che l’efficienza quantica di un fotomoltiplicatore e’ ~20% � Npe=18 � fluttuazioni alla Poisson