21
-Cluster States in Electron Scattering * S-DALINAC TU DARMSTADT Darmstadt 2008 Maksym Chernykh Institut für Kernphysik, TU Darmstadt M. Chernykh 1 , H. Feldmeier 2 , T. Neff 2 , P. von Neumann- Cosel 1 , and A. Richter 1 1 Institut für Kernphysik, TU Darmstadt 2 Gesellschaft für Schwerionenforschung (GSI), Darmstadt * Supported by DFG under contract SFB 634

a -Cluster States in Electron Scattering *

  • Upload
    shea

  • View
    32

  • Download
    2

Embed Size (px)

DESCRIPTION

Darmstadt 2008. TU DARMSTADT. S-DALINAC. a -Cluster States in Electron Scattering *. Maksym Chernykh Institut für Kernphysik, TU Darmstadt. M. Chernykh 1 , H. Feldmeier 2 , T. Neff 2 , P. von Neumann-Cosel 1 , and A. Richter 1 1 Institut für Kernphysik , TU Darmstadt - PowerPoint PPT Presentation

Citation preview

Page 1: a -Cluster States in Electron Scattering *

-Cluster States in Electron Scattering *

S-DALINAC

TU DARMSTADT

Darmstadt 2008

Maksym Chernykh Institut für Kernphysik, TU Darmstadt

M. Chernykh1, H. Feldmeier 2, T. Neff 2, P. von Neumann-Cosel1, and A. Richter1

1 Institut für Kernphysik, TU Darmstadt2 Gesellschaft für Schwerionenforschung (GSI), Darmstadt

* Supported by DFG under contract SFB 634

Page 2: a -Cluster States in Electron Scattering *

Motivation: structure of the Hoyle state

Hoyle state is a prototype of -cluster states in light nuclei

Cannot be described by shell-model approaches

Comparison of high-precision electron scattering data with predictions of FMD and -cluster models

-cluster models predict Hoyle state as a dilute gas of weakly interacting particles resembling the properties of a Bose-Einstein Condensate (BEC)

M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, and A. Richter, Phys. Rev. Lett. 98 (2007) 032501

Hoyle state cannot be understood as a true Bose-Einstein Condensate !

Page 3: a -Cluster States in Electron Scattering *

Triple alpha reaction rate

Motivation: astrophysical importance

http://outreach.atnf.csiro.au

Reaction rate with accuracy ~ 6% needed

(,’) (p,p’) (e,e’)(p,p’)

S.M. Austin, Nucl. Phys A758 (2005) 375c

Page 4: a -Cluster States in Electron Scattering *

Motivation: astrophysical importance

Total uncertainty r3/r3 = 11.6% only

Crannell et al. (2005)

Crannell et al. (1967)

Strehl (1970)

Page 5: a -Cluster States in Electron Scattering *

Transition form factor to the Hoyle state

Extrapolation to zero momentum transfer: Crannell (1967), Strehl (1970)

Fourier-Bessel analysis: Crannell (2005)

H. Crannell, data compilation

Page 6: a -Cluster States in Electron Scattering *

Model-independent PWBA analysis

Model-independent extraction of the partial pair width

Page 7: a -Cluster States in Electron Scattering *

ME = 5.37(22) fm2, Rtr = 4.24(30) fm

P. Strehl, Z. Phys. 234 (1970) 416

Monopole matrix element

Large uncertainty because of narrow momentum transfer region

Page 8: a -Cluster States in Electron Scattering *

Lintott spectrometer

Page 9: a -Cluster States in Electron Scattering *

Detector system

Si microstrip detector system: 4 modules, each 96 strips with pitch of 650 m

Count rate up to 100 kHz

Energy resolution 1.5x10-4

10 cm

Page 10: a -Cluster States in Electron Scattering *

Measured spectra

Page 11: a -Cluster States in Electron Scattering *

Monopole matrix element

Page 12: a -Cluster States in Electron Scattering *

Triple alpha reaction rate

Total uncertainty r3/r3 = 10%

Only need to be improved

Crannell et al. (2005)

Strehl (1970)

Crannell et al. (1967)

Present work

Page 13: a -Cluster States in Electron Scattering *

Summary and outlook

– Hoyle state is important for stellar nucleosynthesis

– Monopole matrix element can be extracted by extrapolation of cross section to zero momentum transfer

– for decay of the Hoyle state with uncertainty 2.5% extracted

Thank you!

Outlook

– 16O: broad 0+ state at 15 MeV

– Hoyle state: independent Fourier-Bessel analysis

Page 14: a -Cluster States in Electron Scattering *
Page 15: a -Cluster States in Electron Scattering *

Astrophysical importance

Motivation:

Model-independent PWBA analysis

High-resolution electron scattering measurements

Summary and outlook

Results

Outline

Extraction of monopole matrix element ME

Comparison with FMD and -cluster model predictions

Page 16: a -Cluster States in Electron Scattering *

Model-independent PWBA analysis

Model-independent extraction of monopole matrix element ME

Page 17: a -Cluster States in Electron Scattering *

12C densities

Ground state density can be tested via elastic form factor

Transition density can be tested via transition form factor

“BEC”: Y. Funaki et al., Phys. Rev. C 67 (2003) 051306(R)

FMD : R. Roth, T. Neff, H. Hergert, and H. Feldmeier, Nucl. Phys. A745 (2004) 3

Page 18: a -Cluster States in Electron Scattering *

Elastic form factor

Described well by FMD

Page 19: a -Cluster States in Electron Scattering *

Described better by -cluster models

Transition form factor to the Hoyle state

H. Crannell, data compilation

Page 20: a -Cluster States in Electron Scattering *

What is actual structure of the Hoyle state ?

But in the FMD and -cluster model the leading components of the Hoyle state are cluster-like and resemble 8Be + 4He configurations

In the “BEC” model the relative positions of clusters should be uncorrelated

Overlap with FMD basis states

Page 21: a -Cluster States in Electron Scattering *

Summary and outlook

Outlook

Summary

– 16O: broad 0+ state at 15 MeV

– for decay of the Hoyle state with uncertainty 2.5% extracted

– 12C: 03 and 22 states+ +

– Hoyle state is not a true Bose-Einstein condensate

– 8Be + structure

– Hoyle state: Fourier-Bessel analysis of all available data