73
A few-fermion BCS superconductor J. Lofthouse & G.J. Conduit Theory of Condensed Matter Group, Department of Physics, Cambridge

A few-fermion BCS superconductor · A few-fermion BCS superconductor J. Lofthouse & G.J. Conduit Theory of Condensed Matter Group, Department of Physics, Cambridge. Superconductivity

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • A few-fermion BCS superconductor

    J. Lofthouse & G.J. Conduit

    Theory of Condensed Matter Group, Department of Physics, Cambridge

  • Superconductivity and Scale in Quantum Systems

  • Experimental Realization of a Cold Atom Gas

    6Li atom

    Up spin electron

    Down spin electron

  • A Model of a Cold Atom Gas

    • Optical trap modeled by 3-D QHO

  • 3-D QHO Orbitals

    x

    y

  • 3-D QHO Orbitals

    x

    y

  • 3-D QHO Orbitals

    x

    y

  • 3-D QHO Orbitals

  • Non-Interacting System Ground State

  • Non-Interacting System Ground State

  • Non-Interacting System Ground State

  • Non-Interacting System Ground State

  • Non-Interacting System Ground State

  • Quantum Monte-Carlo

    • Non-interacting system orbitals suitable basis for weak interactions

    • G.S. Energy Monte-Carlo integration

  • Superfluid Hamiltonian in External Trap

    • Pairwise attractive interactions between up and down spins

  • Effect of Interactions on Degeneracy

  • Effect of Interactions on Degeneracy

  • Effect of Interactions on Degeneracy

  • Interaction Energy

  • Interaction Energy

  • Interaction Energy

  • System Geometry

  • System Geometry

  • System Geometry

  • Pairing Effect

  • Pairing Effect

  • Asymmetric Trap

    Non-interacting energy of N = 8 state Kept constant for

  • Asymmetric Trap

  • Summary

    • Unique opportunity to realize a few body interacting system

    • Link between microscopic physics and macroscopic phenomenology

    • DMC simulations allowed us to probe attractive interactions

  • BCS state

  • BCS state

  • BCS state

  • BCS FFLO state

  • BCS FFLO state

  • BCS FFLO state

  • BCS FFLO state

    Δ(r )=Δ0 Δ(r )=Δ0ei q⋅r

    q

  • nx

    ny

    Available states

    0,0

    0,1 1,1

    1,0

  • nx

    ny

    Available states

    0,0

    0,1 1,1

    1,0

    1,1

    1,0

    1,1 1,10,1

  • nx

    ny

    2 atoms in a spherical trap

  • nx

    ny

    2 atoms in a spherical trap

  • nx

    ny

    3 atoms in a spherical trap

  • nx

    ny

    3 atoms in a spherical trap

  • nx

    ny

    3 atoms in a spherical trap

  • 3 atoms in a spherical trap

    nx

    ny

  • 2 atoms in a spherical trap

    Δ(r)=〈ψ∣c↑(r)c↓(r)∣ψ〉

  • 2 atoms in a spherical trap

    Δ̄(r )Δ(0)=〈ψ∣c↓† (r)c↑

    † (r)c↑(0)c↓(0)∣ψ〉

  • 2 atoms in a spherical trap

    θ

  • 3 atoms in a spherical trap

  • 3 atoms in a spherical trap

  • Where does the extra majority spin reside?

    x

    Δ

  • Where does the extra majority spin reside?

    x

    Δ

  • 3 atoms in a spherical trap

  • 3 atoms in a spherical trap

    θ

    ρ↑-ρ↑

  • Phase diagram

    ω∥=2ω⊥

  • Phase diagram

    nx=1 ny=1

    nz=1

    or

  • Phase diagram

  • Phase diagram

  • Phase diagram

    Doubly degenerate

    Singly degenerate

  • Few trapped fermions offers chance to observe spatiallymodulated pairing

    Trap ellipticity and central barrier are experimentalprobes of the pairing state

    Summary

  • Appendix: System Geometry

  • Appendix: System Geometry

    Hamiltonian for outermost electron

  • Appendix: System Geometry

    Hamiltonian for outermost electron

  • Appendix: System Geometry

  • Appendix: System Geometry

  • Appendix: Magnetised Fermionic Gases

  • Appendix: Magnestised fermionic gases

    • N = 14

    M = 0 M = 6/2 =3

  • -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.417

    18

    19

    20

    21

    Appendix: Asymmetric Trap

  • Trapping potential

    ω⊥

    ω∥V=1

    2 [ω⊥2 (x2+ y2)+ω∥

    2 z2 ]

  • One trapped atom

    E=12ω∥+ω⊥

  • Two trapped atoms

    E=ω∥+2ω⊥

  • Three trapped atoms

    E=52ω∥+3ω⊥

    E=32ω∥+4ω⊥

  • Three trapped atoms

    E=52ω∥+3ω⊥+√ ω∥ω∥+ωBV B(2+ ω∥ω∥+ωB )

    E=32ω∥+4ω⊥+3√ ω∥ω∥+ωBV B

  • Three trapped atoms

    E=52ω∥+3ω⊥+√ ω∥ω∥+ωBV B(2+ ω∥ω∥+ωB )+ aa∥ω⊥√

    2π(32−4√2π V Bω∥+ωB )

    E=32ω∥+4ω⊥+3√ ω∥ω∥+ωBV B+ aa∥ω⊥√

    2π(32−6√2π V Bω∥+ωB )

    Slide 1Slide 2Slide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Slide 11Slide 12Slide 13Slide 14Slide 15Slide 16Slide 17Slide 18Slide 19Slide 20Slide 21Slide 22Slide 23Slide 24Slide 25Slide 26Slide 27Slide 28Slide 29Slide 30Slide 31Slide 32Slide 33Slide 34Slide 35Slide 36Slide 37Slide 38Slide 39Slide 40Slide 41Slide 42Slide 43Slide 44Slide 45Slide 46Slide 47Slide 48Slide 49Slide 50Slide 51Slide 52Slide 53Slide 54Slide 55Slide 56Slide 57Slide 58Slide 59Slide 60Slide 61Slide 62Slide 63Slide 64Slide 65Slide 66Slide 67Slide 68Slide 69Slide 70Slide 71Slide 72Slide 73