35
INTERAGENCY REPORT: ASTROGEOLOGY 30 A TEST OF SELF-STATIONARITY By Robert D. Regan Prepared under NASA Contract H-82013A 92·311

92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

Embed Size (px)

Citation preview

Page 1: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

INTERAGENCY REPORT: ASTROGEOLOGY 30

A TEST OF SELF-STATIONARITY

By

Robert D. Regan

Prepared under NASA Contract H-82013A

92·311

Page 2: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

The work presented in chis report was accomplished as part of

a study investigating the analysis of traverse geophysics data.

The study was directed toward developing methods of extracting the

maximum amount of information from geophysical measurements ob­

tained during proposed automated lunar vehicle traverses.

However, it became apparent that a computer program for test­

ing stationarity would be of use in many fields of investigation.

Thus it was dec i ded to publish this report separately.

1

Page 3: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

CONTENTS

ABSTRACT -----------------------------------------------­

INTRODUCTION --------------------------------------------

BRIEF THEORETICAL SUMMARY -------------------------------Time Series Stochastic Process -----------------

Stochastic Process Functions ---------------------

Statlonarity ------------------------------------­

Ergodicity ---------------------------------------

STATIONARITY OF A SINGLE TIME SERIES --------------------

TEST FOR SELF-STATIONARITY -----------------------------­

Bendat and Piersol Test --------------------------

Bryan Test ------ -------------- - ---------------

Test Modifications ------------------------------­

SELF-STATIONARITY TEST ---------------------------------­

COMPUTER PROGRAM STEST ----------------------------------

Program Input -----------------------------------­

Program Output ----------------------------------­

TEST CASES ---------------------------------------------­

APPENDIX ------------------------------------------------

Computer Program STEST ---------------------------

Sample Input ------------------------------------­

Sample Output ------------------------------------

REFERENCES ------------------------------------------·---

ii

Page

1

1

2

2

2

3

4

4

5

5

5

6

6

7

7

7

8

12

13

27

29

31

Page 4: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

A TEST OF SELF-STATIONARITY

by

Robert D. Regan

ABSTRACT

A method for testing the stationarity of a single time series has been devised. The method utilizes two pre-existing tests of stationarity. A computer program that permits routine testing of any time series has been developed, and the test has been success­fully applied to several known series. In certain cases the self· stationarity determined can be equated to stationarity.

INTRODUCTION

In time-series analysis of any body of observational data,

the fundamental assumption is that of stationarity. Very little

work has been d ~ne with nonstationary time series, and the effects

of nonstationarity upon time-series analysis are lit t le known. In

the prattical application of time-series techniques the assumption

of stationarity is routinely invoked without adequate tests for

the validity of such an assumption. Yet the utilization of some

of the more essential techniques of time-series analysis, such as

the Wiener-Khintchine theorem in the indirect method of power

spectra computat ~ on, is valid on J·· for stationary series.

This situation stems from the f act that, to date, no rapid,

accurate, routine method has been available to test the station­

arity of a time series. Such a test is clearly required so that

stationarity or nonstationarity of a series can be routinely de­

termined and the validity of the application of time-series anal­

ysis be established. The method and computer program outlined in

this report is designed to fulfill this requirement.

Basically, the method outlined and programmed is a combina­

tion of tests proposed by Bendat and Piersol (1966) and Bryan

(1967). Their tests and assumptions have been combined with some

additional logic to produce a computer test of the stationarity

of a single time series . The method has proved successful in sev­

eral test cases.

1

Page 5: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

BRIEF THEORETICAL SUMMARY

Before the test method and rationale are explained it is

essential to discuss some of the concepts and terms pertinent to

stationarity.

Time Series-Stochastic Process

A stochastic process can be considered as being composed of

a family of random variables, and viewed as a function of two

var iables t and w. The sample space associated with this stoch­

astic process is doubly infinite and the set of time functions

which can be defined on this space is called an ensemble.

A strict definition of a time series is that it is one reali­

zation (outcome) of a stochastic (random) process. A more popular

definition is that it is a set of observations of a parameter

arranged sequentially.

The label "time-series" is perhaps a misnomer, and is directly

applicable only when the observations are made chronologically.

However, for the independent variable, time, there may be substi­

tuted any other parameter -e.g., distance.

The basic idea of the statistical theory of time series

analysis is to regard the time series as a set of ob~ervations

made on a family of random variables, i.e., for each tinT,

x (t) is an observed value of a random variable. The set of

observations [ x (t); t ( T } is called a time series.

Stochastic Process Functions

The basic process functions are

a) mean of the process co

\.lx(t) S E (x(t)} • L J x f(x,t) dx

where:

LJ f(x,t)

f

-=

• Lebesgue Integral

• Probability density function

= Expectation operator

2

Page 6: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

In the general case the means are different at different

times and must be calculated for each t.

b) autocorrelation function of the process

Rx ( t 1

, t2

) ~ E ( x ( t 1

) , x ( t 2

)}

where:

* x(t2) = complex conjugate of x(t2)

c) autocovariance function of the process

d * Cx(t1 ,t2 ) = E ([ x(t1 ) - ~x(t 1 )] , [ x(t2 ) - ~x(t2 ) J} In the general case these functions must be calculated for

each t1

, t 2 combination.

Stationarity

In general the properties of a stochastic process will be

time dependent. A simplifying assumption which is often made is

that the series has reached some form of steady state in the sense

that the statistical properties of the series are independent of

absolute time. Stationarity can be pictured as the absence of any

time-varying change in the ensemble of member functions as a whole.

A sufficient degree of stationarity for most time-series

analysis is wide-sense stationarity. A process has wide-sense

stationarity if its expected value is a constant and its auto­

correlation depends only on the time difference, t1

- t 2 ~ T, and

not on the absolute value of the respective times.

i.e.

and

E (x(t)} a ~ (t) = constant X

* E {x(t+ T), x(t)} = R (T) X

Wide-sense stationarity is also termed stationarity of the second

order, i.e., the series is stationary through its second order

statistical moments. Stationarity of order n implies that all

statistical moments less than n depend only on the time differences.

3

Page 7: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

Ergodicity

Ergodicity relates to the problem of determining the statis­

tics of the stochastic process from the statistics of one time

series. A stochastic process for which the statistics are thus

determinable is said to be ergodic, and the single time secies is

representative of the ensemble. The ensemble moments can then be

equated to the time moments.

For example the time average equals the ensemble average of

an ergodic process

T J x(t) dt ~ E(x(t)}

-T

If a time series is ergodic we need only to measure the time

averages which are available rather than the postulated ensemble

averages. Since ergodicity is a subclass of stationarity, a time

series must be shown to be stationary before the question of

e~godicity can be considered.

STATIONARITY OF A SINGLE TIME SERIES

In the transformation from the theoretical to the empiri~al,

strict adherence to theory must be tempered with reasonable prac­

tical considerations. In most practical applications the single

observed time series is the only information available on the

parent process. Hence ergodicity must be assumed and time-domain

statistics utilized. Also all analyses are performed on the

sample series and thus the stationarity of this series is of prime

interest. Bendat and Piersol (1966) have termed the concept of

stationarity of this one time series as self-stationarity. Thus

we speak of the series being stationary rather tha. the process

being stationary.

However, the concept of self-stationarity is not restrictive.

A necessary condition to extend this self-stationarity to station­

arity is that the process be ergodic, i.e. that the series is

representative of the process. Ergodicity is impossible to prove

(except in special instances) when the entire process is not known.

4

Page 8: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

Bendat and Piersol (1966, p. 12) state that "in actual practice,

random data representing stationary physical phenomena are gen­

erally ergodic".

If the assumption of ergodicit~r is justified then self

stationarity becomes equivalent to stationarity, since the single

time series is representative of the ensemble·.

TEST FOR SELF-STATIONARITY

The test for self-stationarity is based on the methods pro­

posed by Bendat and Piersol (1966) and Bryan (1967). The basis

of these methods is that in a stationary series certain statistical

properties of the time series are considered invarian~ with time.

The tests are for second order self-stationarity.

Bendat and Piersol Test

Bendat and Piersol (1966) suggest that the series be divided

into n equal time intervals (either contiguous or non-contiguous)

and that the mean and variance of these intervals be calculated.

The two series thus formed, composed of means and variances, are

then tested for underlying trends or variations by the Run test

and the Trend test, Bendat and Piersol (1966, p. 156). If no

trends or variations are suggested by the application of these

tests, the original series is assumed to be stationary.

Bryan Test

Basically, Bryan's test (1967) is quite similar in that he­

tests the invariance of the means and variances obtained from in­

dependent, equal time segments. Rather, than using the sample

mean and sample variance he constructs two combi.nations of the

data to serve as estimates of the population mean and population

variance. Those two estimates are independent, and independently

distributed.

Using these two variates, m, a linear function of the data

and an unbiased estimate of the population mean, and Q, a quad­

tatic function of the data, he develops a test for the hypothesis

that the time series is stationary, and two test variables, L1

for

5

Page 9: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

the Neyman-Pearson L test, and F for the F-distribution test.

Test modifications

The tables for the Run and Trend tests (Bendat and Piersol

1966, p. 170) were extrapolated to include the range n = 1 to

n = 200 . With values of n less than 12 the results proved unre­

liable. Hence a low limit c•tt off at n = 12 is utilized. The

Acceptance region was extended to include the lower bound.

The Bryan test was extended to include the 97.5 percent con­

fidence interval.

Self-Stationarity Test

In the proposed test both methods are combined and used with

some restrictions and modifications.

First the sampling interval for independent samples is deter­

mined. If independent samples cannot be determined, i.e., the

autocorrelation :unction does not damp to zero, the test is aborted

and the series can be considered non-stationary if a reasonable

number of points has been used.

Once the sampling interval has been determined, the series

is segmented into independent samples of length N. Initially the

series is tested with N = 5, then N is increased to 10, and the

final test, if there are enough data points, is for N = 15.

:he minimum test is for KK = N samples of length N. If there

are not enough data points for this number of samples, the re­

quirement for independent samples is relaxed slightly (i.e. the

sample separation interval is steadily decreased to a limiting

value equal to the number of lags necessary for the autocorrelation

function to damp to .100). If at this sample interval there are

not N samples, the test is aborted. If this happens at N = 5, it

may be an indication of nonstationarity.

If we have KK independent samples of length N the series is

tested for stationarity at three confidence intervals (95%, 97.5%,

99%) in the following manner

a) if KK is greater than or equal to 12, the Bendat

6

Page 10: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

and Piersol test statistics and the Bryan test

statistics are both utilized.

b) if KK is less than 1~ only the Bryan test statistics

are utilized.

The series is considered stationary if both the Run and Trend

tests show no trends or variations for the mean and variance series

and if the two test statistics in the Bryan test indicate station­

arity.

In the case where only one method is utilized (i.e. KK < 12)

stationarity is tested on the merits of the Bryan test statistics

alone.

It should be noted that the 95 percent confidence interval is

the most restrictive (i.e. the smallest acceptance region) and the

other confidence intervals progressively less restrictive.

Also results at the largest N used are preferable since more

data points are used in each sample to determine the test statis­

tic and the assumption of normality in the Bryan test statistics

is more closely approximated.

COMPUTER PROGRAM STEST

The stationarity test has been programmed on an IBM 360/30 as

computer program STEST. A copy of the computer program is con­

tained in the Appendix.

The program requires approximately 53,000 bytes of storage

and to test a series of 400 data points for all values of N re­

quires approximately ~ ~inutes of computer time.

Pt·ogram Input

The input to the program is simply the number of data points

in the series and the values of the data points. An example is

contained in the Appendix.

Program Output

The program output has several forms. Initially the lag re­

quired for the autocorrelatiot function to damp to zero is indi­

cated along with the value of the autocorrelation function at

7

Page 11: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

that lag.

If the autocorrelation function does not damp to zero, a

statement is printed stating that this occurred and that it may be

indicative of non-stationarity.

The stationarity te3t is then cc-·.ducted for values of N = 5,

10, 15. If at any value there are not at least N samples available

for testing, the sampling interval i& progressively decreased to a

limiting value to obtain N values. If N values are obtained in

this manner a statement indicating that correlated samples are

being used along with the autocorrelation lag and value at this

sample interval is printed out. If N samples cannot be obtained

the test is aborted.

If there are KK samples (KK ~ N) of length N, the test re­

sults are printed out for the 95%, 97.5%, and 99% confidence inter­

vals.

A sample output is contained in the Appendix.

TEST CASES

Seven series that have been tested are seri~ ~ A-F as given

in Box and Jenkins (1970) and a second order auto regressive pro­

cess as given in Jenkins (1968). The results are shown in Table 1.

In all cases except series A the test accurately indicated the

stationarity or non-stationarity of the series. The discrepancy

in series A may be attributable to the fact that correlated samples

were used.

It is interesting to note that the series generated from the

second order AR process is stationary and the process itself is

stationary. Thus, in this case self-stationarity is indicative

of stationarity.

8

Page 12: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

Table 1

Series A - Non stationary

STEST Results

- Correlated samples used -

A) N =- 5

95% confidence interval

97.5% confidence interval

99% confidence interval

B) N :;;; 10

non stationary

stationary

stationary

Not enough data points for independent or

correlated samples.

Series B - Non stationary

STEST Results

A) N ~ 5

There are not enough data points for independent

or correlated samples. Since this occurred for

a sample of length 5 and the length of the in­

put series is 369, this may be indicative of

non-stationarity.

Ser4ss C - Non stationary

STEST Results

A) N a 5

95% confidence interval

97.5% confidence interval

99% confidence interval

B) N -= 10

non stationary

non stationary

non stationary

Not enough data points for independent or cor­

related samples.

9

Page 13: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

Series D - Non stationary

STEST Results

A) N =- 5

For N =- 5 there are not enough data points for

independent or correlated samples. Since this

occurred for a sample of length 5 and the length

of the input series is 310 this may be indica­

tive of non-stationarity.

Series E - Stationary

STEST Results

A) N = 5

95% confidence interval

97.5% confidence interval

99% confidence interval

B) N = 10

non stationary

stationary

stationary

Not enough data points for independent or cor­

related samples.

Series F - Stationary

STEST Results

A) N = 5

95% confidence interval

97.5% confidence interval

99% confidence interval

B) N • 10

stationary

stationary

stationary

Not enough data points for independent or cor­

related samples.

10

Page 14: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

Second Order A. R. Proces ~ - Stationary

STEST Results

A) N :-.: 5

95% confidence interval

97.5% confidence interval

99% confidence interval

B) N = 10

95~ confidence interval

97.5% confidence interval

99% confidence interval

C) N :: 15

95% confidence interval

97.5% confidence interval

99% confidence interval

11

stationary

stationary

stationary

stationary

stationary

stationary

stationary

stationary

stationary

Page 15: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

Appendix

12

Page 16: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

Computer Program STEST

13

Page 17: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

~

0001

0007 000] 0004 oon-;

OOOh OOOJ OOOR 0001') 0010 0011 001? non 0014 OOI'i OOIIt 0017 OOtA OOiq

t: Opl)r.AA114 "TF ~ f r.

06/?1/71

r T~l~ DD~GRA .. Tf~f~ ~ Tt .. f Sf~lfS F~A WIOf ~f~Sf STlTI~~AAIJV

r. c C fHF PAnr.PA,. USfC) TWO TESTS r

TI114F

II J.G. RAV·~--SJ&TISTICAL TE~J ~F THE HVPOTHFSI~ THAT A r: r. c r.

Tl~f SERIFS I~ STATIO~ARY---GFnPHV~ICS-V.32-Nn.~ Tl114f SF•IES IS STATIO~A~V---GFOPHYSICS­VOL.l'---~0.,--P. 4q~

r. 11 AE~~&TJ ANn PIEASOl---114EASUAfMfNl AND ANAlYSIS nf C qa~OOM OATA---P. llCJ (

(

r. fHF c;FAffc; I~ •HAO PHO T~f PIHlftAAM. JHf ACF IS CAlCtJLATfO A,.O C ltif ~U .. AFR llF lAG~ ~£Cf~~ARY FOR THE ACF TO OIMP TO lER'l I~ C OfTFA .. INFO. JHF SFAI~~ IS TH~N SA .. PlfO AT INlfAVAl~ SEPIAATEO C qy T .. IS LAr;. JHI S lS~I~fS INOEPFNOF.NCE. THE S&MPlf.O SFRIFS IS C lHf~ TF~TFn Fnq ~TITfONIAITV. If THF NUMHER nf SAMPlfS IS r..~.

C 1 7. ~OTH TFC\T~ ARt'" U~fflt IF LT 12 ONLY ftAVIN•S TEST IS USFO. r r (' I~PUT OAJA (

C ~N--lfNGTH OF THE SFAifS r x---liii4F SERIES (

c c

r:

Of M(~~ fOJJ WC tOOO I ,Itt 100 I ,wt JOOI,WWClOO t, WWWt I 'i, IS) ,RWilOO I, NT EST 14 II,JTFSTC41,~~TFSlt41 ~F40CI,tnot~N

lOll FOA"4&JC 141 AEAI'l(l,lOIIfXf lt,l=l,Ntit

101 FnA~ATCfll.41

C PfllW CAl Cl'l l TF THE 'C F

c ("Ll WV&R(X, l,NN,VfUA,VAAXt fT-U=fl

~=o.-.•A~

fVt 1'\ fP=l,M ,..(Pa~~-fP

A c;u~= n. llO I 4 t N= I, N t P

14 Ac;UM=A SliM+II XI INl-WRAA 1•1 XC lti+1 Pt-XfURI t RfiDJ=flSU~/~IPt/VA~~

ff(IUU.r.T.O) Gfl J() 12 IF(QtiPt.lF.O.) JTAU= IP

P .,WIIP+tt:A( fO)

l' (nNT INUF

P&r.E 0001

Page 18: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

0010 f\021 oo;.~

0021 0024 0021) 0016 0027

002A 001~

OOlO 0031 1101~ 'lOll 00~4 nov; 00'\f\ 00'\7 0018

OOJ«J 0040

0041 0042 004'\

VI 0044 004'i 0046 0047 1\041' 004q OO'iO OOCil OO'i2 1)01)'\ 00')4 ooc;c; 00Ci6 001i7 noc;s ooc;q OOt.O Ofl'-1 fl0f) 2 00fl] 00fl4 fl06Ci flf)ftf,

00f>7 OflbA

Ot./?l/ll

If t I TAO.r.T .0 tWA IT£ I ,,701 t 701 FOA~llt'l't40X,•••••• lAG INFORMATION ••••••,Ill

'F I IT All. r. T. n t WR l Tf I 1, 7001 I TAUt I TAU,It ... IT AU• II

', .. f

700 fORMAftlOX 1 1 f~OfPfNOENT TAU a•~t1,lOX,'RI' 1 Il 1 '1 • ' 1 F7.4,/t AWClta:l. IFIIUU.GT.ot r.o TO 444 .. AITEfl,100t~

JOO FOA~ATC•I•,c;x,• THE ACF Dtn NOT DAMP TO lfRO IN',I4,'lAGS---THIS lMlV ~F AN INDICATION OF A SIGNIFICANT TREND'" DAlA',Ie 1 IMPlVING 1N~~ STATIO~IAITY--------TEST A80ATE0 1 1

CO T'l q~q 444 CONTI~Uf

DO ~0 Nal5,15,c; WAIJff1,7021~

702 FOAMATI//,40X,•••••• SJATIONAAITV TEST FOA ~ • 1 ,1~,1~,•••••••,/t ICNT•n ISFC=N+ITAII KK=NN/ISFC IFCKK.LJ.Nt CALL PFIXfAWtiTAli,N,ISEtt,KK,NfU If I IT AU .l E. 0 t WR I Jf I '\, '\04 t N

104 FOR~ATC///,tOx,•FOA N • 1 ,ll,?I,•JHEAf A~f. ""' ENOUGH DATA POINTS F lOR INOf.PfNOF~T OA tnRRElATEO ~AMPlf.S-----TfST A80ATE0. 1 1

IFCIJAU.LE.O.AND.N.EO.I5tWAITECl,lO'iiNN lO'i FOR~ATC//,2X, 1 SINCE THIS OCCU,fO FOR A ~AMPLF OF LENGJH c; A"O THE

llfNGTH OF THE INPUT SE~IES IS 1 ,1'i,IXe 1 THIS MAY ftf INOICATIYf Of 1NON-STATIO~l~ITY 1 1

IFCITAU.tF..OIGO TO Q9Q

Nfi•KK•I~Fr.

no lO J=leNFI,I~FG ,.,.,..J ~ .. M•J+ItrU 00 40 IJ•NN,.,1111 ... "4 1r.NT2ICNT tl WfiCNf);JlfiJt wxttr.-.rt • xftJI

40 CO"fT INtlf 10 CO~H 1-.Uf

lfiKK.LT.llt GO TO 441) CAll ~PTfSTtKK 1 N,WX,NJESTt

44'i Oil 60 J•t,~ 00 60 ....... J J : J-l

foil WWWI t,Jt•WCIJI•~ttlt CALL 8TfSJIN,WWW,RW,JTESTI n'l anoo 11 • 1,1 IFCKK.lT.IZ,NTF~Tfllt=4

NNTE~JCII,:NTFSTIIIt+JTFSTfllt GO TOil,0,11l,l1 Z),JI

110 r.nNt=Cl'i.O GO TO 111

lJ! CONI=«H.Ii r;n Til 11-,

lli! rnNr=qCJ·" Ill IFC~"fTFSJfii •• Gf.StWAifEI1,JI81CONI

PAGE 0002

Page 19: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

006CJ 0070 0071

0011

0071 0074 0075 0076

Ml INPGM

IFf~~JFSfllll.r.F.S,r.n Tn 1000 WRITEil,J8CJICO~I

DATE 06/?1/H

78R fOR~ATt20~,fS.I,IX,•PFRCE~J CONfiDENCF. J~TfAVAL.•,aox,•THE DATA TE lSTS STAJinNARY'e//1

J8CJ FOfUUJC20X,FS.I,U, 1 PfACENT . OJ.IFIDfNCE INTERVAL.•.lOX, 1 THf DATA Tf 1\TS ~ONSTATIO~ARY',//1

I 000 CON T I,.UE ?0 CONTI~Uf.

qqq STOP ENO

PAGE 0001

Page 20: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

0001 onn1 0001 000~

0005 0006 0007 OOO!It 000~

oo1n 0011 0012 0011 OOilt OOI'i 0016 0017 OOlR 001~

0020 ()021 0021 0021 002lt 0021) 0026 0021 002" 002CJ

8PTEST

SUR'trlUT INF APTE 5 TCKK, -.,WlC,NTE ST t DI~EN~I~ WXf1I,XMFC1.00t, •• ARilOOI 0 I" ENS I me I TE S H 4 t t M T f S Tf 4 I t N TE S lll t •c•n~o NF I •IUC •N no 40 J•I,NJ.I,N ICNT•ICNT .. NNN•J ~-··J•fN-1 ) CAll XVA~(WX 1NNN,MM~ 1 XM~,VAA) XME t ICNT t-=XMN XXAA tl CNT) =VAR

40 CONTINUE NNN•I ICJl. •ICNT M't14:fCNT CAll XVARIXME,NNN,MMM,XMN,YARt CAll ATfSTCXME,NNN,M14M,X .. N,ITESTt 00 12 KIC=lel

ll MTESTCKKI•ITESTCKKI NNN•l MM .. ai(Jl CAll XVAACXlCAA,NNN, .. MM,XMNeYARI CAll ATE~TIXIAAtNNN,M14M,IMN,ITESTt 00 CJO IJK•Iel NT£STCIJKI:MTESTIIJKt•ITESTCIJKt

qo CONTINUf AFTURN END

OATE 06/21/11 TIME PAGE 0001

Page 21: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

OOS F~RTRAH IV l~ON-F0-414 l-4 XVAR

OOOl 0002 000'\ 0004 000~

0006 0001 ono,. ooo-. OOlfl 0011 0012 OOlJ 0014

SU8ROUTI~F XVARIXt~~N,MM"eXMN,VARt

OIMFNSI~ Xflt ISUt'tcO.O Oil 244 K•N~N,Mfi4 .. ISUM•XSUM+Xftc t

244 CON f INUF ANaMMM-NNN+J.O Xfi4Na1Sllfi4/Aft a•n.n DO 220 I=N~-. .......

220 ·········-·~"•••2 VARzA/AN RfJUR~

F~O

OATE 06/21/11 TI .. E PAGE 0001

Page 22: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

.. •

0006

... ,, SUIInufl_, lfflttl,.__,~,l-tlfllfl ........ lfllftll DI ... St• 1111 ·•~.s ...................... .

.. ,, , ... ftlfA 11/letletletl•t1•tlet4•tlet6•t6etl•tlettetle.,at.,lletlletlle

··············''··''··················''··''··'···"·•"••''·•''··' .•.. , •.. ,. ..•... ,,.,, .... , .............. ,, ........................ . ................... , ................... , .. , .............. "·•''··' ................. , ................... , .......... , .. ,, ... ,,.,,. .. , .. ··'···'···"·•''··'···"·· .. ·············· .. ··"·•"··············· ············'·····'···········'··'································· ············''··············''·•''··················,.··''· .. '····· .. ,. .. ,. .. , .. ,,,.,, .. ,, .. ,, .. ,,. .. ,,.,,,.,, •.. ,. .................. . ................. , .................. ., ................... , .. , •..•.. ............... , ................... , .......... ,. .. , .. ,,, .. ,,.,,,.,, .... , •.. ,. .. ,,.,, •.. , ............................................. . ··'·•'·•'··············'··'·····················'·················· .. , ... , ......•... , .. ,, .. ,, .. ,,,.,,, .. , •...•.. ,. .. ,. .. ,, .. ,. .. ,. .. ,. ···''·•''·•''··'···'·······"·•''·········· .. ·· .. ···•·········· .. ·· ··········'···'··········"······"······ ................. , ...... .. ••• ao •• ••·•''·•''·• .. ·•''-•''·•"·"'•..-•"•·•"·•''·•''·•''·•'•·• ·'···"··"··''··'···"·· .. ···•·········· .. ·····'·················· ··············''··············''·•''······"·•''······,.··········· •1•t14.,H.,11.,1Ietl••t40.t4l•t4f•t•1•t44•t .. •t•l•t41et4t.,M.,tle ................... , .......... ~ ....................... , .......... , ••·•''·•''·•'•••''••"••''••''·•"••~tlletlletl•••••••"••''••ll• ............... , .. ., ........... , .................................. . ...•.... , ................................................. , ..•..•.. .................................................................. , .,.,, •• ,,..,, •• ,, •• ,, •• ,14.,, •• ,,,.,11.,1 ......................... . . ............................. ,. .................................. . ~ ................... , .. ,, .. ,,, .. ,. .. , .. ,,..,, .. ,,,.,, .. ,,. ........ . ... , ............... , ................... , .......................... . •oo •• aea •• aea.,aet.,al4.,&04.,a ... ,,.,.,, ... ,, ... ,,, •• ,,aa •• aat.,aa ·········'········'··················'···········'··········,.··''· •• , ••••••• , ••••••• ,, •• , •• ,to •• , ••••••• ,, ...... , ........ , .......... . • ft., ••••• , ••••••••••••••• , .................................. ,,.,, .. •••••• .a ••••••• , ............... , •••••••••• , •• ,, •• ,,, •• , •• ,, •• ,,.,, .•.. ,, .. , ................ , ............... , ........................ . ........... , ........... 01 .............. , ................... , ...... . .................. ,.,

DAtA llllletletl•t1et4••'••'••••tll.tlletlletllet,.•tll•tltee4let4 •'·•••·•••··••·•en ...... ano.,aao.,a,..,,,..,, ... ,, ... ,, ... ,,,,.,, .. ···'~··'''·•'''··'····'-"·•'"·•' .... , ... ,,,..,, ................. . ... , .............. ~ .................. , ........................... . •JtO.,J2'••' .. •tlftOetl10et ... •t ... •t•lftet ... •t•ll•tl .... tlllt.,&041 •··•otft·•''''·•••••·••• .. ··••••··••••·•''"·•''"·•'"'·••11a.,t.., ...................... , ....................... , .................. ,. ..... ,. ................................ , .................... , ..•..• ······'··········· ...... , .. ,,.,, .. ,, ................... , .... , ..•.. ••• ftO ............. r,. .................. ,, ............ , •••• , ........ . . , .•.. ,, •.. , .... , ... ,,, ........ , ......... , .......... ,, ............ . ••••••••••• 1 ............................. , •• ,, .... ,, •• ,,., •• ,. .. .. .•... , ....................... ~ ...•.•...•• , ....................... .

.... , ... ·--·

Page 23: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

N 0

.,., 0081 ..... 0010 0011 HII 0011 0014

"'' 0016 OOIJ 0011 ••• ... ,. 0011 0012 OOl' 0014

"'' 0016

Iff II .,.,, .... , ... •o.,aa~ •• ,,...,,,.o.,,, ... ,,, ... ,,,...,,, ... ,,., •• ,,.,..,,,...,,, ••·•'''•··••~e .• a•••·•''''·•'"'·•'''•··•• .. ··• ... ·•' ... ·•••ll .• a .. .......... fOIO.,, •••••••••••••••••••• , •••••••• , ................. , .. .. ,. .. ,..,, .......••..•....•.. ,. ..................... ,. ........... . ••••··•••··••o.,a••·•'a..,aae.,asa.,a••·••••·•'"·•"'·••••·•'"·•• ••o.,,. •• ,,,..,, ... , •••••• , •••• , •• ,.l1.,, ... ,tta.,tte., .... ,, ... , .. .................. ,,., .. , ... ,, ... ,, ............... , ......... ,. .. ... ...• ,, ................ , •... , ....................... ,. ............ . • ,,,,..,,,.,.,, ....... ~e •• a~.•·~·••••··•..e·•'"'·•' ... ·•',..· ••• , ••••• ,., ............... .e4 .............. ,... ........ , ••••••••••

··············''·•''·•''······ .. ··''·· .. ··"······ .. ····'········ .. .............. ,. ............ , ..................... , •• te •••••••• ~t • •• tt ••• , .......................................................... . ....... . ··''···"'··'~· ........... , .............. , ............. . ..... , ................ , ...................... , ...... , ........... ,, . ............................................ ,, ................... . .............. , ••••• ,... •• , ........... ,,lft.,ll ... ,,,, •• ,, ..... , ... . •• ,.~e •• ,~ ........ ,.,. •• , ••••• ," ••• , .... ,, ..... , •• , •• , •••••••••• ········''··''·•''·······'·· .. ······"············'········''··• ... •••••.• ,10 .••••.••••.• , ..... , ... , ... ,, ••.• ,,,.,,.. .• ,.. .• ,,. •• ,., .• • ,. •• ,, ... ,401.,418 ........ , ...................................... . .......... ,, .. ,, ... ,,,. ... ~ ................................. ,. .. .

. .................... , .... , ... , .. , .. , .. , ........................... . .............. , ............................ , ...................... . •• , •• ,, .... ,,., •• ,,. ••• ,,, ... ,aa•e.,,, ... ,,,,,.,,,, •• ,,,. •• ,, .... ,, ..... ,, .... ,,.te.,,. ... ,, .... ,,,, •• ,, .... ,,., •• , •• ,a.,te.,at.,a,.,, ....•...•... , ........ , .......... , ................. ,. ............. .. ............. , ... ,,,..,,, .. ,, .•.. ,., .. , .... ,.. ........ ,. ....... , .. . •• , ................... 4 .............. ,.. •• ,, ................... ,. •• .,, .. ,,,..,, ... ,, ............... , ..................... , ......... ... ...................... ,. ................ , ........................ .. ....................... ta ......... , ..... ,,, ................ ,. •••• ll ••••••••• ,oo •• ,, .. , .............. ,,, ••• ,,. •••• ,.. •• ,, .......... ,. .. ... , ........... ,... .. , ...... ,. .. , ......... ,,.~ .. , .......... ~ ............. c .. , •••• l ....._.

Ml 41G t • .. tl M 411 ,_I,L IFfiiii.Ct.IIJtltiC .. f-t•t•t.O

4JI COMfltNI .,. ttltllflllt. .... ,.e ......... ,_ .. , .. , ... , ... , 411~ .......... 4.0

t.o fO 4M 40' ........ , ... • .,. cmnttltUf

.J ........ l~t~.Gt.IOOt..._lno. ......... P-... •1 no .,, JJ••J•__,

, .. MOl

Page 24: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

.. ,, .. ,. ..,. ... 1Mt11 .. ,, .. ,, .. ,. .. ,. .. ,. .. ,, HJI OM• .... OMI a. a M41 fMM4 ,. ... .... .,.., .,... ,. ... .... ••• "''­... , .... ••••

.,.,, ··~~···· .. ,·-·" IFt•IJJt.Lf.O.OtGD fft 411

4t• lftiiJJ-tl-1eOI.nDe411e410 .,, ............ . ·~· .......... .

M fft 4'1 ••• ,, ..... ~ •• -, ••• 900 •• ,.,.,, 411 ........... . • ,. ··~.11•1.8

GD fn 411 411 Clllfi .. Uf ....... ,, . ,., "" .no Mllfftl ••• , • •n1 FMMittftt ,..,. 1 444 ~Nf.CIIT

lft ... ct.toatlftUIN .., ........ , ,,,,, ..•... . .... ,_,_ ,,,,, ......... . ,,,,, •••• Rt~ •• , •• ,,,, ............. . ,,,, ............. .

.. ,, .. ,,,,,, , ...

lfiiUM.Lt.ttSt,.a ... IUM.IIeff$flllfllttl,.l•lfllftl,.l•t IFIAC .. f.lf.tflfi.~.ACNfellt111tAIIfflftllll•ltfSfll,.t+t

0 ••• c .. , .... .,, ..... BID

Page 25: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

11M ... , •• IV v..,_•n-•'• '-4 .,,,, .. ,, .. ,,,,,, , .... •••••••• , .• -· -· SUIInufiMI Rt1Sf1Mtlt .. t~11Sfl

0001 DIMI•SIOM Ollllelllttle~MCI•Itllllltltllllll•ltllllltlll MD1 DIMIMSIGM •tt•,t•le.Wit•t,lftt,ltt,Atltt,•ttlltlllteltltYIIteltl ... Dl-e•SIGM aa.tt•t.~IISflll -· . ........ ,,,,,,,,, ... ,.,,,. .... oata ''''''·' .. '•·'''•·••'••·lllle•"'•·'"'•·•••'•· ... •·••••' _, ..,. ,,,, .. ,., ....... , ...... ,., .. , ....... ,,. ....... , .... ,

c .... ,. c -·· c ..... COIISftUCf , .. AUftltnllllAtU• Mflll I .... , .. c ....... -· ••• _, .. .... ... ........ _,, . .... 1ft , ........... -·· .... no '-• ~·'·• -·· .... ~ ...... ....,. ... , . .., 10 ....... _,, . ....

··~·- · __ ,,.

-·· ~~ II,,Jt•.WII-Ilt .... ,,. .... m 40 , • .,, .. .... , .. OOIY 40 llleJI•MWII-Jit .... , .. .... ,., ClllflltUI _,..

c _,,. c CHIMII fHI I •atatl fO ..._fl'lflfO ..... II ffll lllftalt• .... ,. c _., .. .... ... ~· ...... ......

00!0 .......... oe-.to .. ,. JI•J-1 -···· N GO II •o lltiJI .. t+lt•lllt~l -···· N c -~ .... c .... CAlCUt.Aff IMW.Sf .., IUfGC.IflAfl ... Utatl ........ c .......

GG21. catl •••~•••rr,zttt _ ..... c .... .. c t•aNSff• I~Vf•SF ..._,l,lfllft Ill ... , ........... , ••• 11 ...... c ........ c .......

8014 ... 10 ~···· ........ 00,, ... , ....... ..., ... , .

0016 ,,.,_, ...... ,. ,.,,, 8ft ll.le~t•71111JI ... t+lt ....... t. ........

0071 ., . ., ····~ OOOOOY40 GGI• r.~Uie•O.O .... , .. 0010 ,. IJGft J•ltl .... , .. 0011 ~GO A~GSUM•ZIIIeJI OODftDYYO

"'' M Gllt•G!UM 00000?10 t OMOOJ ..

0011 .~ ..... ., .. 00000110 0814 no IJfll •· 1 •• CIOOOOIIO ctcn• ~01 A~I .. •AS&II.CIIt 00000110

c 00ft00140 fl016 .., ,.,, ...... OOOOIIYO 0011 ~ft' MIII•GfltiA!UM 00000110

Page 26: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

. . .... ---DnS ,,_,. .. IV ,.._F.ft-4Jt ... '"'' Mil .. ,,,,,, ,, .. ....... , ,.. _,

c ···-· t ....... OOH .., .. , ...... ••••••• .. ,. .., .. , ...... . ....... .... at It .I l•llllt 11-CU I I ... .It . ...... .... M' C.fMUI ...•. ,.

c • •••••• c -··· ... , ............ _,, . ... , nn ... l•l•tl -···· .... . ....... -··· .... ., .......... _,, . 0846 tot Y~YIUM .. II,Illll•lfllKt'l _,, .. .... ., ......... , ... -··· .... H4 CMfiMUf _,, ..

c _,,. c _,,. .... liD ......... _,,,.

ftO!O otu~t-o.o _,, .. 08tl eo tot ,.,, .. _,,. OM! 90J OIUM-ISU.•Ifle.lt.,flt.ll _,, .. ... , ....... a~~ _,, . .... ... ,., ..... _,, ..

c _,,,. c _,, .. .... Ul CCIIflteUf -··· c · -··· c

-·~-• N .. ,. DO tM l•ltll _,, .. ... .... , 1Ptllll.8f.ft.IGD II .aG -··· ·"· ., fa ... -··· .... 400 .. fll•llDIIOI81111 -··· 0061 ''" , .. , .... .......

c -···· c _,,,. 006& ••• -··· ft061 ...... _, ... ... , ISU~teo.o -··· 0064 .,.,.. .. ._ _, ... ... an tao •·••• -··· ..... OSIJI•OSIII .. III -··· ... , OOSUN•QOS~•tOfll -··· OOAI 'lO CtlllfiNW ..... , .. . .,.. .... ,, ... , .. _,, .. OO?ft QQtiii•CMSUIItiU _,,,.

c _.,. t t: IND AtefllOC Of 00 .... ..... , .. t. _,, ..

ocna ...,..., ........ ..... , .. r. _,, . . ,, ,,,,, ....... , .... _,, .. r. _., .. c -··· t. ~ECnNO ,,., n' ffSt _, ...

Page 27: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

...... , .. IY 16..-.o-1\n t-4 Ifill .. ,, .. ,,,,,. , .• •••••••• , .• _, c ... .. .. ,, .. ... ,.,, . _. .. .. ,. ....... _, ..

"" ... , ...... • ••••• .. ,. ttl ~SUMR .. IIt•lllt~l Ill IN II .. ,, ... ............. .... .• c

_,.. c CllCULAfiGM Of ' ----.. ,. sss..-e.o _ .. .. " ......... . ...... - .. '" ...... ........ -· IM~~SUM•&~III •••••• ... , SSIUM-SSSUM•I&IMI.tt•aaRt.ttt .......

0111 .,., , .. , .... ...... c ...,,,. c _,,. .... Sflll•IAa•tSSSUMI-IS~SUMI•ts~tllla _, .. .... 'faiMe&SUR•Sta•t _,, .. c _, .. .... ····-· _,, .. ... , .. , ....... _,,,. .... •••••• ..., .. .... .. , ... , .... ... c ...,,. ....,

··~,, .... , .. , -···· .... ,,.,, .. , .. , _,,. OM! ..,,,, .....

c· ....... N ... , ..... , . • .... .. 1000 •••••• , .... ,,,., ......... .... tfStJetiSflllllelll

OMJ ,,.,, ........ OMI lfffiSft.Gt.tiSf1.&MD.f.Lf.llt~tF.Sfll111•.8tfSfllatl•l•O 00" I 000 C ... fltiUI Olftft ...... , .... _,,_. 0101 AID _,,.

Page 28: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

IMIS ffllfiM I¥ ••-M-o\ ,. 1-4 , .. .... ..,,,,,, flit! -· _, _, .... -· ..... ... , ... ... .... ... , 0011 ... , ....

~OUfl~f ''•••••·•tau,_,,Sf.a,aa,~t ..... ,,a. ••••• . ... , •• , ...... ,.u.. . ... ~lffltl,t•l'" flU ••tl1t11etl ... et,l.,llt'fNIII Ill Mnf IIDUI

1M O.fl 'DI-fS Fftl I~PIIII_. IIIPLII'tll I lfAU.If.._l ••••••• ,.u.., .• , .• ~·····--· II!G ... tlfAU . ..... ,, ..

lftlfAU.lleOtl.fuaM . ffta•.Lt.•t 10 fft I . ..lflf1t60111fiUtlf1UelltlfAUttt·

... fDI"Iftl•lt•CftiiiLAtt• SA~,I Ulfl llf" f~ ••tll,11,tl .. lfttl1t , ...... , .. ,, . . , .... .. ...

,.. ...

Page 29: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

IMIS ffllfiM I¥ ••-M-o\ ,. 1-4 , .. .... ..,,,,,, flit! -· _, _, .... -· ..... ... , ... ... .... ... , 0011 ... , ....

~OUfl~f ''•••••·•tau,_,,Sf.a,aa,~t ..... ,,a. ••••• . ... , •• , ...... ,.u.. . ... ~lffltl,t•l'" flU ••tl1t11etl ... et,l.,llt'fNIII Ill Mnf IIDUI

1M O.fl 'DI-fS Fftl I~PIIII_. IIIPLII'tll I lfAU.If.._l ••••••• ,.u.., .• , .• ~·····--· II!G ... tlfAU . ..... ,, ..

lftlfAU.lleOtl.fuaM . ffta•.Lt.•t 10 fft I . ..lflf1t60111fiUtlf1UelltlfAUttt·

... fDI"Iftl•lt•CftiiiLAtt• SA~,I Ulfl llf" f~ ••tll,11,tl .. lfttl1t , ...... , .. ,, . . , .... .. ...

,.. ...

Page 30: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

.,., c c _, ... ,

ft004 ... , -· _, -· .... .... .... Hlf OOlt .... .... 0016 ... , 0011 -·· "'0 00'1 .. ,z 00t1 ftOZ4

"'' 0016 N "'' • 0011

ooz• 00~0 H1l OOJ! 0011 0014 001115

..... OAt! .. 111/Yl

SUIIOUfl_, MAIN!t.,A,II ... ,, .. a o• s.aautr• ••• S .... taiC "Aftll IWEISI• IY IKALAfGa .,...., ..... , .............. . ........ , ... . IFIM.fO.ttaffUI­....... .., ' .. , ...

••••••••• ID tO •ltll . .... . .. .......... .. ........ • lft ••••• .., ....... . ........ ,_,, .. . ...... ~-··-.. ..... ,,.. ....

IO II•II•AI .. II .. IIJt•AtJMt ........... ,. ... 10 ••••• ............... DO 10 Jeltl ............... .................

zo •• , ........................ ,.. ........ ·-··-, ............. . no •o •·•·• ............. .., 40 ~··· ................ .......... ,.... .

40 ltiJI•III~t•ltl•t .. IMJt•ta •o c ... , ..... .,, ....

MD

,, .. ...... ,,

Page 31: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

s..,t. Input

27

Page 32: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

. SAMPLE IIPUT

(Seriea C - lOx aad Jeaklaa, 1970, p. 521)

0226 26.6 27.0 27.1 27.1 27.1 27.1 26.9 26.1 26.7 26.4

• • • 20.2 19.7 19.3 19.1 19.0 18.1

21

Page 33: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

s..,t. Output

29

Page 34: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

w 0

AAAAA LAG IIIPCallltiOII AAA*A

IMDIPBIIDIIT TAU • 20 I( 20) • -0.0033

AAAAA ITATtOMAIITY 118T fOl K • S AAAAA

95.0 PaCIII! CCIIFIDDICB tlft'IIYAL. Till DAtA !18!8 ... TAUCIMIY

97. 5 PDCIIft' COMPIDIIICI IMTIIYAL.

99.0 PDCIIIT CCIIFIDIMCI INIIRYAL.

twl DATA Tl8!8 ... !AftCIIAIY

'ftll DAft Ultl ... TAftOIMIY

AAAAA STATIOMAIITY !1ST POl I • 10 AAAAA

VITM BU • 20 All) II • 10 'ftllll All lUI' IIIOOOH DATA POIIJS rca IJI)IPIII)IIft IMIPLIS

rca II • 10 'niDI ARB NOT IIIOUGH DATA POIIft'S rca IMDiftii)UI' OR C«aULATID 8AMPLI8••••!18T DCaftD.

Page 35: 92·311 - USGS and Piersol Test ----- Bryan Test ... • Probability density function ... random data representing stationary physical phenomena are gen

lndat, J. s., Mea-101, A. G., 1966, MIUua-.. t ad aa&1JI11 of

rud• data: ._ Yoa-k, 1111.,.

lox, G. 1. '·• J.akiaa, G. t.L, 1970, !~ ..riel aa&lJiil, fo~e­

cutiaa aad coat .. o1: laa haaciaco, Ro1•ea-DaJ.

lr,aa, J~ G., 1967, Statiatica1 teat of tbe b,oth•aia that a tiM Mttiea ia atatioaHJ: GeophJiica, v. 22, p. 499-511.

Jeakiaa, G. M. , Vatta 1 D. G. 1 1961, SpecUal aaalJiil aDd ita

appllcatioat: Baa ~aaciaco, HoldeD•DaJ.

31