62
9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t) x(t) = e st d e h s H s

9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Embed Size (px)

Citation preview

Page 1: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

9.0 Laplace Transform 9.1 General Principles of Laplace

Transform

linear time-invariant

Laplace TransformEigenfunction Property

y(t) = H(s)esth(t)x(t) = est

dehsH s

Page 2: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Chapters 3, 4, 5, 9, 10

Chap 3 Chap 5Chap 4

Chap 10

Chap 9

Page 3: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Laplace TransformEigenfunction Property

– applies for all complex variables s

dtethjH

jstj

Fourier Transform

Laplace Transform

dtethjH

jstj

eigenfunction of all linear time-invariant systems with unit impulse response h(t)

Page 4: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Laplace Transform

A Generalization of Fourier Transform

dtetx

dtetxjX

tj

tj

e

t-

jsjs to fromjω

X( + jω)

tetx Fourier transform of

sXtx

jsdtetxsXL

st

,

Laplace Transform

Page 5: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Laplace Transform

𝜎 2+ 𝑗𝜔1

Page 6: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Laplace TransformA Generalization of Fourier Transform

– X(s) may not be well defined (or converged) for all s

– X(s) may converge at some region of s-plane, while x(t) doesn’t have Fourier Transform

– covering broader class of signals, performing more analysis for signals/systems

Page 7: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Laplace TransformRational Expressions and Poles/Zeros

sD

sNsX

roots zeros

roots poles

– Pole-Zero Plots

– specifying X(s) except for a scale factor

Page 8: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Laplace TransformRational Expressions and Poles/Zeros– Geometric evaluation of Fourier/Laplace transform

from pole-zero plots

jj

ii

s

sMsX

each term (s-βi) or (s-αj) represented by a vector with magnitude/phase

Page 9: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Poles & Zeros

x x

Page 10: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Region of Convergence (ROC)Property 1 : ROC of X(s) consists of strips parallel

to the jω -axis in the s-plane

– For the Fourier Transform of x(t)e-σt to converge

dtetx t

Property 2 : ROC of X(s) doesn’t include any poles

depending on σ only

Page 11: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Property 1, 3

Page 12: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Region of Convergence (ROC)Property 3 : If x(t) is of finite duration and absolutely

integrable, the ROC is the entire s-plane

dttxedtetx

dttxedtetx

TT

dttx

T

T

TT

T

t

T

T

TT

T

t

T

T

,0for

,0for

duration finite the: ,

2

1

22

1

2

1

12

1

2

1

21

Page 13: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Region of Convergence (ROC)Property 4 : If x(t) is right-sided (x(t)=0, t < T1),

and {s | Re[s] = σ0}ROC, then

{s | Re[s] > σ0}ROC, i.e., ROC

includes a right-half plane

dtetxedtetx

dtetx

t

T

T

T

t

t

T

0

1

101

1

1

0

1

for

01

Page 14: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Property 4

Page 15: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Region of Convergence (ROC)Property 5 : If x(t) is left-sided (x(t)=0, t > T2),

and {s | Re[s] = σ0}ROC, then

{s | Re[s] < σ0}ROC, i.e., ROC

includes a left-half plane

Page 16: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Property 5

Page 17: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Region of Convergence (ROC)Property 6 : If x(t) is two-sided, and {s | Re[s] =

σ0}ROC, then ROC consists of a strip

in s-plane including {s | Re[s] = σ0}

txtxtx

-tx-tx

txtxtx

LR

LR

LR

ROCROCROC

sidedleft : sided,right :

See Fig. 9.9, 9.10, p.667 of text

*note: ROC[x(t)] may not exist

Page 18: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)
Page 19: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)
Page 20: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Region of Convergence (ROC)A signal or an impulse response either doesn’t have a

Laplace Transform, or falls into the 4 categories of

Properties 3-6. Thus the ROC can be , s-plane, left-

half plane, right-half plane, or a signal strip

Page 21: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Region of Convergence (ROC)Property 7 : If X(s) is rational, then its ROC is

bounded by poles or extends to infinity– examples:

assas

tue

assas

tue

Lat

Lat

Re ROC ,1

Re ROC ,1

– partial-fraction expansion

See Fig. 9.1, p.658 of text

i i

i

assX

Page 22: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)
Page 23: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Region of Convergence (ROC)Property 8 : If x(s) is rational, then if x(t) is right-

sided, its ROC is the right-half plane to

the right of the rightmost pole. If x(t) is

left-sided, its ROC is the left-half plane

to the left of the leftmost pole.

Page 24: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Property 8

ROC

Page 25: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Region of Convergence (ROC)An expression of X(s) may corresponds to different

signals with different ROC’s.– an example:

21

1

sssX

– ROC is a part of the specification of X(s)

See Fig. 9.13, p.670 of text

The ROC of X(s) can be constructed using these properties

Page 26: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)
Page 27: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Inverse Laplace Transform

jddsdsesXj

tx

dejXtx

dejXjXFetx

stj

j

tj

tjt

21

21

21

1

1

1

1

1

111

– integration along a line {s | Re[s]=σ1}ROC for a fixed σ1

Page 28: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Laplace Transform

( 合成 ?)

(basis?)X

X

( 分析 ?)X

[𝑒(𝜎1+ 𝑗 𝜔 ) 𝑡 ]∗=𝑒𝜎1 𝑡 ⋅𝑒− 𝑗 𝜔𝑡( 分析 )≠ �⃗�⋅𝑣

basis

( 合成 )

𝑥 (𝑡 )𝑒−𝜎 1𝑡= 12𝜋

− ∞

𝑋 (𝜎 1+ 𝑗 𝜔)𝑒 𝑗𝜔𝑡 𝑑𝑡

( 分析 )

𝑋 (𝜎 1+ 𝑗 𝜔)=−∞

[𝑥 (𝑡 )𝑒−𝜎1𝑡]⋅𝑒− 𝑗𝜔𝑡 𝑑𝑡

Page 29: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Practically in many cases : partial-fraction expansion works

Inverse Laplace Transform

1

m

i i

i

as

AsX

– ROC to the right of the pole at s = -ai

tueA tai

i

– ROC to the left of the pole at s = -ai

tueA tai

i

Known pairs/properties practically helpful

each termfor i

i

as

A

Page 30: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

9.2 Properties of Laplace Transform

Linearity

222

111

ROC ,

ROC ,

ROC ,

RsXtx

RsXtx

RsXtx

L

L

L

212121 ROC , RRsbXsaXtbxtax L

Time Shift

RsXettx stL ROC ,00

Page 31: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Time Shift

Page 32: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Shift in s-plane

0

0

00

Reby shifted ROC

Re

ReROC ,0

s

Rsss

sRssXtxe Lts

See Fig. 9.23, p.685 of text

– for s0 = jω0

RjsXtxe Ltj ROC ,00

shift along the jω axis

Page 33: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Shift in s-plane

𝑅𝑒 [𝑠0]

𝑠0= 𝑗𝜔0

Page 34: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)
Page 35: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Time Scaling (error on text corrected in class)

RsasaRa

sX

aatx L

ROC ,

1

– Expansion (?) of ROC if a > 1

Compression (?) of ROC if 1 > a > 0

reversal of ROC about jw-axis if a < 0

(right-sided left-sided, etc.)

See Fig. 9.24, p.686 of text

RssRsXtx L ROC ,

Page 36: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)
Page 37: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Conjugation

real if

ROC ,

txsXsX

RsXtx L

– if x(t) is real, and X(s) has a pole/zero at

then X(s) has a pole/zero at

0

0

ss

ss

Convolution

212121 ROC , RRsXsXtxtx L

– ROC may become larger if pole-zero cancellation occurs

Page 38: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Differentiation

RssXdt

tdx L ROC ,

ROC may become larger if a pole at s = 0 cancelled

R

ds

sdXttx L ROC ,

(− 𝑗𝑡𝑥 (𝑡)𝐹↔

𝑑𝑑𝜔

𝑋 ( 𝑗𝜔 ))

Page 39: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Integration in time Domain

0Re ROC ,1

,

0Re ROC ,1

sss

tu

tutxdx

ssRsXs

dx

L

t

tL

(𝑢 (𝑡 )𝐹↔

1𝑗𝜔

+𝜋𝛿(𝜔))(

− ∞

𝑡

𝑥 (𝜏 ) 𝑑𝜏=𝑥 (𝑡 )∗𝑢(𝑡)𝐹↔

𝑋 ( 𝑗𝜔 )𝑑𝜔

+𝜋 𝑋 ( 𝑗0)𝛿(𝜔))

Page 40: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Initial/Final – Value Theorems

Theorem value-Final limlim

Theorem value-Initial lim

0ssXtx

ssXox

st

s

x(t) = 0, t < 0

x(t) has no impulses or higher order singularities at t = 0

Tables of Properties/Pairs

See Tables 9.1, 9.2, p.691, 692 of text

Page 41: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)
Page 42: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)
Page 43: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

9.3 System Characterization with Laplace Transform

system function

transfer function

y(t)=x(t) * h(t)h(t)

x(t)

X(s) Y(s)=X(s)H(s)H(s)

Page 44: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Causality

– A causal system has an H(s) whose ROC is a right-half plane

h(t) is right-sided

– For a system with a rational H(s), causality is equivalent to its ROC being the right-half plane to the right of the rightmost pole

– Anticausality

a system is anticausal if h(t) = 0, t > 0

an anticausal system has an H(s) whose ROC is a left-half plane, etc.

Page 45: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Causality

ROCis

right half Plane

right-sided CausalX

Causal

𝑋 (𝑠 )=∑𝑖

𝐴𝑖

𝑠+𝑎𝑖,

𝐴𝑖

𝑠+𝑎𝑖

→ 𝐴𝑖𝑒−𝑎𝑖 𝑡𝑢 (𝑡)

Page 46: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Stability

– A system is stable if and only if ROC of H(s) includes the jω -axis

h(t) absolutely integrable, or Fourier transform converges

See Fig. 9.25, p.696 of text

– A causal system with a rational H(s) is stable if and only if all poles of H(s) lie in the left-half of s-plane

ROC is to the right of the rightmost pole

Page 47: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Stability

Page 48: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)
Page 49: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Systems Characterized by Differential Equations

N

kkk

M

k

kk

M

k

kk

N

k

kk

k

kM

kk

N

kk

k

k

sa

sb

sX

sYsH

sXsbsYsa

dt

txdb

dt

tyda

0

0

00

00

zeros

poles

Page 50: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

System Function Algebra

– Parallel

h(t) = h1(t) + h2(t)

H(s) = H1(s) + H2(s)

– Cascade

h(t) = h1(t) * h2(t)

H(s) = H1(s) ‧ H2(s)

Page 51: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

System Function Algebra

– Feedback

x(t) +

-+

h1(t)H1(s)

e(t)y(t)

h2(t)H2(s)

z(t)

sHsH

sH

sX

sYsH

sYsHsXsHsY

21

1

21

1

Page 52: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

9.4 Unilateral Laplace Transform

Transform Laplace bilateral

Transform Laplace unilateral 0

dtetxsX

dtetxsX

st

stu

impulses or higher order singularities at t = 0 included in the integration

uL sXtx

Page 53: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

– ROC for X(s)u is always a right-half plane

– a causal h(t) has H(s) = H(s)

– two signals differing for t < 0

but identical for t ≥ 0 have identical unilateral Laplace transforms

– similar properties and applications

9.4 Unilateral Laplace Transform

sHsH u

Page 54: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Examples• Example 9.7, p.668 of text

0b Transform, Laplace No

0b ,sReb ,211

sRe ,1

sRe ,1

)(

22

bbsb

bsbse

bbs

tue

bbs

tue

tuetueetx

Ltb

Lbt

Lbt

btbttb

Page 55: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Examples• Example 9.7, p.668 of text

Page 56: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Examples• Example 9.9/9.10/9.11, p.671-673 of text

)()()( ,1sRe2

)( )( ,2sRe

)( )( ,1sRe

21

11

211)(

2

2

2

tuetuetx

tueetx

tueetx

sssssX

tt

tt

tt

Page 57: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Examples• Example 9.9/9.10/9.11, p.671-673 of text

Page 58: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Examples• Example 9.25, p.701 of text

stable is )( plane half-left in the poles Allcausal is )(

polerightmost theofright the tois )( of 2 ,1at poles ,

1sRe ,21

3)()(

)(

1sRe ,21

1)(

3sRe ,3

1)(

)( )()()( 23

sH

sHsHROC

-s-sROCROCROCss

ssXsY

sH

sssY

ssX

tueetytuetx

HXY

ttt

plane half-left in the poles All

left-half plane

Page 59: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Problem 9.60, p.737 of text

poles no , all ,1

3

22

33

3

see

eesH

TtTtth

sTsT

sTsT

Echo in telephone communication

Page 60: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Problem 9.60, p.737 of text

)22

(log1

,01

of zeros find To)2(22 2

Tm

Tj

Ts

ejee

sHmjsTsT

zeros

𝜋

2𝑇𝜋

2𝑇+

2𝜋𝑇

Page 61: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Problem 9.60, p.737 of text

TtTt

sH

Ttee

jT

jT

s

tT

jTts

3by that cancels )(by generated Signal

eeigen valu ,0

2 when )1(1

)2

(log1for

3

22

log1

000

0

Page 62: 9.0 Laplace Transform 9.1 General Principles of Laplace Transform linear time-invariant Laplace Transform Eigenfunction Property y(t) = H(s)e st h(t)h(t)

Problem 9.44, p.733 of text

Tteee

jT

js

Tjmee

eee

nTte

TtT

jts

jmTs

Tsn

snTnT

n

nT

when

2-1for

2-1s ,1

poles find to

11sX

e tx

)21(

000

)2()1(

)1(0

T-

0

0