32
A 2-D VHDL-AMS Model for Disck-Shape Piezoelectric Transducers Jean-Marc Gallière Philippe Papet Laurent Latorre BMAS 2008 San Jose

A 2-D VHDL-AMS Model for Disck-Shape Piezoelectric …bmas.designers-guide.org/2008/5-5_Presentation.pdf · A 2-D VHDL-AMS Model for Disck-Shape Piezoelectric Transducers. Jean-Marc

  • Upload
    buikhue

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

A 2-D VHDL-AMS Model for Disck-Shape Piezoelectric

Transducers

Jean-Marc GallièrePhilippe Papet

Laurent Latorre

BMAS 2008San Jose

Polytech'Montpellier

Motivation

1

Planar vibrating mode Thickness vibrating mode

Planar/Thickness modelMore realistic model

Polytech'Montpellier

Outline

Introduction

Behavioral Models (Thickness)

New Unified Model

Conclusion and Future Works

2

Polytech'Montpellier

Introduction

3

E P E P

Planar Thickness

z

y

x

U. Model ConclusionIntroduction B. Model

Polytech'Montpellier

Introduction

4

F1

d

F2

i3

u1u2

Impedance Matrix

F2

F1

v3

u1

u2

i3

Z/tan(wd/u) Z/sin(wd/u) h/w

Z/sin(wd/u) Z/tan(wd/u) h/w

h/w h/w 1/wC0

=-j. .

C0=εA/d ; Z=ρuA ; h piezoelectric constant

v3

U. Model ConclusionIntroduction B. Model

Polytech'Montpellier

Introduction

5

v3

F1F2

i3

u1u2

Redwood's Model

F1F2

u1u2

i3

v3

-C0

C0h.C0 : 1

u1+u2

U. Model ConclusionIntroduction B. Model

Polytech'Montpellier

Introduction

6

v3

F1F2

i3

u1u2

Redwood's Model vs Measurement

1

10

100

1000

10000

1M

(Ω)

f (Hz)

Redwood's modelMeasurement

Log(

Z)

3M 5M

U. Model ConclusionIntroduction B. Model

A new model is needed

Polytech'Montpellier

Outline

7

Introduction

Behavioral Models (Thickness)

New Unified Model

Conclusion and Future Works

Polytech'Montpellier

Behavioral Models

8

Redwood's Model

i2

v1

-C0

C0

kt

VHDL-AMS Model

U. Model ConclusionIntroduction B. Model

rf rb

i1vte

uti=ite/kt v2

pti=kt.vte

architecture bhv of redwood is

begin

i1 == C0 * v1'dot;

i2 == -C0 * v2'dot;

pti == kt * vte;

uti == ite/kt;

ceramic : entity work.acousticlayer

generic map (Z0=>Z0, td=>td)

port map (p1=>t11,m1=>km,p2=>t22,m2=>km);

rf : entity WORK.resistance

generic map (rnom=>0.08)

port map (plus=>t11 , moins=>t1 );

rb : entity WORK.resistance

generic map (rnom=>0.08)

port map (plus=>t22 , moins=>t1 );

end architecture bhv;

Polytech'Montpellier

Behavioral Models

9

Redwood's Model

i2

v1

-C0

C0

kt

VHDL-AMS Model

U. Model ConclusionIntroduction B. Model

rf rb

i1

uti=ite/kt v2

pti=kt.vte

architecture bhv of redwood is

begin

i1 == C0 * v1'dot;

i2 == -C0 * v2'dot;

pti == kt * vte;

uti == ite/kt;

ceramic : entity work.acousticlayer

generic map (Z0=>Z0, td=>td)

port map (p1=>t11,m1=>km,p2=>t22,m2=>km);

rf : entity WORK.resistance

generic map (rnom=>0.08)

port map (plus=>t11 , moins=>t1 );

rb : entity WORK.resistance

generic map (rnom=>0.08)

port map (plus=>t22 , moins=>t1 );

end architecture bhv;

vte

Polytech'Montpellier

Behavioral Models

10

Redwood's Model

i2

v1

-C0

C0

kt

VHDL-AMS Model

U. Model ConclusionIntroduction B. Model

pti=kt.vte

rf rb

i1vte

uti=ite/kt v2

architecture bhv of redwood is

begin

i1 == C0 * v1'dot;

i2 == -C0 * v2'dot;

pti == kt * vte;

uti == ite/kt;

ceramic : entity work.acousticlayer

generic map (Z0=>Z0, td=>td)

port map (p1=>t11,m1=>km,p2=>t22,m2=>km);

rf : entity WORK.resistance

generic map (rnom=>0.08)

port map (plus=>t11 , moins=>t1 );

rb : entity WORK.resistance

generic map (rnom=>0.08)

port map (plus=>t22 , moins=>t1 );

end architecture bhv;Ideal transformer

Polytech'Montpellier

Behavioral Models

11

Redwood's Model

i2

v1

-C0

C0

kt

VHDL-AMS Model

U. Model ConclusionIntroduction B. Model

pti=kt.vte

rf rb

i1vte

uti=ite/kt v2

Z0td

architecture bhv of redwood is

begin

i1 == C0 * v1'dot;

i2 == -C0 * v2'dot;

pti == kt * vte;

uti == ite/kt;

ceramic : entity work.acousticlayer

generic map (Z0=>Z0, td=>td)

port map (p1=>t11,m1=>km,p2=>t22,m2=>km);

rf : entity WORK.resistance

generic map (rnom=>0.08)

port map (plus=>t11 , moins=>t1 );

rb : entity WORK.resistance

generic map (rnom=>0.08)

port map (plus=>t22 , moins=>t1 );

end architecture bhv;Transmission line

Polytech'Montpellier

Behavioral Models

12

Redwood's Model

i2

v1

-C0

C0

kt

VHDL-AMS Model

U. Model ConclusionIntroduction B. Model

pti=kt.vte i1

vte

uti=ite/kt v2

architecture bhv of redwood is

begin

i1 == C0 * v1'dot;

i2 == -C0 * v2'dot;

pti == kt * vte;

uti == ite/kt;

ceramic : entity work.acousticlayer

generic map (Z0=>Z0, td=>td)

port map (p1=>t11,m1=>km,p2=>t22,m2=>km);

rf : entity WORK.resistance

generic map (rnom=>0.08)

port map (plus=>t11 , moins=>t1 );

rb : entity WORK.resistance

generic map (rnom=>0.08)

port map (plus=>t22 , moins=>t1 );

end architecture bhv;

architecture bhva of acousticlayer is

begin

ftt == fi'DELAYED(td) - ftz;

fii == ft'DELAYED(td) - fiz;

fiz == (uiz + utz'DELAYED(td))*Z0/2.0;

ftz == (utz + uiz'DELAYED(td))*Z0/2.0;

end architecture bhva;

fiz ftz

fii ftt

ZO

td

ZO

F. Branin"Transient Analysis of Lossless Transmission Lines," in proceeding of IEEE

ftfi

utzuiz

Polytech'Montpellier

Behavioral Models

13

Redwood's Model

i2

v1

-C0

C0

kt

VHDL-AMS Model

U. Model ConclusionIntroduction B. Model

pti=kt.vte i1

vte

uti=ite/kt v2

architecture bhv of redwood is

begin

i1 == C0 * v1'dot;

i2 == -C0 * v2'dot;

pti == kt * vte;

uti == ite/kt;

ceramic : entity work.acousticlayer

generic map (Z0=>Z0, td=>td)

port map (p1=>t11,m1=>km,p2=>t22,m2=>km);

rf : entity WORK.resistance

generic map (rnom=>0.08)

port map (plus=>t11 , moins=>t1 );

rb : entity WORK.resistance

generic map (rnom=>0.08)

port map (plus=>t22 , moins=>t1 );

end architecture bhv;

rf rb

Z0td

Acoustic impedance : ambient air

Polytech'Montpellier

Behavioral Models

14

VHDL-AMS Model

U. Model ConclusionIntroduction B. Model

architecture bhv of redwood is

begin

i1 == C0 * v1'dot;

i2 == -C0 * v2'dot;

pti == kt * vte;

uti == ite/kt;

ceramic : entity work.acousticlayer

generic map (Z0=>Z0, td=>td)

port map (p1=>t11,m1=>km,p2=>t22,m2=>km);

rf : entity WORK.resistance

generic map (rnom=>0.08)

port map (plus=>t11 , moins=>t1 );

rb : entity WORK.resistance

generic map (rnom=>0.08)

port map (plus=>t22 , moins=>t1 );

end architecture bhv;

1

10

100

1000

10000

= 16mm1mm thickΦ

(Ω)

f (MHz)

Behavioral Redwood model

Measurement

0.5 1 2

Z = v1/(i1+i2)

Log(Z)

Polytech'Montpellier

Outline

15

Introduction

Behavioral Models (Thickness)

New Unified Model

Conclusion and Future Works

Polytech'Montpellier U. Model Conclusion

New Unified ModelIntroduction

16

B. Model

jwC0i

)u(ujw

kh)u(u

jwh

v 4331

2133 ++++=

A. Iula et al., IEEE Trans. On Ultrasonics, Ferroelectrics and Frequency Control, 1998

v

i

with

h : piezoelectric constant

u : particle velocity

k = 2t/r

Anisotropic material : not behave in the same way in all directions

Polytech'Montpellier U. Model Conclusion

New Unified ModelIntroduction

17

B. Model

jwC0i

)u(ujw

kh)u(u

jwh

v 4331

2133 ++++=

P3

1

2v

i

h33with

h : piezoelectric constant

u : particle velocity

k = 2t/r

thickness

c33

u = (c/ρ)1/2

c : elastic stiffness

Polytech'Montpellier U. Model Conclusion

New Unified ModelIntroduction

18

B. Model

jwC0i

)u(ujw

kh)u(u

jwh

v 4331

2133 ++++=

P3

1

2v

ic11

with

h : piezoelectric constant

u : particle velocity

k = 2t/r

u = (c/ρ)1/2

c : elastic stiffness

h31

thickness planar

Polytech'Montpellier U. Model Conclusion

New Unified ModelIntroduction

19

B. Model

jwC0i

)u(ujw

kh)u(u

jwh

v 4331

2133 ++++=

)uC0(ukh)uC0(uhjwC0vi 43312133 +−+−=

C0

i

jwC0vv i1= h33C0(u1+u2)

i2=kh31C0(u 3+u4)

Polytech'Montpellier

20

U. Model ConclusionIntroduction B. Model

)uC0(ukh)uC0(uhjwC0vi 43312133 +−+−=

fthickness = h33i/jw

⎥⎦

⎤⎢⎣

⎡+−+−= )uu(0Ckh

0jwC1)uu(0Ch

0jwC1v0Chf 4331213333thickness

⎥⎦

⎤⎢⎣

⎡+−+−= )uu(0Ch

0jwC1

)uu(0Ckh0jwC

1v0Chf 2133433131planar

fplanar = h31i/jw

New Unified Model

Polytech'Montpellier

21

U. Model ConclusionIntroduction B. Model

⎥⎦

⎤⎢⎣

⎡+−+−= )uu(0Ckh

0jwC1)uu(0Ch

0jwC1v0Chf 4331213333thickness

jwC0v

C0

y

-C0

x

-C0

i

v

fplanar

f thickness

u3+u4

u1+u2

e1=h33C0( v + y + x)

e2=h31C0(v+y+x)

h33C0(u1+u2)

kh31C0(u3+u4)

New Unified Model

Polytech'Montpellier

22

U. Model ConclusionIntroduction B. Model

⎥⎦

⎤⎢⎣

⎡+−+−= )uu(0Ckh

0jwC1)uu(0Ch

0jwC1v0Chf 4331213333thickness

jwC0v

C0

y

-C0

x

-C0

i

v

fplanar

f thickness

u3+u4

u1+u2

e1=h33C0( v + y + x)

e2=h31C0(v+y+x)

h33C0(u1+u2)

kh31C0(u3+u4)

New Unified Model

Polytech'Montpellier

23

U. Model ConclusionIntroduction B. Model

⎥⎦

⎤⎢⎣

⎡+−+−= )uu(0Ckh

0jwC1)uu(0Ch

0jwC1v0Chf 4331213333thickness

jwC0v

C0

y

-C0

x

-C0

i

v

fplanar

f thickness

u3+u4

u1+u2

e1=h33C0( v + y + x)

e2=h31C0(v+y+x)

h33C0(u1+u2)

kh31C0(u3+u4)

New Unified Model

Polytech'Montpellier

24

U. Model ConclusionIntroduction B. Model

⎥⎦

⎤⎢⎣

⎡+−+−= )uu(0Ckh

0jwC1)uu(0Ch

0jwC1v0Chf 4331213333thickness

jwC0v

C0

y

-C0

x

-C0

i

v

fplanar

f thickness

u3+u4

u1+u2

e1=h33C0( v + y + x)

e2=h31C0(v+y+x)

h33C0(u1+u2)

kh31C0(u3+u4)

New Unified Model

Polytech'Montpellier

25

U. Model ConclusionIntroduction B. Model

jwC0v

h33C0(u1+u2)

kh31C0(u3+u4)C0

-

-C0

F4F1 F3F2

i

v

u3+u4

New Unified Model

C0 e1=h33C0(v+y+x)

u1+u2

e2=h31C0(v+y+x)

Polytech'Montpellier

26

U. Model ConclusionIntroduction B. Model

New Unified Model

architecture bhvugp of ugp isbegin

i1 == C0 * v1'dot;

i2 == -C0 * v2'dot;

pti == ktT * (v1-v2-v3);

uti == ite/ktT;

i3 == -C0 * v3'dot;

ptiP == ktP * (v1-v2-v3);

utiP == iteP/ktP;

ite

C0

-

-C0

F4F1 F3F2

i2

v1

utiPC0 pti=ktT(v1-v2-v3)

uti

ptiP=ktP(v1-v2-v3)

v2

i1

iteP

v3

IdT1

IdT2

IdT1

IdT2

.

.

.

thickness planar

Polytech'Montpellier

27

U. Model ConclusionIntroduction B. Model

New Unified Model

ceramicT : entity work.acousticlayer generic map (Z0=>Z0, td=>tdT)

port map (p1=>t11,m1=>km,p2=>t22,m2=>km);rfT : entity WORK.resistance generic map (rnom=>0.08)

port map (plus=>t11 , moins=>t1 );rbT : entity WORK.resistance generic map (rnom=>0.08)

port map (plus=>t22 , moins=>t1 );

ceramicP : entity work.acousticlayer generic map (Z0=>Z0, td=>tdP)

port map (p1=>t11P,m1=>km,p2=>t22P,m2=>km);rfP : entity WORK.resistance generic map (rnom=>0.08)

port map (plus=>t11P , moins=>t2 );rbP : entity WORK.resistance generic map (rnom=>0.08)

port map (plus=>t22P , moins=>t2 );

end architecture bhvugp;

.

.

.thickness

planar

rfT

rfP

rbT

rbP

Polytech'Montpellier

28

U. Model ConclusionIntroduction B. Model

Φ= 16mm2mm thick

Φ= 16mm1mm thick

(Ω)

f (Hz)

Log(

Z)

f (Hz)

(Ω)

Log(

Z)

1M

New Unified ModelMeasurement

3M 5M 7M

1

10

100

1000

10000

1

10

100

1000

10000

.5M 2M1M

New Unified ModelMeasurement

New Unified Model

Polytech'Montpellier

Outline

29

Introduction

Behavioral Models (Thickness)

New Unified Model

Conclusion and Future Works

Polytech'Montpellier

Conclusion

Behavioral Models (Thickness)

New Unified Model

Experimental Validation

Future Works

30

U. Model ConclusionIntroduction B. Model

Web :http://www.polytech.univ-montp2.fr

Contact : [email protected]

BMAS 2008San Jose