13
Jurnal Teknologi, 36(C) Jun. 2002: 61–74 © Universiti Teknologi Malaysia A COMPARISON OF PLOTTING FORMULAS FOR THE PEARSON TYPE III DISTRIBUTION ANI SHABRI* Abstract. Unbiased plotting position formulas are discussed to fit the Pearson Type 3 distribution (PIII). The best quantile estimate made from the plotting position should be unbiased and should have the smallest root means square error among all such estimates. Probability plot correlation coefficient (PPCC) is used to evaluate goodness of fit to test the PIII distribution hypothesis. Results obtained using the annual maximum flow data from Peninsular of Malaysia based on PPCC show the plotting position formulas consistently produced linear probability plots with correlation coefficient near to one. Based on root mean square error (RMSE) and root mean absolute error, the Weibull formula performs better than the other formulas. Keywords: Plotting Position, quantile, unbiased, root means square error Abstrak. Formula kedudukan memplot tanpa bias dibincangkan untuk di padankan dengan taburan Pearson 3 (PIII). Penganggar kuantil kedudukan memplot terbaik seharusnya tanpa bias dan mempunyai min punca ralat terkecil antara penganggar-penganggar yang lain. Pekali korelasi kedudukan memplot digunakan sebagai ujian pemadanan cocokan untuk menguji hi potesis taburan PIII. Hasil keputusan menggunakan data aliran maksimum daripada Semenanjung Malaysia berdasarkan ujian PPCC menunjukkan rumus kedudukan memplot menghasilkan plot kebarangkalian yang linear dengan pekali korelasi menghampiri satu. Berdasarkan punca min ralat kuasa dua dan punca min ralat mutlak, formula Weibull adalah terbaik antara formula-formula yang lain. Kata Kunci Kedudukan Memplot, kuantil, tanpa bias, punca min ralat kuasa dua 1.0 INTRODUCTION Probability plotting positions are used for the graphical display of annual maximum flood series and serve as estimates of the probability of exceedance of those series. Probability plots allow a visual examination of the adequacy of the fit provided by alternative parametric flood frequency models. They also provide a non-parametric means of forming an estimate of the data’s probability distribution by drawing a line by hand and or automated means through the plotted points. Because of these attrac- tive characteristics, the graphical approach has been favoured by many hydrologists and engineers. It has been widely used both in hydraulic engineering and water re- sources research [1, 3, 4 and 5]. * Jabatan Matematik, Fakulti Sains UTM Skudai, Johor, Malaysia, e-mail: [email protected], [email protected]. Untitled-83 02/16/2007, 18:36 61

A comparison of plotting formulas for the Pearson Type III distribution

Embed Size (px)

Citation preview

A COMPARISON OF PLOTTING FORMULAS 61

Jurnal Teknologi, 36(C) Jun. 2002: 61–74© Universiti Teknologi Malaysia

A COMPARISON OF PLOTTING FORMULAS FOR THEPEARSON TYPE III DISTRIBUTION

ANI SHABRI*

Abstract. Unbiased plotting position formulas are discussed to fit the Pearson Type 3 distribution(PIII). The best quantile estimate made from the plotting position should be unbiased and should havethe smallest root means square error among all such estimates. Probability plot correlation coefficient(PPCC) is used to evaluate goodness of fit to test the PIII distribution hypothesis. Results obtained usingthe annual maximum flow data from Peninsular of Malaysia based on PPCC show the plotting positionformulas consistently produced linear probability plots with correlation coefficient near to one. Basedon root mean square error (RMSE) and root mean absolute error, the Weibull formula performs betterthan the other formulas.

Keywords: Plotting Position, quantile, unbiased, root means square error

Abstrak. Formula kedudukan memplot tanpa bias dibincangkan untuk dipadankan dengan taburanPearson 3 (PIII). Penganggar kuantil kedudukan memplot terbaik seharusnya tanpa bias dan mempunyaimin punca ralat terkecil antara penganggar-penganggar yang lain. Pekali korelasi kedudukan memplotdigunakan sebagai ujian pemadanan cocokan untuk menguji hipotesis taburan PIII. Hasil keputusanmenggunakan data aliran maksimum daripada Semenanjung Malaysia berdasarkan ujian PPCCmenunjukkan rumus kedudukan memplot menghasilkan plot kebarangkalian yang linear denganpekali korelasi menghampiri satu. Berdasarkan punca min ralat kuasa dua dan punca min ralat mutlak,formula Weibull adalah terbaik antara formula-formula yang lain.

Kata Kunci Kedudukan Memplot, kuantil, tanpa bias, punca min ralat kuasa dua

1.0 INTRODUCTION

Probability plotting positions are used for the graphical display of annual maximumflood series and serve as estimates of the probability of exceedance of those series.Probability plots allow a visual examination of the adequacy of the fit provided byalternative parametric flood frequency models. They also provide a non-parametricmeans of forming an estimate of the data’s probability distribution by drawing a lineby hand and or automated means through the plotted points. Because of these attrac-tive characteristics, the graphical approach has been favoured by many hydrologistsand engineers. It has been widely used both in hydraulic engineering and water re-sources research [1, 3, 4 and 5].

* Jabatan Matematik, Fakulti Sains UTM Skudai, Johor, Malaysia, e-mail: [email protected],[email protected].

Untitled-83 02/16/2007, 18:3661

ANI SHABRI62

Probability plotting positions have been discussed by hydrologists and statisticiansfor many years. To date, more than ten plotting position formule have appeared in theliterature. Cunnane [2] and Stedinger et. al [7] published a very comprehensive reviewof the existing plotting formula. They postulated that a plotting formula should beunbiased and should have the smallest mean square error among all estimates.

Many distributions and various ways of fitting them are suitable. The selectiondistribution for any given flood records from among the alternative distributions isstill a subject of continuing investigations. In hydrology many distributions for floodfrequency analysis most often used, namely Extreme Value Type I (EV1), Generalextreme value (GEV), Pearson Type III (PIII), Log-Pearson Type III (LPIII), LogNormal (LNIII), General Pareto (GP), Wakeby and Weibull. Similarly, there are manyplotting formula available, several of which are summarized in Table 1.

The choice of plotting position formula for fit to the distributions has been dis-cussed many times in hydrology and statistical literature. Different plotting positionsattempt to use to achieve almost quantile-unbiasedness for different distributions. Inthis paper, the focus is to find the best plotting position formula to fit the PIII distribu-tion. In order to determine which plotting position formula is the most suitable for PIIIdistribution, the probability plot correlation coefficient test and RMSE and RMAEwere used. The parameters for each distribution was estimated using moment method.

2.0 PEARSON TYPE III DISTRIBUTION

The Pearson Type III (PIII) distribution is used widely by hydrologists for modelingflood flow frequencies [5] and [8]. The Pearson type III probability density functionmay be expressed as

( ) ( ) ( )( ) ( )− −= − −Γ

1α ξββ ξ β

αxf x x e (1)

where α, β and ξ are parameters. The parameters α, β and ξ are related to the firstthree moments of the random variable X as follows:

= + αµ ξβ (2)

=22

ασβ (3)

= 1/22βγ

β α (4)

3.0 THE INVERSE OF A PEARSON TYPE III DISTRIBUTION

The cumulative distribution function of PIII random variable is defined as

Untitled-83 02/16/2007, 18:3662

A COMPARISON OF PLOTTING FORMULAS 63

( ) ( )

( ) ( )∞

= >

= >

0

0

ξγ

γ

x

x

F x f x dx

F x f x dx (5)

which given the complex form of f (x) in (1), is not easily inverted. Many investiga-tions have developed approximation inversion formula. Stedinger [7] found the goodapproximation for inverse of standardized PIII random variable is

= +µ σi ip px K (6)

where ipK is referred to as frequency factor for the PIII distribution and can be written

as

= + − −

322 21

6 36

γ γγ γ

ii

pp

zK (7)

where µ, σ and γ are mean, standard deviation and skew coefficient respectively,

while ipz is the p th quantile of the zero-mean and unit-variance standard normal

distributions.

4.0 PLOTTING POSITION

Many investigators have advocated the use of quantile unbiased plotting positionswhen constructing probability plots. A quantile-unbiased plotting position is definedas [6]

( )= i ip F E X

where

[ ] ( )−= = …1 for 1,2, ,i iE X F p i n (8)

In situations where no historical floods are considered, most of them may be ex-pressed as a special case of general form

−=+ −1 2ii a

pn a

(9)

where pi is the plotting probability of the i th order statistic, n is the sample size and ais the plotting position parameter yielding approximately unbiased plotting positionsfor different distributions[1, 8]. For example, a = 0 for all distributions (Weibull for-mula), 0.44 for extreme value and exponential distribution (Gringorten formula), 0.5

Untitled-83 02/16/2007, 18:3663

ANI SHABRI64

for extreme value distribution (Hazen formula) and 3/8 for normal distribution (Blomformula)[7]. The approximation unbiased plotting position for PIII developed byNguyen et. al takes the form [8]

−=+ −

0.420.3 0.05γii

pn (10)

and is suitable for skews in the range − ≤ ≤3 3γ and samples in the range ≤ ≤5 100n .All of the plotting position formulas in this study are summarized in Table 1.

Table 1Table 1Table 1Table 1Table 1 Plotting Position Formulas (Cunnane, [2], Stedinger et al. [7])

ProponentProponentProponentProponentProponent FormulaFormulaFormulaFormulaFormula aaaaa Parent DistributionParent DistributionParent DistributionParent DistributionParent Distribution

Weibull (1939)i

n + 10 All distributions

Beard (1943)in−+0.31750.365

0.3175 All distributions

APLi

n− 0.35

~0.35 Used with Probability WeightedMoments Method (PWM)

Blom (1958)i

n

−+

3/8

1/4 0.375 Normal distributions

Cunnane (1977)in−+0.400.2

0.40 GEV and PIII distributions

Gringorten (1963)in

−+

0.440.12

0.44 Exponential, EV1 and GEVdistributions

Hazen (1914)i

n− 0.5

0.50 Extreme Value distributions

Nguyen et.al (1989)i

n γ−

+0.42

0.3 + 0.05 PIII distribution

5.0 PROBABILITY PLOT CORRELATION COEFFICIENT TEST

A probability plot is defined as a graphical representation of the i th order statistic ofthe sample, xi as a function of a plotting position. The i th order statistic is obtained byranking the observed sample from the smallest (i = 1) to the largest (i = n) value, thenxi equals the i th largest value.

A simple but powerful goodness-of-fit test is the probability plot correlation coeffi-cient (PPCC) test developed by Filliben in 1975, [7, 9]. The test uses the correlation rbetween the ordered observations and the corresponding fitted quantilies

( )ip

x F x−= 1 , determined by plotting position pi for each xi. The PPCC test is a

Untitled-83 02/16/2007, 18:3664

A COMPARISON OF PLOTTING FORMULAS 65

measure of linearity of a probability plot. If the sample to be tested is actually drawnfrom the hypothesized distribution, it is expected to be nearly linear and the correla-tion coefficient will be near to one. If x denotes the average value of the observationsand w denotes the average value of the fitted quantiles, the correlation coefficientsample can then be defined as

( )( )( ) ( )

i

i

i p

i p

x x x wr

x x x w

− −=

− −

∑22 (11)

The 5% critical values of PPCC test statistic of the PIII distribution can be approxi-mated using

( )r n n γγ γ− = − ≤ 0.105 0.7482

0.05 exp 3.77 - 0.0290 0.000670 for 5 (12)

as given by Vogel et. al [8]. One rejects the hypothesized PIII distribution if theobserved value, r, is smaller than the critical value.

6.0 ROOT MEAN SQUARE ERROR AND ROOT MEANABSOLUTE ERROR

Root mean square errors (RMSE) and root mean absolute error (RMAE) are used tocompare the efficiency of the different plotting positions formulas. The RMSE is calcu-lated by the equation

in i p

ii

x xRMSE

n x=

− =

1

1(13)

while RMAE is calculated by the equation

in i p

ii

x xRMAE

n x=

−= ∑

1

1(14)

where xi and ip

x are observed and quantile values, respectively for a given value of i.

7.0 APPLICATION TO ANNUAL FLOOD DATA

The selected case study involved annual maximum flow in Peninsular of Malaysia.The data was obtained from the Department of Irrigation and Drainage Malaysia.Data from 31 stations were collected for the present study. A list of these stationsnumber, years of record and PPCC test of plotting position formula is presented inTable 2. These data were selected on the basis of length completeness and indepen-dence of record. The lengths of record are between 14 to 34 years. The parameters α,

Untitled-83 02/16/2007, 18:3665

ANI SHABRI66T

able

2C

orre

latio

n C

oeffi

cien

t Val

ue (r

) of

the

Plot

ting

Posi

tion

Form

ulas

and

5%

Cri

tical

Val

ue fo

r the

PII

I Dis

trib

utio

n

Sta

tio

nS

tati

on

Sta

tio

nS

tati

on

Sta

tio

nP

lott

ing

Po

siti

on

Fo

rmu

laP

lott

ing

Po

siti

on

Fo

rmu

laP

lott

ing

Po

siti

on

Fo

rmu

laP

lott

ing

Po

siti

on

Fo

rmu

laP

lott

ing

Po

siti

on

Fo

rmu

laN

um

ber

Nu

mb

erN

um

ber

Nu

mb

erN

um

ber

Sit

eS

ite

Sit

eS

ite

Sit

ennnn n

Wei

bu

llW

eib

ull

Wei

bu

llW

eib

ull

Wei

bu

llB

eard

Bea

rdB

eard

Bea

rdB

eard

AP

LA

PL

AP

LA

PL

AP

LB

lom

Blo

mB

lom

Blo

mB

lom

Cu

nn

ane

Cu

nn

ane

Cu

nn

ane

Cu

nn

ane

Cu

nn

ane

Gri

ngo

rten

Gri

ngo

rten

Gri

ngo

rten

Gri

ngo

rten

Gri

ngo

rten

Haz

enH

azen

Haz

enH

azen

Haz

enN

guye

nN

guye

nN

guye

nN

guye

nN

guye

n5%

Cri

tica

l V

alu

e5%

Cri

tica

l V

alu

e5%

Cri

tica

l V

alu

e5%

Cri

tica

l V

alu

e5%

Cri

tica

l V

alu

e17

3240

11

160.

981

0.97

90.

975

0.97

80.

978

0.97

70.

976

0.97

70.

941

1737

451

232

0.98

30.

984

0.98

40.

984

0.98

40.

984

0.98

40.

983

0.95

618

3640

23

180.

985

0.98

80.

992

0.98

90.

989

0.98

90.

990

0.98

60.

936

2130

422

421

0.98

20.

985

0.98

70.

986

0.98

60.

986

0.98

70.

986

0.95

222

3540

15

180.

970

0.97

30.

978

0.97

40.

974

0.97

50.

975

0.97

00.

934

2237

471

634

0.87

2*0.

890*

0.93

10.

893*

0.89

5*0.

898*

0.90

2*0.

777*

0.91

125

2741

17

220.

965

0.97

10.

978

0.97

20.

972

0.97

30.

975

0.96

70.

940

2928

401

815

0.93

40.

947

0.96

50.

949

0.95

10.

953

0.95

60.

931

0.91

330

3040

19

160.

987

0.98

80.

987

0.98

80.

988

0.98

80.

988

0.98

80.

951

3224

433

1021

0.98

30.

987

0.99

20.

988

0.98

80.

989

0.99

00.

985

0.94

133

2940

111

140.

980

0.97

90.

979

0.97

80.

978

0.97

80.

977

0.97

80.

937

3519

426

1229

0.99

20.

993

0.99

40.

993

0.99

30.

993

0.99

40.

993

0.95

736

2940

313

230.

955

0.95

1*0.

944*

0.94

9*0.

949*

0.94

8*0.

946*

0.94

8*0.

955

4019

462

1434

0.96

30.

971

0.98

20.

973

0.97

40.

975

0.97

70.

960

0.94

140

2341

215

260.

982

0.98

10.

981

0.98

10.

981

0.98

10.

980

0.98

10.

959

4121

413

1621

0.98

60.

983

0.97

90.

982

0.98

10.

981

0.98

00.

980

0.95

941

3145

317

140.

920

0.93

90.

965

0.94

30.

945

0.94

80.

953

0.90

90.

901

4218

416

1815

0.97

50.

978

0.98

10.

979

0.98

00.

980

0.98

10.

980

0.94

342

1941

519

160.

984

0.98

80.

992

0.98

80.

989

0.98

90.

990

0.98

70.

936

4223

450

2019

0.97

00.

976

0.98

30.

977

0.97

70.

978

0.97

90.

971

0.93

342

3245

221

190.

987

0.98

70.

988

0.98

70.

987

0.98

70.

987

0.98

70.

953

4732

461

2216

0.98

20.

982

0.98

30.

982

0.98

20.

982

0.98

20.

982

0.94

248

3244

123

250.

916*

0.93

40.

956

0.93

70.

939

0.94

20.

956

0.89

9*0.

920

5129

437

2418

0.98

40.

987

0.99

00.

987

0.98

70.

988

0.98

80.

985

0.93

851

3043

225

320.

962

0.96

70.

970

0.96

80.

968

0.96

90.

969

0.96

10.

943

5229

436

2615

0.98

80.

987

0.98

50.

986

0.98

60.

986

0.98

50.

986

0.93

853

2044

327

230.

970

0.97

70.

985

0.97

90.

979

0.98

00.

982

0.96

90.

935

5428

401

2818

0.98

70.

988

0.98

90.

988

0.98

80.

988

0.98

80.

987

0.94

157

2144

229

370.

985

0.98

90.

992

0.99

00.

990

0.99

00.

991

0.98

50.

954

5724

411

3020

0.80

5*0.

834*

0.88

0*0.

841*

0.84

4*0.

848*

0.85

4*0.

761*

0.90

260

1941

131

310.

986

0.98

70.

987

0.98

70.

987

0.98

70.

987

0.98

70.

965

* T

he h

ypot

hese

s of p

lotti

ng p

ositi

on fo

rmul

a is

reje

cted

at 5

% si

gnifi

cant

leve

l.

Untitled-83 02/16/2007, 18:3666

A COMPARISON OF PLOTTING FORMULAS 67

Figure 1 Comparison of Observed and Computed Frequency Curves For The 4 Stations WithDifference r

(a) Station number 12, For r > 0.991 (b) Station number 6, With 0.776 < r < 0.932

(c) Station number 23 With 0.898 < r < 0.957 (d) Station number 30 With o.760 < r < 0.888

Untitled-83 02/16/2007, 18:3767

ANI SHABRI68

β and ξ of the Pearson Type 3 distribution were estimated by using the method ofmoment.

Two criteria were used for comparing the eight plotting positions. The first criterionis defined as the probability plot goodness of fit. Table 2 shows the probability plotcorrelation coefficient, r, for 8 plotting position formulas and the 5% critical value of thePPCC test statistic using equation (11).

The correlation coefficient values of the plotting position formulas for each stationscorresponding with 5% critical values are shown in Figure 1. Table 2 and Figure 1show that the all plotting position formulas fall in accepted region at 5% critical valuesat all stations except the APL is rejected at two stations, Nguyen is rejected at fourstations and the other formulas are rejected at three stations.

Two sets of observed data were selected for numerical demonstration. Figure 3 andFigure 4 show a demonstration comparison of plotting position formulas for r areaccepted for station 12 and rejected for station 30 at 5% critical values. From Figure 3,it can seen that plots based on all of plotting position formulas are closed to data.However Figure 4 shows that the PIII using these plotting position formulas do notshow good fit to the data especially at the largest data.

0.75

0.8

0.85

0.9

0.95

1

1.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Station

Cor

rela

tion

Coe

ffici

ent,

r

Weibull Beard APL Blom Cunnane Gringorten Hazen Critical Nguyen

Rejection Regions

Acception Regions

5% Critical Values

Figure 3 The Probability Plot Correlation Coefficient for the 8 Plotting Position Formulas and 5%Critical Values

The second criterion is the defined as the RMSE and RMAE. Table 3 and 4 list thevalues of RMSE and RMAE for PIII by using the plotting position formulas.

Untitled-83 02/16/2007, 18:3768

A COMPARISON OF PLOTTING FORMULAS 69

Tab

le 3

Val

ues o

f Roo

t Mea

ns S

quar

e E

rror

Plo

ttin

g P

osit

ion

For

mu

laSt

atio

nW

eib

ull

Bea

rdA

PL

Blo

mC

un

nan

eG

rin

gort

enH

azen

Ngu

yen

10.

153

0.17

50.

182

0.18

30.

187

0.19

40.

205

0.19

02

0.19

00.

211

0.21

40.

215

0.21

80.

221

0.22

70.

220

30.

100

0.11

50.

117

0.12

00.

122

0.12

60.

132

0.12

64

0.17

10.

126

0.12

30.

117

0.11

30.

107

0.09

70.

110

50.

271

0.31

70.

324

0.32

70.

332

0.34

00.

352

0.33

76

7.01

18.

796

8.99

39.

247

9.46

09.

828

10.4

529.

884

77.

011

8.79

68.

993

9.24

79.

460

9.82

810

.452

9.88

48

0.09

20.

088

0.08

90.

088

0.08

80.

087

0.08

70.

096

90.

169

0.11

00.

110

0.10

30.

100

0.09

80.

100

0.10

110

0.07

50.

079

0.08

00.

084

0.08

60.

090

0.09

80.

092

110.

126

0.13

10.

136

0.13

50.

137

0.14

10.

147

0.13

912

0.10

90.

115

0.11

70.

118

0.11

90.

122

0.12

70.

121

130.

358

0.43

60.

448

0.45

50.

463

0.47

80.

501

0.47

014

0.11

50.

113

0.11

20.

113

0.11

30.

113

0.11

20.

118

150.

199

0.23

80.

244

0.24

80.

253

0.26

10.

275

0.25

716

0.00

50.

005

0.00

60.

005

0.00

50.

005

0.00

50.

005

170.

754

0.77

80.

785

0.78

20.

784

0.78

70.

791

0.79

318

0.09

70.

070

0.07

00.

066

0.06

40.

061

0.05

70.

062

190.

005

0.00

40.

003

0.00

40.

004

0.00

30.

003

0.00

420

1.10

61.

250

1.26

31.

280

1.29

31.

315

1.34

91.

309

210.

134

0.12

50.

131

0.13

20.

136

0.14

40.

160

0.14

022

0.16

90.

174

0.18

00.

181

0.18

50.

192

0.20

60.

189

235.

071

5.18

45.

216

5.21

85.

235

5.26

65.

322

5.23

124

0.25

30.

321

0.33

10.

343

0.35

30.

372

0.40

20.

365

250.

336

0.35

60.

359

0.35

90.

361

0.36

30.

367

0.36

326

0.13

30.

183

0.19

30.

205

0.21

60.

234

0.26

60.

225

270.

120

0.11

90.

120

0.11

90.

120

0.12

00.

121

0.12

628

0.18

90.

591

0.64

40.

740

0.80

90.

923

1.10

80.

876

290.

252

0.27

40.

276

0.27

80.

280

0.28

40.

289

0.28

430

2.46

63.

061

3.18

23.

226

3.30

63.

447

3.69

23.

399

310.

141

0.12

10.

121

0.12

00.

119

0.11

90.

121

0.11

9

Untitled-83 02/16/2007, 18:3769

ANI SHABRI70T

able

4V

alue

s of R

oot M

eans

Abs

olut

e E

rror

P

lott

ing

Pos

itio

n F

orm

ula

Stat

ion

Wei

bu

llB

eard

AP

LB

lom

Cu

nn

ane

Gri

ngo

rten

Haz

enN

guye

n1

0.33

40.

336

0.34

20.

338

0.33

90.

341

0.34

80.

342

0.35

90.

363

0.36

80.

364

0.36

40.

365

0.36

70.

366

30.

294

0.29

90.

297

0.3

0.30

10.

301

0.30

30.

305

40.

280.

262

0.25

40.

258

0.25

60.

254

0.24

90.

255

50.

450.

463

0.46

20.

466

0.46

70.

469

0.47

20.

475

61.

849

1.96

91.

986

1.99

62.

009

2.03

2.06

52.

022

70.

239

0.23

50.

234

0.23

50.

235

0.23

40.

233

0.23

48

0.27

40.

274

0.27

10.

274

0.27

40.

274

0.27

40.

276

90.

321

0.27

30.

271

0.26

20.

256

0.25

80.

265

0.25

510

0.24

0.25

60.

253

0.26

10.

263

0.26

60.

272

0.26

911

0.31

50.

309

0.31

90.

309

0.31

0.31

20.

316

0.31

112

0.26

30.

266

0.26

10.

267

0.26

70.

268

0.26

90.

271

130.

514

0.53

20.

540.

536

0.53

80.

542

0.54

80.

5414

0.23

80.

240.

238

0.24

0.24

10.

241

0.24

10.

248

150.

373

0.38

60.

388

0.38

90.

391

0.39

40.

398

0.39

216

0.06

40.

063

0.06

50.

063

0.06

30.

063

0.06

40.

064

170.

715

0.73

60.

751

0.73

90.

741

0.74

30.

747

0.72

418

0.25

50.

235

0.23

30.

230.

228

0.22

40.

217

0.22

619

0.06

0.05

40.

051

0.05

30.

053

0.05

30.

052

0.05

520

0.79

20.

821

0.81

90.

826

0.82

90.

833

0.83

90.

835

210.

311

0.30

70.

307

0.31

0.31

10.

313

0.31

70.

312

220.

337

0.34

50.

351

0.34

70.

348

0.35

0.35

30.

349

231.

801

1.81

81.

829

1.82

31.

825

1.82

81.

834

1.81

124

0.40

90.

417

0.41

60.

419

0.42

0.42

20.

426

0.42

225

0.47

0.47

80.

488

0.48

0.48

0.48

10.

484

0.48

260.

326

0.36

60.

373

0.37

50.

380.

388

0.40

20.

384

270.

316

0.32

0.31

90.

321

0.32

10.

321

0.32

10.

3228

0.37

0.49

0.50

40.

525

0.54

10.

565

0.60

40.

557

290.

423

0.43

0.42

90.

432

0.43

20.

433

0.43

40.

435

301.

297

1.37

51.

401

1.39

51.

404

1.41

91.

445

1.37

631

0.29

40.

282

0.28

10.

282

0.28

30.

283

0.28

40.

282

Untitled-83 02/16/2007, 18:3770

A COMPARISON OF PLOTTING FORMULAS 71

The eight plotting position formulas were ranked for all stations according to thevalues of RMSE and RMAE on scale 1 to 8, with one being the best method.

0100200300400500

600700

-2 -1 0 1 2 3 4 5

Frequency Factors

Dis

char

ge, m

3/s

Data Weibull Beard APL BlomCunnane Gringorten Hazen Nguyen

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

-1 -0.5 0 0.5 1 1.5 2 2.5

Frequency Factors

Dis

char

ge, m

3/s

Data Weibull Beard APL BlomCunnane Gringorten Hazen Nguyen

Figure 4 Comparison of Observed and Quantile Using The Plotting Position Formulas (r AreAccepted At 5% Critical Values, Station 12)

Figure 5 Comparison of Observed and Quantile Using The Plotting Position Formulas (r AreRejected At 5% Critical Values, Station 30)

Table 5 ranks the eight plotting position formulas according to RMSE. It can seenthat the Weibull formula was the best, followed by APL, Beard, Blom, Cunnane,Gringorten, Nguyen and Hazen formulas in descending order of their performance.

The ranking of the eight plotting position formulas according to RMAE is given inTable 6. Clearly Weibull formula was the best of all, followed by APL, Beard, Blom,

Untitled-83 02/16/2007, 18:3771

ANI SHABRI72

Cunnane, Gringorten, Hazen and Nguyen formulas in descending order of their per-formance. Again, the previous conclusions hold. However those differences betweenplotting positions were not too great and therefore these plotting positions could beconsidered comparable for practical purpose.

Table 5 Ranking of the Plotting Position Formulas for 31 Stations by Root Means Square Error(RMSE) on a scale of 1 to 8 with 1 being the best method

PlottingPosition Number of Stations Receiving Ranking

1 2 3 4 5 6 7 8

Weibull 13 0 0 0 0 3 6 8

Beard 3 13 3 1 0 8 3 0

APL 10 3 7 3 2 3 2 1

Blom 2 2 8 9 10 0 0 0

Cunnane 2 0 4 15 10 0 0 0

Gringorten 0 6 6 0 5 8 4 1

Hazen 4 5 2 0 3 4 5 9

Nguyen 2 2 3 2 2 5 7 7

Table 6 Ranking of the Plotting Position Formulas for 31 Stations by Root Means Absolute Error(RMAE) on a scale of 1 to 8 with 1 being the best method

PlottingPosition Number of Stations Receiving Ranking

1 2 3 4 5 6 7 8

Weibull 20 2 0 1 1 1 0 6

Beard 1 13 12 0 0 0 5 0

APL 5 9 4 1 2 2 3 5

Blom 1 1 8 16 3 2 0 0

Cunnane 0 1 2 8 18 2 0 0

Gringorten 0 1 3 1 3 15 8 0

Hazen 3 1 0 0 1 1 11 14

Nguyen 1 3 2 4 3 8 4 6

Untitled-83 02/16/2007, 18:3772

A COMPARISON OF PLOTTING FORMULAS 73

8.0 CONCLUSIONS

Probability plots and the probability-plot correlation coefficient test statistic are usedfor testing the PIII using plotting position formula to fit annual maximum flow data.The PPCC test statistic was found to be a useful tool for discriminating among com-peting probability and plotting position formula. Eight plotting position formulas werecompared for their ability to fit flood flow data. Overall these plotting position formu-las consistently produced linear probability plots with r nearly one as measured by thePPCC test statistics. If an unbiased plotting position formula is required for the PIIIdistribution, then the Weibull formula would be the best selection.

REFERENCES[1] Adamowski, K. 1981. Plotting Formula For Flood Frequency, Water Resour. Bulletin, 17(2): 197-202.[2] C. Cunnane, C. 1978. Unbiased Plotting Positions- A Review, Journal of Hydrology. 37: 205-222.[3] Guo, S. L. 1990. A Discussion On Unbiased Plotting Positions For The General Extreme Value Distribution,

Journal of Hydrology. 121: 33-44.[4] Guo, S. L. 1990. Unbiased Plotting Position Formula For Historical Floods, Journal of Hydrology. 121: 45-61.[5] Ji Xuewu, Ding Jing, H. W. Shen, and J. D.Salas. 1984. Plotting Positions For Pearson, Journal of Hydrology.

74: 1-29.[6] Kottegoda N. T., and R. Rosso. 1997. Probability, Statistics, and Reliability for Civil and Environmental

Engineers. Mc-Graw Hill Book Co., New York.[7] Stedinger, J. R., R. M. Vogel, and G. E. Foufoula. 1993. Frequency Analysis of Extreme Events. Handbook

of Applied Hydrology. Mc-Graw Hill Book Co., New York, Chapter 18.[8] Vogel, R. M., and D. M. McMartin. 1991. Probability Plot Goodness-of-Fit and Skweness Estimation

Procedures for the Pearson Type 3 Distribution, Water Resour. Res., 27(12): 3149-3158.[9] Vogel, R. M. 1986. The Probability Plot Correlation Coefficient Test for the Normal, Lognormal, and

Gumbel Distribution Hypotheses, Water Resour. Res., 22(4): 587-590.

Untitled-83 02/16/2007, 18:3773