9 Beam Deflection 2

Embed Size (px)

Citation preview

  • 8/9/2019 9 Beam Deflection 2

    1/23

    MECHANICS OF

    MATERIALS

    Third Edition

    Ferdinand P. Beer 

    E. Russell Johnston, Jr.

    John T. e!ol" 

    Le#ture Notes$

    J. !alt Oler 

    Te%as Te#h &ni'ersit(

    CHAPTER

    © 2002 The McGraw-Hill Companies, Inc. All rights

    9Deflection of Beams

  • 8/9/2019 9 Beam Deflection 2

    2/23

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALST h i    r   d  Beer ) Johnston ) e!ol" 

    Deformation of a Beam Under Transverse Loading

    • Relationship between bending moment and

    curvature for pure bending remains valid for

    general transverse loadings.

     EI 

     x M  )(1 = ρ 

    • Cantilever beam subected to concentrated

    load at the free end!

     EI 

     Px−=

     ρ 

    1

    • Curvature varies linearl" with x

    • #t the free end A! ∞==   A A

      ρ ρ

    !$1

    • #t the support B! PL

     EI  B

     B

    =≠   ρ  ρ 

     !$1

    http://contents.ppt/

  • 8/9/2019 9 Beam Deflection 2

    3/23

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALST h i    r   d  Beer ) Johnston ) e!ol" 

    Deformation of a Beam Under Transverse Loading• &verhanging beam

    • Reactions at A and C 

    • 'ending moment diagram

    • Curvature is ero at points where the bending

    moment is ero! i.e.! at each end and at E .

     EI  x M  )(1 = ρ 

    • 'eam is concave upwards where the bending

    moment is positive and concave downwards

    where it is negative.

    • a*imum curvature occurs where the moment

    magnitude is a ma*imum.

    • #n e+uation for the beam shape or elastic curve 

    is re+uired to determine ma*imum deflection

    and slope.T 

    http://contents.ppt/

  • 8/9/2019 9 Beam Deflection 2

    4/23

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALSTh i    r   d  Beer ) Johnston ) e!ol" 

    Equation of the Elastic Curve

    • rom elementar" calculus! simplified for beam

     parameters!

    2

    2

    2%2

    2

    2

    1

    1

    dx

     yd 

    dx

    dy

    dx

     yd 

     

     

     

     

     +

    = ρ 

    • ubstituting and integrating!

    ( )

    ( )

    ( ) 21$$

    1

    $

    2

    21

    C  xC dx x M dx y EI 

    C dx x M dx

    dy EI  EI 

     x M dx

     yd  EI  EI 

     x x

     x

    ++=

    +=≈

    ==

    ∫ ∫ 

    ∫ θ 

     ρ 

    MECHANICS OF MATERIA ST 

    http://contents.ppt/

  • 8/9/2019 9 Beam Deflection 2

    5/23

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALSTh i    r   d  Beer ) Johnston ) e!ol" 

    Equation of the Elastic Curve

    ( ) 21$$

    C  xC dx x M dx y EI 

     x x

    ++= ∫ ∫ 

    • Constants are determined from boundar"

    conditions

    • 0hree cases for staticall" determinant beams!

       impl" supported beam$!$   ==   B A   y y

       &verhanging beam$!$   ==   B A   y y

       Cantilever beam$!$   ==   A A y   θ 

    • ore complicated loadings re+uire multiple

    integrals and application of re+uirement for

    continuit" of displacement and slope.

    MECHANICS OF MATERIALST 

    http://contents.ppt/

  • 8/9/2019 9 Beam Deflection 2

    6/23

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALSTh i    r   d  Beer ) Johnston ) e!ol" 

    Direct Determination of the Elastic Curve From the

    Load Distriution

    • or a beam subected to a distributed load!

    ( ) ( ) xwdx

    dV 

    dx

     M d  xV 

    dx

    dM  −===2

    2

    • 3+uation for beam displacement becomes

    ( ) xwdx

     yd  EI dx

     M d  −==,

    ,2

    2

    ( ) ( )

    ,%2

    221%

    11 C  xC  xC  xC 

    dx xwdxdxdx x y EI 

    ++++

    −= ∫ ∫ ∫ ∫ • 4ntegrating four times "ields

    • Constants are determined from boundar"

    conditions.

    MECHANICS OF MATERIALST 

    http://contents.ppt/

  • 8/9/2019 9 Beam Deflection 2

    7/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALSTh i    r   d  Beer ) Johnston ) e!ol" 

    !taticall" #ndeterminate Beams• Consider beam with fi*ed support at A and roller

    support at B.

    • rom free-bod" diagram! note that there are four

    un6nown reaction components.

    • Conditions for static e+uilibrium "ield

    $$$   =∑=∑=∑   A y x   M  F  F 

    0he beam is staticall" indeterminate.

    ( ) 21$$

    C  xC dx x M dx y EI 

     x x

    ++= ∫ ∫ 

    • #lso have the beam deflection e+uation!

    which introduces two un6nowns but providesthree additional e+uations from the boundar"

    conditions7

    $!#t$$!$#t =====   y L x y x   θ 

    MECHANICS OF MATERIALST 

    http://contents.ppt/

  • 8/9/2019 9 Beam Deflection 2

    8/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALSTh i    r   d  Beer ) Johnston ) e!ol" 

    !am$le Prolem %&'

    ft,ft1/6ips/$

     psi1$29in52%81, ,

    ===×==×

    a L P 

     E  I W 

    or portion AB of the overhanging beam!

    (a) derive the e+uation for the elastic

    curve! (b) determine the ma*imum

    deflection!

    (c) evaluate ymax.

    &:04&;7

  • 8/9/2019 9 Beam Deflection 2

    9/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALSTh i    r   d  Beer ) Johnston ) e!ol" 

    !am$le Prolem %&'

    &:04&;7

  • 8/9/2019 9 Beam Deflection 2

    10/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALSTh i    r   d  Beer ) Johnston ) e!ol" 

    !am$le Prolem %&'

     PaLC  LC  L L

    a P  y L x

    C  y x

    1

    1$7$!at

    $7$!$at

    11%

    2

    =+−===

    ===

    • 4ntegrate differential e+uation twice and appl"

     boundar" conditions to obtain elastic curve.

    21%

    12

    1

    2

    1

    C  xC  x L

    a P  y EI 

    C  x L

    a P 

    dx

    dy EI 

    ++−=

    +−=

     x L

    a P 

    dx

     yd  EI    −=

    2

    2

     

     

     

     

     −=%2

      L

     x

     L

     x

     EI 

     PaL y

     PaLx x L

    a P  y EI 

     L x

     EI  PaL

    dxdy PaL x

     La P 

    dxdy EI 

    1

    1

    %1

    121

    %

    22

    +−=

     

      

      −=+−=

    ubstituting!

    MECHANICS OF MATERIALST 

    http://contents.ppt/

  • 8/9/2019 9 Beam Deflection 2

    11/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALSTh i    r   d  Beer ) Johnston ) e!ol" 

    !am$le Prolem %&'

    • ocate point of ero slope or point

    of ma*imum deflection.

         −=

    %2

      L

     x

     L

     x

     EI 

     PaL y

     L L

     x L

     x

     EI 

     PaL

    dx

    dym

    m /55.$%

    %1

    $2

    ==

       

      −==

    • 3valuate corresponding ma*imum

    deflection.

    ( )[ ]%2

    ma* /55.$/55.$

    −= EI 

     PaL y

     EI 

     PaL y

    $,2.$2

    ma* =

    ( ) ( ) ( )

    ( )( ),2

    ma*in52% psi1$29

    in18$in,86ips/$$,2.$

    ×= y

    in2%8.$ma* = y

    MECHANICS OF MATERIALST 

    http://contents.ppt/

  • 8/9/2019 9 Beam Deflection 2

    12/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALSTh i    r   d  Beer ) Johnston ) e!ol" 

    !am$le Prolem %&(

    or the uniform beam! determine the

    reaction at A! derive the e+uation for

    the elastic curve! and determine the

    slope at A. (;ote that the beam is

    staticall" indeterminate to the first

    degree)

    &:04&;7

  • 8/9/2019 9 Beam Deflection 2

    13/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALSTh i    r   d  Beer ) Johnston ) e!ol" 

    !am$le Prolem %&(

    • Consider moment acting at section D!

     L

     xw

     x R M 

     M  x

     L

     xw x R

     M 

     A

     A

     D

    $%2

    1

    $

    %$

    2$

    −=

    =−   

      

     −

    =∑

     L

     xw x R M 

    dx

     yd  EI 

     A

    %$

    2

    2

    −==

    • 0he differential e+uation for the elastic

    curve!

    MECHANICS OF MATERIALST  

    http://contents.ppt/

  • 8/9/2019 9 Beam Deflection 2

    14/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALSThi    r   d  Beer ) Johnston ) e!ol" 

    !am$le Prolem %&(

     L

     xw x R M 

    dx

     yd  EI   A

    %$

    2

    2−==

    • 4ntegrate twice

    21

    /$%

    1

    ,

    $2

    12$

    1

    2,2

    1

    C  xC  L

     xw x R y EI 

    C  L

     xw x R EI 

    dx

    dy EI 

     A

     A

    ++−=

    +−==   θ 

    • #ppl" boundar" conditions7

    $12$

    17$!at

    $2,2

    17$!at

    $7$!$at

    21

    ,

    $%

    1

    %$2

    2

    =++−==

    =+−==

    ===

    C  LC  Lw

     L R y L x

    C  Lw

     L R L x

    C  y x

     A

     Aθ 

    • olve for reaction at A

    $%$

    1

    %

    1 ,$

    % =−   Lw L R A   ↑=   Lw R A $1$

    1

    MECHANICS OF MATERIALST h 

    http://contents.ppt/

  • 8/9/2019 9 Beam Deflection 2

    15/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALSThi    r   d  Beer ) Johnston ) e!ol" 

    !am$le Prolem %&(

     x Lw L

     xw x Lw y EI     

      

      −− 

      

      = %$

    /$%

    $12$

    1

    12$1$

    1

    1

    ( ) x L x L x EIL

    w y ,%2/$ 2

    12$

    −+−=

    • ubstitute for C1! C2! and R # in the

    elastic curve e+uation!

    ( ),22,$ /12$

     L x L x

     EIL

    w

    dx

    dy−+−==θ 

     EI 

     Lw A

    12$

    %$=θ 

  • 8/9/2019 9 Beam Deflection 2

    16/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALSThi    r   d  Beer ) Johnston ) e!ol" 

    )ethod of !u$er$osition

    >rinciple of uperposition7

  • 8/9/2019 9 Beam Deflection 2

    17/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALShi    r   d  Beer ) Johnston ) e!ol" 

    !am$le Prolem %&*

    or the beam and loading shown!

    determine the slope and deflection at

     point B.

    &:04&;7

    uperpose the deformations due to L!adi"# I  and L!adi"# II   as shown.

    MECHANICS OF MATERIALST h 

    http://contents.ppt/

  • 8/9/2019 9 Beam Deflection 2

    18/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALShi    r   d  Beer ) Johnston ) e!ol" 

    !am$le Prolem %&*

     L!adi"# I 

    ( ) EI 

    wL I  B

    %−=θ    ( )

     EI 

    wL y  I  B 8

    ,−=

     L!adi"# II 

    ( ) EI 

    wL II C  ,8

    %=θ    ( ) EI 

    wL y  II C  128,=

    4n beam segment C'! the bending moment is

    ero and the elastic curve is a straight line.

    ( ) ( ) EI 

    wL II C  II  B ,8

    %==   θ θ 

    ( ) EI 

    wL L

     EI 

    wL

     EI 

    wL y  II  B %8,

    5

    2,8128

    ,%,

    =   

      +=

    MECHANICS OF MATERIALST h 

    http://contents.ppt/

  • 8/9/2019 9 Beam Deflection 2

    19/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALShi    r   d  Beer ) Johnston ) e!ol" 

    !am$le Prolem %&*

    ( ) ( ) EI 

    wL EI 

    wL II  B I  B B ,8

    %% +−=+=   θ θ θ 

    ( ) ( ) EI 

    wL

     EI 

    wL y y y  II  B I  B B %8,

    5

    8

    ,,

    +−=+=

     EI wL

     B,85 %=θ 

     EI 

    wL y B

    %8,

    ,1 ,=

    Combine the two solutions!

    MECHANICS OF MATERIALST h 

    http://contents.ppt/

  • 8/9/2019 9 Beam Deflection 2

    20/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALShi    r   d  Beer ) Johnston ) e!ol" 

     A$$lication of !u$er$osition to !taticall"

    #ndeterminate Beams

    • ethod of superposition ma" be

    applied to determine the reactions at

    the supports of staticall" indeterminate

     beams.

  • 8/9/2019 9 Beam Deflection 2

    21/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALShi    r   d  Beer ) Johnston ) e!ol" 

    !am$le Prolem %&+

    or the uniform beam and loading shown!determine the reaction at each support and

    the slope at end A.

    &:04&;7• Release the ?redundant@ support at '! and find deformation.

    • #ppl" reaction at B as an un6nown load to force ero displacement at B.

    MECHANICS OF MATERIALST h 

    http://contents.ppt/

  • 8/9/2019 9 Beam Deflection 2

    22/23© 2002 The McGraw-Hill Companies, Inc. All rights reserved.

    MECHANICS OF MATERIALShi    r   d  Beer ) Johnston ) e!ol" 

    !am$le Prolem %&+

  • 8/9/2019 9 Beam Deflection 2

    23/23

    MECHANICS OF MATERIALShi    r   d  Beer ) Johnston ) e!ol" 

    !am$le Prolem %&+

    ( ) EI 

    wL

     EI 

    wLw A

    %%

    $,15.$2,

    −=−=θ 

    ( ) EI wL L L L

     EILwL R A

    %2

    2 $%%98.$%%

    $88.$ =

         −     =

    θ 

    ( ) ( ) EI 

    wL

     EI 

    wL R Aw A A

    %%

    $%%98.$$,15.$   +−=+=   θ θ θ  EI 

    wL A

    %

    $$59.$−=θ 

    lope at end A!

    http://contents.ppt/