26
Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003 A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

  • Upload
    onslow

  • View
    21

  • Download
    1

Embed Size (px)

DESCRIPTION

Polarized Photocathode Research Collaboration PPRC R. Prepost – University of Wisconsin Cornell ALCW July 13-16 2003. A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost. Some Considerations. - PowerPoint PPT Presentation

Citation preview

Page 1: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Polarized Photocathode ResearchCollaboration PPRC

R. Prepost – University of WisconsinCornell ALCW July 13-16 2003

• A. Brachmann• J. Clendenin• E. Garwin• T. Maruyama• D. Luh• S. Harvey• R. Kirby• C. Prescott• R. Prepost

Page 2: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Some Considerations

• Technique is Bandgap Engineering of Strained GaAs.• Polarization will be < 100% - But 90% possible.• Active layer must be < 10% of photon absorption length

to preserve strain and polarization.• Uniform Strain over larger thickness in principle possible

with Superlattice structures• Strained GaAs used at SLAC since 1986 with ~85%

Polarization and ~.2% QE.• R & D has been continuous since 1985.

Page 3: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Outline

• Polarized photoemission• Standard SLC photocathode• Surface charge limit• Charge limit vs. doping• Polarization vs. doping• High gradient doped strained GaAsP• High gradient doped strained superlattice• Atomic-hydrogen cleaning• Summary

Page 4: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Polarized photoemission

• Circularly polarized light excites electron from valence band to conduction band• Electrons drift to surface L < 100 nm to avoid depolarization• Electron emission to vacuum from Negative-Electron-Affinity (NEA) surface

NEA Surface – Cathode “Activation”• Ultra-High-Vacuum < 10-11 Torr• Heat treatment at 600° C• Application of Cesium and NF3

Page 5: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Facilities

• QE and Polarization at 20 kV• QE and Polarization at 120 kV under accelerator condition

Page 6: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Standard SLC Strained GaAs

• 100 nm GaAs grown on GaAsP

• Uniformly doped at 51018 cm-3

• Peak polarization ~80%• QE ~0.2 – 0.3%• Max. charge ~7 1011

e-/270ns

GaAs substrate

GaAs1-xPx x=0.3

GaAs1-xPx x=0 0.3

100 nm GaAs

5

4

3

2

1

0

Far

aday

Cup

Sig

nal (

arb.

uni

ts)

3002001000

Time (ns)

Charge saturation

Page 7: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Beam structure

Page 8: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Surface Charge Limit

• Photon absorption excites electrons to conduction band

• Electrons can be trapped near the surface; electron escape prob. 20%

• Electrostatic potential from trapped electrons raises affinity

• Affinity recovers after electron recombination

• Increasing photon flux counterproductive at extremes

TESLA does not have a charge limit problem.

Page 9: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Charge limit (cont.)

pump probe

Two short pulses

Pro

be s

ign

al

Long pulse

Page 10: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Higher doping solves charge limit problem.

Four samples withdifferent doping level: 51018 cm-3

11019 cm-3

21019 cm-3

51019 cm-3

Phys. Lett. A282, 309 (2001)

Page 11: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

But higher doping depolarizes spin.

Page 12: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

High-gradient doped strained GaAsPNIM A492, 199 (2002)

Page 13: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

80% Polarization and No charge limit

E158 cathode

2.5

2.0

1.5

1.0

0.5

0.0

FA

RC

sig

nal (

arb.

uni

ts)

4003002001000

Time (ns)

Page 14: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

But polarization is still 80%.

Actual strain is 80% of design

Strain relaxation

Page 15: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Strained-superlattice

Strained GaAs

GaAsP

Strained GaAs

GaAsP

Strained GaAs

GaAsP 30 A

40 A

GaAs Substrate

GaAs(1-x)Px Graded Layer

GaAs0.64P0.36 Buffer

Active Region

25m

25m

1000 A

Page 16: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

SBIR with SVT Associates

• July 2001 SBIR Phase I awarded Very first sample produced 85% polarization• Sep. 2002 SBIR Phase II awarded

• MBE growth MOCVD growth• Be doped Zn doped

“Advanced Strained-Superlattice Photocathodes for Polarized Electron Souces”

SLC photocathode

Page 17: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

0 20 40 60 80 100 120 140 160 180

Time (s)

RHEEDSignal GaAs Oscillations

AlAs Oscillations

InAs Oscillations

MBE- In Situ Growth Rate Feedback

Monitoring RHEED image intensity versus timeprovides layer-by-layer growth rate feedback

Growth at monolayer precision

Page 18: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Strained-superlattice band structure

GaAs1-

xPx

GaAs GaAs1-

xPx

GaAs GaAs1-

xPx

CB1

HH1

LH1

1.65 eV

86 meV

1.42 eV

b w

Parameters:barrier layer thickness, 30 Å < b < 100 Å well layer thickness , 30 Å < w < 100 Åphosphorus fraction , 0.3 < x < 0.4No. of periods , active layer ~ 1000 Å

Page 19: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Multiple Quantum Well Simulation

Page 20: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Multiple Quantum Well Simulation

• QE ~ Band Gap• Polarization ~ HH-LH

SplittingEffective Band Gap

HH-LH Splitting

Barrier = 5 nm

x

Page 21: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Polarization and QE

• Peak polarization 85%

• QE ~ 0.8 – 1%

• Wavelength dependence is consistent with the simulation.

80

60

40

20

Po

lariz

atio

n (

%)

820800780760740720700680660

Wavelength (nm)

0.01

0.1

1

QE

(%)

w = 3 nm, b = 3 nm w = 4 nm, b = 4 nm w = 4 nm, b = 3 nm w = 5 nm, b = 3 nm

Page 22: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Rocking Curve (004) scan from SVT-3682

GaAs Bulk

GaAs0.64P0.36

Graded GaAs1-xPx

Additional peaks from

superlattice structure

• Both SVT-3682 and SVT-3984 are superlattice cathodes:

– MBE grown Be-doped (SVT Associates).

– Barrier width: 30Å

– Well width: 30Å

– Phosphorus fraction in GaAsP: 0.36

– Layer number: 16

– Highly-doped surface layer thickness: 50Å

• XRD analysis on SVT-3682– Well Width = Barrier Width = 32Å

– Phosphorus fraction in GaAsP: 0.36

Page 23: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

No Charge Limit

10

8

6

4

2

0

Ch

arg

e (

x1011

pe

r p

uls

e)

50403020100

Laser Energy (uJ)

60 nsec pulse

Before Cesiation

After cesiation

4

3

2

1

0

Farc

Sig

nal (

V)

12080400

Time (ns)

775nm, 60ns

11012 e- in 60 ns

Page 24: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

QE Anisotropy

-10

-5

0

5

10

QE

Ani

sotro

py (%

)

1801501209060300

Angle (degrees)

-3

-2

-1

0

1

2

3

QE

Aniso

tropy

(%)

1801501209060300

Angle (degrees)

EStrain relaxation

Strained GaAs Strained superlattice

10% 1.5%

Page 25: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

E158 again

• Cathode installed in May.

• But it shows a charge limit ~71011 e-/300 ns

• Cannot make NLC train charge but OK for E158.

• What happened?• The 600° C heat-

cleaning is destroying the high gradient doping profile.

Page 26: A. Brachmann J. Clendenin E. Garwin T. Maruyama D. Luh S. Harvey R. Kirby C. Prescott R. Prepost

Atomic-Hydrogen Cleaning

Ga2O3 comes off at ~600° C.Ga2O comes off at ~450° C.

Ga2O3 + 4H Ga2O + 2H2O

600° C heat-cleaning: QE ~ 11%AHC + 450 ° C heat-cleaning: QE ~15%

Bulk GaAs