22
VII 1 Transmission Lines (a) Parallel-plate transmission line (b) Two-wire transmission line (c) Coaxial transmission line Metal strip Grounded conducting plane Dielectric subtrate Grounded conducting plane Metal strip Grounded conducting plane Dielectric subtrate Two types of microstrip lines

8615965 Transmission Lines Fundamentals

  • Upload
    foring

  • View
    65

  • Download
    2

Embed Size (px)

Citation preview

VII 1

Transmission Lines

(a) Parallel-plate transmission line (b) Two-wiretransmission line

(c) Coaxialtransmission line

Metal strip

Groundedconducting plane

Dielectric subtrate

Groundedconducting plane

Metal stripGroundedconducting plane

Dielectric subtrate

Two types of microstrip lines

VII 2

TEM-Waves along a Parallel-Plate Transmission Line

dx

y

z

w

Lossless case:

( )term e always omittedj tω

r r r

r r r

E E e E e e

H H eE

e e

j

y yz

y

x xz

x

= ⋅ = ⋅ ⋅

= ⋅ = − ⋅ ⋅

= =

0

0

γ

γ

γ ω µε µε

Γ

Γ

in order to find the charge density and the current density we use:

D D D e E E en n y yz

2 1 0− = → ⋅ = → = ⋅ = ⋅ −σ σ σ ε ε γr r

σ: free surface charge

H H J e H J J e H e

Eet t s y s s z x z

z2 1

0− = → × = → = − ⋅ = ⋅ −r r r r r r

Γγ

Js: free surface currentd dsΙ

VII 3

Fields, Charge and Current Distribution along a Coaxial Transmission Line

B

E

xx xxxxx

x x

xx xxxxx

x x

xx xxxxx

x x

xx xxxxx

x x

λ

Current

Displacement Current

BEB E

x

+ +++ + - --- -

+ +++ + + +++ +

+ +++ +

- --- - + +++ +

- --- -

- --- -

- --- -

+ +++ +- --- -

VII 4

Parallel-Plate Transmission Line in Terms of L and C

Lossless case term e always omittedj tω( )

∇ × = −

=

=∫ ∫

r rE j H

dE

dzj H

ddz

E dy j H dy

yx

y

d

x

d

ωµ

ωµ

ωµ0 0

+( )

= ( ) ⋅

=

( ) ⋅( )

= ⋅ ( )= ⋅ [ ]

dV z

dzj J z d

jdw

J z w

j L z

Ldw

H m

sz

sz

ωµ

ω µ

ω

µ

Ι

∇ × =

=

=∫ ∫

r rH j E

dHdz

j E

ddz

H dx j E dx

xy

x

w

y

w

ωε

ωε

ωε0 0

− ( ) = − ( ) ⋅

=

− ( ) ⋅( )

= ( )

= [ ]

d zdz

j E z w

jwd

E z d

j CV z

Cwd

F m

y

y

Ι ωε

ω ε

ω

ε

VII 5

d V zdz

LCV z2

22( ) = − ( )ω

d z

dzLC z

2

22Ι

Ι( )

= − ( )ω

V z V e V ej LC z j z( ) = ⋅ = ⋅− −0 0

ω ω µε

Ι Ι Ιz e ej LC z j z( ) = ⋅ = ⋅− −0 0

ω ω µε

Phase velocity: u

LCp = = =ωω µε µε

1 1

Characteristicimpedance:

ZV z

zLC0 = ( )

( )=

Ι

VII 6

Lossy Parallel-Plate Transmission Line

Conductance between the two conductors:

Compare with the analogy of resistance and capacitance

ε κc

R= ⋅

case a case b

⇒ = = = ⋅ = ⋅G

RC

wd

wd

1 κε

κε

ε κ

G

wd

S m= ⋅ [ ]κ

VII 7

Ohmic power dissipated in the plates

r r rS e E e HLoss z z x x= × ⋅ * Power flux density flowing into the plates ( )

rey

Def. Surface impedance Z

EJs

t

s

= J free surface current

ddxs

z= Ι

Z R j Xs s s= + ⋅

R

lengthcross tion w ds

c

= ⋅ =⋅

1 1κ κsec

l

= ⋅ ⋅ =1

2 2κκ µ ω µ ω

κc

c c c

cw wl l

effective series resistance per unit length

R

w wf

mc

c

c

c

= = ⋅ [ ]22

2µ ωκ

µ πκ

Ω /

d penetration depth

c c

= = 2

κ µ ω

VII 8

Equivalent Circuit of a Differential Length ∆∆∆∆ z

of a Two-Conductor Transmission Line

G ∆z•

R ∆z• L ∆z•

C ∆z•

VII 9

Distributed Parameters of Transmission Lines

Parameter Parallel Plate Two-Wire Line Coaxial Line Unit

R

L

G

C

2w

f c

c

π µκ

µ d

w

κ w

d

ε w

d

w=widthd=separation

R

as

π

µπ

cosh−

1

2

D

a

πκcosh /− ( )1 2D a

πεcosh /− ( )1 2D a

R

fs

c

c

= π µκ

a=radiusD=distance

cosh /

ln /

/

− ( )≈ ( )

( ) >>

1

2

2

2 1

D a

D a

if D a

R

a bs

2

1 1

π+

µπ2

lnba

2πκln /b a( )

2πεln /b a( )

R

fs

c

c

= π µκ

a=radiuscenter cond.

b=radiusouter cond.

Ω / m

H m/

S m/

F m/

VII 10

Wave Equation for Lossy Transmission Lines

− ( ) = +( ) ( )

− ( ) = +( ) ( )

( ) = ( )

( ) = ( )

dV zdz

R j L z

d zdz

G j C V z

d V zdz

V z

d zdz

z

ω

ω

γ

γ

Ι

Ι

Ι Ι

2

22

2

22

γ α β ω ω= + = + +j R j L G j C( )( )

VII 11

Waveguides

x

y

z A uniform waveguide with an arbitrary cross section

Time-harmonic waves in lossless media:

∆r rE E+ =ω µ ε2 0

r rE x y z t E x y e j t k zz, , , ,( ) = ( ) ⋅ − ⋅( )0 ω

∇ + ∇( ) = ∇ −xy z xy zE E k E2 2 2 2r r r

∇ + −( ) =xy zE k E2 2 2 0

r rω µε

∇ + −( ) =xy zH k H2 2 2 0

r rω µε

VII 12

From x E j H we get∇ = −r r

ωµ : From xH j E we get∇ =r r

ωε :

∂∂

+ = −

− − ∂∂

= −

∂∂

− ∂∂

= −

Ey

jk E j H

jk EEx

j H

E

xEy

j H

zz y x

z xz

y

y xz

00 0

00

0

0 00

ωµ

ωµ

ωµ

∂∂

+ =

− − ∂∂

=

∂∂

− ∂∂

=

Hy

jk H j E

jk HHx

j E

H

xHy

j E

zz y x

z xz

y

y xz

00 0

00

0

0 00

ωε

ωε

ωε

Hh

jkHx

jEy

Hh

jkHy

jEx

Eh

jkEx

jHy

Eh

jkEy

jH

x zz z

y zz z

x zz z

y zz z

02

0 0

02

0 0

02

0 0

02

0 0

1

1

1

1

= − ∂∂

− ∂∂

= − ∂∂

+ ∂∂

= − ∂∂

+ ∂∂

= − ∂∂

− ∂∂

ωε

ωε

ωµ

ωµxx

h kz2 2 2= −ω µε

VII 13

Three Types of Propagating Waves

Transverse electromagnetic waves TEM : EZ = 0 & HZ = 0

Transverse magnetic waves TM : EZ ­ 0 & HZ = 0

Transverse electric waves TE : EZ = 0 & HZ ­ 0

VII 14

TEM - Waves

H E k kz z z TEM z TEM= = → − + = → =0 0 02 2& ω µε ω µε

Phase velocity uk

Wave impedance ZEH k

pTEMz

TEMx

y zTEM

= =

= = =

ωµε

ωµ µε

1

0

0

for hollow single-conductor

waveguides:

H there is only H and H

div H H fields must form closed loops

EDt

rot H J TEM waves cannot exist in

gle conductor hollow waveguides

z x y

zz

= →

= → −

= → ∂∂

=

= →−

0

0

0 0

r

r r

sin

VII 15

TM-Waves

Ejk

kEx

Ejk

kEy

Hj

kEy

Hj

kEx

xz

z

z

yz

z

z

xz

z

yz

z

= −−

∂∂

= −−

∂∂

=−

∂∂

= −−

∂∂

ω µε

ω µε

ωεω µε

ωεω µε

2 2

2 2

2 2

2 2

Wave equation

∂∂

+ ∂∂

+ −( ) =2

2

2

22 2 0

Ex

Ey

k Ez zz zω µε

VII 16

TM-Modes in Rectangular Waveguides

a

x

y

b

z

boundary conditions

E y and E a y in the x direction

E x and E x b in the y direction

z z

z z

0 0 0

0 0 0

, ,

, ,

( ) = ( ) =

( ) = ( ) =

separation of variables

E x y E k x k yz x y, sin sin( ) = ( ) ( )0

k

ma

and knb

m n are egersx y= =π π( , int )

VII 17

Solution

E x yjk

kE

ma

ma

xnb

y

E x yjk

kE

nb

ma

xnb

y

H x yj

kE

nb

ma

xn

xz

z

yz

z

xz

, cos sin

, sin cos

, sin cos

( ) = −−

( ) = −−

( ) =−

ω µεπ π π

ω µεπ π π

ωεω µε

π π π

2 2 0

2 2 0

2 2 0 bby

H x yj

kE

ma

ma

xnb

yzz

( ) = −−

, cos sin

ωεω µε

π π π2 2 0

TM13 mode means m=1, n=3

(if m=0 or n=0 then E=H=0)

k

ma

nbz

2 22 2

= −

ω µε π π

ω µε π π

π µεπ π

c

c

ma

nb

fma

nb

cut off frequency

22 2

2 2

0

12

+

=

=

+

if f < fc then jkz is real no wave propagation

VII 18

Field Lines for TM11 Mode in Rectangular Waveguide

1,0

0,5

00

π/2 βzπ 2π3π/2

y/b

x

xxx

x

xx

x

xx

x

x

x

xx

Magnetic field lines

x/a

y/b

O

Electric field lines

VII 19

TE-Waves

Ej

kHy

Ej

kHx

Hjk

kHx

Hjk

kHy

xz

z

yz

z

xz

z

z

yz

z

z

= −−

∂∂

=−

∂∂

= −−

∂∂

= −−

∂∂

ωµω µε

ωµω µε

ω µε

ω µε

2 2

2 2

2 2

2 2

wave equation

∂∂

+ ∂∂

+ −( ) =2

2

2

22 2 0

Hx

Hy

k Hz zz zω µε

VII 20

TE-Modes in Rectangular Waveguides

boundary condition

∂∂ ( ) = ∂

∂ ( ) = ( ) =

∂∂ ( ) = ∂

∂ ( ) = ( ) =

Hx

y andHx

a y in the x direction E

Hy

x andHy

x b in the y direction E

z zy

z zx

0 0 0 0

0 0 0 0

, ,

, ,

separation of variables

H x y H

ma

xnb

yz , cos cos( ) =

0

π π

VII 21

Solution:

E x yj

kH

nb

ma

xnb

y

E x yj

kH

ma

ma

xnb

y

xz

yz

, cos sin

, sin cos

( ) =−

( ) = −−

ωµω µε

π π π

ωµω µε

π π π

2 2 0

2 2 0

H x yjk

kH

ma

ma

xnb

y

H x yjk

kH

nb

ma

xnb

y

xz

z

yz

z

, sin cos

, cos sin

( ) =−

( ) =−

ω µεπ π π

ω µεπ π π

2 2 0

2 2 0

TE01 mode means m = 0, n = 1

k

ma

nbz

2 22 2

= −

ω µε π π

f

ma

nbc =

+

12

2 2

π µεπ π

cut off frequency

if f < fc then jkz is real no wave propagation

VII 22

Field Lines for TE10 Mode in Rectangular Waveguide

π/2 βzπ 2π3π/2

xx

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

1,0

0,5

00

y/b

1,0

00

x/a

x/a

y/b

O

x

Electric field lines

Magnetic field lines

π/2 βzπ 2π3π/2

x

x

x

x

x

xx

xx

x

x

x x

x

x