33
A giant planet candidate transiting a white dwarf Abstract Astronomers have discovered thousands of planets outside the Solar System , most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star , but more distant planets can survive this phase and remain in orbit around the white dwarf . Some white dwarfs show evidence for rocky material floating in their Search Login Explore Journal info Subscribe 1 2 3,4

A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

Article Published: 16 September 2020

A giant planet candidate transiting a white dwarf

Andrew Vanderburg , Saul A. Rappaport, Siyi Xu, Ian J. M. Crossfield, Juliette C. Becker, Bruce

Gary, Felipe Murgas, Simon Blouin, Thomas G. Kaye, Enric Palle, Carl Melis, Brett M. Morris,

Laura Kreidberg, Varoujan Gorjian, Caroline V. Morley, Andrew W. Mann, Hannu Parviainen, Logan

A. Pearce, Elisabeth R. Newton, Andreia Carrillo, Ben Zuckerman, Lorne Nelson, Greg Zeimann,

Warren R. Brown, René Tronsgaard, Beth Klein, George R. Ricker, Roland K. Vanderspek, David

W. Latham, Sara Seager, Joshua N. Winn, Jon M. Jenkins, Fred C. Adams, Björn Benneke, David

Berardo, Lars A. Buchhave, Douglas A. Caldwell, Jessie L. Christiansen, Karen A. Collins, Knicole

D. Colón, Tansu Daylan, John Doty, Alexandra E. Doyle, Diana Dragomir, Courtney Dressing,

Patrick Dufour, Akihiko Fukui, Ana Glidden, Natalia M. Guerrero, Xueying Guo, Kevin Heng,

Andreea I. Henriksen, Chelsea X. Huang, Lisa Kaltenegger, Stephen R. Kane, John A. Lewis, Jack

J. Lissauer, Farisa Morales, Norio Narita, Joshua Pepper, Mark E. Rose, Jeffrey C. Smith,

[…]Keivan G. Stassun & Liang Yu 

Nature  585, 363–367(2020)

5895 Accesses 1 Citations 1498 Altmetric Metrics

Abstract

Astronomers have discovered thousands of planets outside the Solar System , most ofwhich orbit stars that will eventually evolve into red giants and then into white dwarfs.During the red giant phase, any close-orbiting planets will be engulfed by the star , butmore distant planets can survive this phase and remain in orbit around the whitedwarf . Some white dwarfs show evidence for rocky material floating in their

nature articles article

Search Login

Explore Journal info Subscribe

1

2

3,4

Page 2: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

atmospheres , in warm debris disks or orbiting very closely , which has beeninterpreted as the debris of rocky planets that were scattered inwards and tidallydisrupted . Recently, the discovery of a gaseous debris disk with a composition similarto that of ice giant planets demonstrated that massive planets might also find their wayinto tight orbits around white dwarfs, but it is unclear whether these planets can survivethe journey. So far, no intact planets have been detected in close orbits around whitedwarfs. Here we report the observation of a giant planet candidate transiting the whitedwarf WD 1856+534 (TIC 267574918) every 1.4 days. We observed and modelled theperiodic dimming of the white dwarf caused by the planet candidate passing in front ofthe star in its orbit. The planet candidate is roughly the same size as Jupiter and is nomore than 14 times as massive (with 95 per cent confidence). Other cases of white dwarfswith close brown dwarf or stellar companions are explained as the consequence ofcommon-envelope evolution, wherein the original orbit is enveloped during the redgiant phase and shrinks owing to friction. In this case, however, the long orbital period(compared with other white dwarfs with close brown dwarf or stellar companions) andlow mass of the planet candidate make common-envelope evolution less likely. Instead,our findings for the WD 1856+534 system indicate that giant planets can be scattered intotight orbits without being tidally disrupted, motivating the search for smaller transitingplanets around white dwarfs.

Access through your institutionBuy or subscribeAccess options

Subscribe toJournal

Get full journal access for1 year

$199.00

Rent or Buyarticle

Get time limited or full articleaccess on ReadCube.

from $8.99

5 6,7,8,9 10,11,12

13

14

Page 3: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

1.

only $3.90 per issue

Subscribe

All prices are NET prices. VAT will be added later in the checkout.

Rent or Buy

All prices are NET prices.

Additional access options:

Log inAccess through your institutionLearn about institutional subscriptions

Data availability

We provide all reduced light curves and spectra with the manuscript. The Spitzer imagesare available for download at the Spitzer Heritage Archive(http://irsa.ipac.caltech.edu/applications/Spitzer/SHA/), and the TESS images andlight curves are available from the Mikulski Archive for Space Telescopes(https://archive.stsci.edu/tess/). Source data are provided with this paper.

Code availability

Much of the code used to produce these results is publicly available and linkedthroughout the paper. We wrote custom software to analyse the data collected in thisproject. Though this code was not written with distribution in mind, it is available onlineat https://github.com/avanderburg/.

References

1. Akeson, R. L. et al. The NASA Exoplanet Archive: data and tools for exoplanetresearch. Publ. Astron. Soc. Pacif. 125, 989–999 (2013).

Page 4: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

2. Villaver, E. & Livio, M. The orbital evolution of gas giant planets around giantstars. Astrophys. J. Lett. 705, 81–85 (2009).

3. Luhman, K. L., Burgasser, A. J. & Bochanski, J. J. Discovery of a candidate for thecoolest known brown dwarf. Astrophys. J. Lett. 730, 9 (2011).

4. Marsh, T. R. et al. The planets around NN Serpentis: still there. Mon. Not. R.Astron. Soc. 437, 475–488 (2014).

5. Jura, M. A tidally disrupted asteroid around the white dwarf G29–38. Astrophys. J.Lett. 584, 91–94 (2003).

6. Kilic, M., von Hippel, T., Leggett, S. K. & Winget, D. E. Excess infrared radiationfrom the massive DAZ white dwarf GD 362: a debris disk? Astrophys. J. Lett. 632,115–118 (2005).

7. Becklin, E. E. et al. A dusty disk around GD 362, a white dwarf with a uniquelyhigh photospheric metal abundance. Astrophys. J. Lett. 632, 119–122 (2005).

8. Gänsicke, B. T., Marsh, T. R., Southworth, J. & Rebassa-Mansergas, A. A gaseousmetal disk around a white dwarf. Science 314, 1908 (2006).

9. Wilson, T. G., Farihi, J., Gänsicke, B. T. & Swan, A. The unbiased frequency ofplanetary signatures around single and binary white dwarfs using Spitzer andHubble. Mon. Not. R. Astron. Soc. 487, 133–146 (2019).

10. Vanderburg, A. et al. A disintegrating minor planet transiting a white dwarf.Nature 526, 546–549 (2015).

11. Manser, C. J. et al. A planetesimal orbiting within the debris disc around a whitedwarf star. Science 364, 66–69 (2019).

Page 5: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

12. Vanderbosch, Z. et al. A white dwarf with transiting circumstellar material faroutside the Roche limit. Astrophys. J. 897, 171 (2020).

13. Debes, J. H. & Sigurdsson, S. Are there unstable planetary systems around whitedwarfs? Astrophys. J. 572, 556–565 (2002).

14. Gänsicke, B. T. et al. Accretion of a giant planet onto a white dwarf star. Nature576, 61–64 (2019).

15. McCook, G. P. & Sion, E. M. A catalog of spectroscopically identified whitedwarfs. Astrophys. J. Suppl. Ser. 121, 1–130 (1999).

16. Nelson, L., Schwab, J., Ristic, M. & Rappaport, S. Minimum orbital period ofprecataclysmic variables. Astrophys. J. 866, 88 (2018).

17. Marley, M., Saumon, D., Morley, C. & Fortney, J. Sonora 2018: Cloud-free, SolarComposition, Solar C/O Substellar Atmosphere Models and Spectra (2018);https://doi.org/10.5281/zenodo.1309035

18. Spiegel, D. S., Burrows, A. & Milsom, J. A. The deuterium-burning mass limitfor brown dwarfs and giant planets. Astrophys. J. 727, 57 (2011).

19. Casewell, S. L. et al. WD0837+185: the formation and evolution of an extrememass-ratio white-dwarf–brown-dwarf binary in Praesepe. Astrophys. J. Lett. 759, 34(2012).

20. Littlefair, S. P. et al. The substellar companion in the eclipsing white dwarfbinary SDSS J141126.20+200911.1. Mon. Not. R. Astron. Soc. 445, 2106–2115 (2014).

21. Rappaport, S. et al. WD 1202-024: the shortest-period pre-cataclysmic variable.Mon. Not. R. Astron. Soc. 471, 948–961 (2017).

Page 6: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

22. Parsons, S. G. et al. Two white dwarfs in ultrashort binaries with detached,eclipsing, likely sub-stellar companions detected by K2. Mon. Not. R. Astron. Soc.471, 976–986 (2017).

23. Paczynski, B. Common-envelope binaries. In International Astronomical UnionSymp. No. 73: Structure and Evolution of Close Binary Systems (eds Eggleton, P.,Mitton, S. & Whelan, J.) 75–80 (Reidel, 1976).

24. Xu, X.-J. & Li, X.-D. On the binding energy parameter λ of common-envelopeevolution. Astrophys. J. 716, 114–121 (2010).

25. Veras, D. & Gänsicke, B. T. Detectable close-in planets around white dwarfsthrough late unpacking. Mon. Not. R. Astron. Soc. 447, 1049–1058 (2015).

26. Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966).

27. Veras, D. & Fuller, J. Tidal circularization of gaseous planets orbiting whitedwarfs. Mon. Not. R. Astron. Soc. 489, 2941–2953 (2019).

28. Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanetGJ1214b. Nature 505, 69–72 (2014).

29. Agol, E. Transit surveys for Earths in the habitable zones of white dwarfs.Astrophys. J. Lett. 731, 31 (2011).

30. Boss, A. P. et al. Working group on extrasolar planets. Proc. InternationalAstronomical Union A 26A, 183–186 (2005).

31. Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc.Instrum. Syst. 1, 014003 (2014).

Page 7: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

33.

34.

35.

36.

37.

38.

39.

40.

41.

32. Dufour, P. et al. The Montreal White Dwarf Database: a tool for the community. In20th European White Dwarf Workshop (EuroWD16) (eds Tremblay, P.-E., Gaensicke, B.& Marsh, T.) 3–8 (2017).

33. Stassun. K. G. et al. The TESS Input Catalog and candidate target list. Astron. J.156, 102 (2018); correction 156, 183 (2018).

34. Gould, A. & Morgan, C. W. Transit target selection using reduced propermotions. Astrophys. J. 585, 1056–1061 (2003).

35. Altmann, M., Roeser, S., Demleitner, M., Bastian, U. & Schilbach, E. Hot Stuff forOne Year (HSOY). A 583 million star proper motion catalogue derived from GaiaDR1 and PPMXL. Astron. Astrophys. 600, L4 (2017).

36. Gentile Fusillo, N. P. et al. A Gaia Data Release 2 catalogue of white dwarfs anda comparison with SDSS. Mon. Not. R. Astron. Soc. 482, 4570–4591 (2019).

37. Jenkins, J. M. Overview of the TESS Science Pipeline. In AAS/Division for ExtremeSolar Systems III (chairs Mayor, M. & Rasio, F.) 106.05 (2015).

38. Jenkins, J. M. et al. The TESS science processing operations center. In Proc. SPIE9913 Software and Cyberinfrastructure for Astronomy IV (eds Chiozzi, G. & Guzman, J.C.) 99133E (2016).

39. Smith, J. C. et al. Kepler presearch data conditioning II—a Bayesian approach tosystematic error correction. Publ. Astron. Soc. Pacif. 124, 1000–1014 (2012).

40. Stumpe, M. C. et al. Multiscale systematic error correction via wavelet-basedbandsplitting in Kepler data. Publ. Astron. Soc. Pacif. 126, 100 (2014).

41. Jenkins, J. M. The impact of solar-like variability on the detectability of transitingterrestrial planets. Astrophys. J. 575, 493–505 (2002).

Page 8: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

42. Evans, D. F. Evidence for unresolved exoplanet-hosting binaries in Gaia DR2.Res. Notes AAS 2, 20 (2018).

43. Rizzuto, A. C. et al. Zodiacal Exoplanets in Time (ZEIT). VIII. A two-planetsystem in Praesepe from K2 Campaign 16. Astron. J. 156, 195 (2018).

44. Lindegren, L. Re-normalising the Astrometric Chi-Square in Gaia DR2 GaiaTechnical Note No. GAIA-C3-TN-LU-LL-124-01 (Gaia DPAC, 2018).

45. Abell, G. O. Globular clusters and planetary nebulae discovered on the NationalGeographic Society–Palomar Observatory Sky Survey. Publ. Astron. Soc. Pacif. 67,258–261 (1955).

46. Rappaport, S. et al. Drifting asteroid fragments around WD 1145+017. Mon. Not.R. Astron. Soc. 458, 3904–3917 (2016).

47. Narita, N. et al. MuSCAT2: four-color simultaneous camera for the 1.52-mTelescopio Carlos Sánchez. J. Astron. Telesc. Instrum. Syst. 5, 015001 (2019).

48. Schmidt, G. D., Weymann, R. J. & Foltz, C. B. A. Moderate-resolution, high-throughput CCD channel for the MMT Spectrograph. Publ. Astron. Soc. Pacif. 101,713 (1989).

49. Miller, J. S. & Stone, R. P. The Kast Double Spectograph Lick Observatory TechnicalReport 66 (University of California Observatories/Lick Observatory, 1994).

50. Chonis, T. S., Hill, G. J., Lee, H., Tuttle, S. E. & Vattiat, B. L. LRS2: the new facilitylow resolution integral field spectrograph for the Hobby–Eberly telescope. In Proc.SPIE Astronomical Telescopes and Instrumentation Vol. 9147 (eds Ramsay, S. K.,McLean, I. S. & Takami, H.) 91470A (SPIE, 2014).

Page 9: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

52.

53.

54.

55.

56.

57.

58.

59.

60.

51. Zeimann, G. Panacea source code (accessed 24 June2020); https://github.com/grzeimann/Panacea (2019).

52. Elias, J. H. et al. Design of the Gemini near-infrared spectrograph. In Proc.Ground-based and Airborne Instrumentation for Astronomy (eds McLean, I. S. & Iye, M.)62694C (2006).

53. Mason, R. E. et al. The nuclear near-infrared spectral properties of nearbygalaxies. Astrophys. J. Suppl. Ser. 217, 13 (2015).

54. Telting, J. H. et al. FIES: the high-resolution Fiber-fed Echelle Spectrograph at theNordic Optical Telescope. Astron. Nachr. 335, 41 (2014).

55. Stempels, E. & Telting, J. FIEStool: automated data reduction for FIber-fedEchelle Spectrograph (FIES) Astrophysics Source Code Libraryhttp://ascl.net/1708.009 (2017).

56. Fűrész, G. Design and Application of High Resolution and MultiobjectSpectrographs: Dynamical Studies of Open Clusters. PhD thesis, Univ. Szeged(2008).

57. Buchhave, L. A. et al. An abundance of small exoplanets around stars with awide range of metallicities. Nature 486, 375–377 (2012).

58. Stefanik, R. P., Latham, D. W. & Torres, G. Radial-velocity standard stars. In IAUColloquium 170: Precise Stellar Radial Velocities Vol. 185 (eds Hearnshaw, J. B. & Scarfe,C. D.) 354–366 (1999).

59. Lépine, S. et al. A spectroscopic catalog of the brightest (J < 9) M dwarfs in thenorthern sky. Astron. J. 145, 102 (2013).

Page 10: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

61.

62.

63.

64.

65.

66.

67.

68.

69.

60. Cubillos, P. et al. WASP-8b: characterization of a cool and eccentric exoplanet withSpitzer. Astrophys. J. 768, 42 (2013).

61. Xu, S. & Jura, M. Spitzer observations of white dwarfs: the missing planetarydebris around DZ stars. Astrophys. J. 745, 88 (2012).

62. Xu, S. et al. Infrared variability of two dusty white dwarfs. Astrophys. J. 866, 108(2018).

63. Blouin, S., Dufour, P., Thibeault, C. & Allard, N. F. A new generation of coolwhite dwarf atmosphere models. IV. Revisiting the spectral evolution of cool whitedwarfs. Astrophys. J. 878, 63 (2019).

64. Blouin, S., Dufour, P. & Allard, N. F. A new generation of cool white dwarfatmosphere models. I. Theoretical framework and applications to DZ stars.Astrophys. J. 863, 184 (2018).

65. Kowalski, P. M. Infrared absorption of dense helium and its importance in theatmospheres of cool white dwarfs. Astron. Astrophys. 566, L8 (2014).

66. Stassun, K. G., Corsaro, E., Pepper, J. A. & Gaudi, B. S. Empirical accuratemasses and radii of single stars with TESS and Gaia. Astron. J. 155, 22 (2018).

67. Eggleton, P. Evolutionary Processes in Binary and Multiple Stars (Cambridge Univ.Press, 2006).

68. Zapolsky, H. S. & Salpeter, E. E. The mass–radius relation for cold spheres of lowmass. Astrophys. J. 158, 809 (1969).

69. Mestel, L. On the theory of white dwarf stars. I. The energy sources of whitedwarfs. Mon. Not. R. Astron. Soc. 112, 583 (1952).

Page 11: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

70. van Horn, H. M. Cooling of white dwarfs. In International Astronomical UnionSymp. No. 42: White Dwarfs (ed. Luyten, W. J.) 97–115 (Reidel, 1971).

71. Mann, A. W., Feiden, G. A., Gaidos, E., Boyajian, T. & von Braun, K. How toconstrain your M dwarf: measuring effective temperature, bolometric luminosity,mass, and radius. Astrophys. J. 804, 64 (2015); erratum 819, 87 (2016).

72. Mann, A. W. et al. How to constrain your M dwarf. II. The mass–luminosity–metallicity relation from 0.075 to 0.70 Solar masses. Astrophys. J. 871, 63 (2019).

73. Stassun, K. G. et al. The revised TESS input catalog and candidate target list.Astron. J. 158, 138 (2019).

74. Pearce, L. A. Linear Orbits for the Impatient (accessed 24 June2020); https://github.com/logan-pearce/LOFTI (2019).

75. Pearce, L. A. et al. Orbital parameter determination for wide stellar binarysystems in the age of Gaia. Astrophys. J. 894, 115 (2020).

76. Blunt, S. et al. Orbits for the Impatient: a Bayesian rejection-sampling method forquickly fitting the orbits of long-period exoplanets. Astron. J. 153, 229 (2017).

77. Eastman, J., Siverd, R. & Gaudi, B. S. Achieving better than 1 minute accuracy inthe heliocentric and barycentric Julian dates. Publ. Astron. Soc. Pacif. 122, 935 (2010).

78. Mandel, K. & Agol, E. Analytic light curves for planetary transit searches.Astrophys. J. Lett. 580, 171–175 (2002).

79. Eastman, J., Gaudi, B. S. & Agol, E. EXOFAST: a fast exoplanetary fitting suite inIDL. Publ. Astron. Soc. Pacif. 125, 83–112 (2013).

Page 12: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

80. Gianninas, A., Strickland, B. D., Kilic, M. & Bergeron, P. Limb-darkening coefficientsfor eclipsing white dwarfs. Astrophys. J. 766, 3 (2013).

81. Claret, A. et al. Gravity and limb-darkening coefficients for compact stars: DA,DB, and DBA eclipsing white dwarfs. Astron. Astrophys. 634, A93 (2020).

82. Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the Kepler,CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. Astron.Astrophys. 529, A75 (2011).

83. Seager, S. & Mallén-Ornelas, G. A unique solution of planet and star parametersfrom an extrasolar planet transit light curve. Astrophys. J. 585, 1038–1055 (2003).

84. Lucy, L. B. & Sweeney, M. A. Spectroscopic binaries with circular orbits. Astron.J. 76, 544–556 (1971).

85. Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Comm. App.Math. Comp. Sci. 5, 65–80 (2010).

86. Kopal, Z. Close Binary Systems (Chapman & Hall, 1959).

87. Kipping, D. M. Efficient, uninformative sampling of limb darkening coefficientsfor two-parameter laws. Mon. Not. R. Astron. Soc. 435, 2152–2160 (2013).

88. Saumon, D. & Marley, M. S. The evolution of L and T dwarfs in color–magnitude diagrams. Astrophys. J. 689, 1327–1344 (2008).

89. Nelson, L. A., Rappaport, S. A. & Joss, P. C. On the nature of the companion toVan Biesbroeck 8. Nature 316, 42–44 (1985).

90. Chabrier, G., Johansen, A., Janson, M. & Rafikov, R. Giant planet and browndwarf formation. In Protostars and Planets VI (eds Beuther, H. et al.) 619–642 (Univ.

Page 13: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

Arizona Press, 2014).

91. Bowler, B. P., Blunt, S. C. & Nielsen, E. L. Population-level eccentricitydistributions of imaged exoplanets and brown dwarf companions: dynamicalevidence for distinct formation channels. Astron. J. 159, 63 (2020).

92. Phillips, M. W. et al. A new set of atmosphere and evolution models for cool T–Ybrown dwarfs and giant exoplanets. Astron. Astrophys. 637, A38 (2020).

93. Miles, B. E. et al. Observations of disequilibrium CO chemistry in the coldestbrown dwarfs. Astron. J. 160, 63 (2020).

94. Morley, C. V. et al. An L band spectrum of the coldest brown dwarf. Astrophys. J.858, 97 (2018).

95. Morley, C. V. et al. Water clouds in Y dwarfs and exoplanets. Astrophys. J. 787, 78(2014).

96. Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV throughNIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys.J. 788, 48 (2014).

97. Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publ. Astron. Soc. Pacif. 129, 104502 (2017).

98. Butters, O. W. et al. The first WASP public data release. Astron. Astrophys. 520,L10 (2010).

99. Gizis, J. E. M-subdwarfs: spectroscopic classification and the metallicity scale.Astron. J. 113, 806–822 (1997).

Page 14: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

101.

102.

103.

104.

105.

106.

107.

108.

100. Lépine, S., Rich, R. M. & Shara, M. M. Revised metallicity classes for low-mass stars:dwarfs (dM), subdwarfs (sdM), extreme subdwarfs (esdM), and ultrasubdwarfs(usdM). Astrophys. J. 669, 1235–1247 (2007).

101. Mann, A. W., Brewer, J. M., Gaidos, E., Lépine, S. & Hilton, E. J. Prospecting inlate-type dwarfs: a calibration of infrared and visible spectroscopic metallicities oflate K and M dwarfs spanning 1.5 dex. Astron. J. 145, 52 (2013).

102. Newton, E. R. et al. The Hα emission of nearby M dwarfs and its relation tostellar rotation. Astrophys. J. 834, 85 (2017).

103. West, A. A. et al. The Sloan Digital Sky Survey data release 7 spectroscopic Mdwarf catalog. I. Data. Astron. J. 141, 97 (2011).

104. Coşkunoğlu, B. et al. Local stellar kinematics from RAVE data—I. Localstandard of rest. Mon. Not. R. Astron. Soc. 412, 1237–1245 (2011).

105. Bensby, T., Feltzing, S. & Oey, M. S. Exploring the Milky Way stellar disk. Adetailed elemental abundance study of 714 F and G dwarf stars in the solarneighbourhood. Astron. Astrophys. 562, A71 (2014).

106. Carrillo, A., Hawkins, K., Bowler, B. P., Cochran, W. & Vanderburg, A. Knowthy star, know thy planet: chemo-kinematically characterizing TESS targets. Mon.Not. R. Astron. Soc. 491, 4365–4381 (2020).

107. Kilic, M. et al. The ages of the thin disk, thick disk, and the halo from nearbywhite dwarfs. Astrophys. J. 837, 162 (2017).

108. Haywood, M., Di Matteo, P., Lehnert, M. D., Katz, D. & Gómez, A. The agestructure of stellar populations in the solar vicinity. Clues of a two-phase formationhistory of the Milky Way disk. Astron. Astrophys. 560, A109 (2013).

Page 15: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

109.

110.

111.

112.

113.

114.

115.

116.

117.

109. Xiang, M. et al. The ages and masses of a million Galactic-disk main-sequenceturnoff and subgiant stars from the LAMOST Galactic Spectroscopic Surveys.Astrophys. J. Suppl. Ser. 232, 2 (2017).

110. Sharma, S. et al. The K2-HERMES Survey: age and metallicity of the thick disc.Mon. Not. R. Astron. Soc. 490, 5335–5352 (2019).

111. Webbink, R. F. Double white dwarfs as progenitors of R Coronae Borealis starsand type I supernovae. Astrophys. J. 277, 355–360 (1984).

112. Pfahl, E., Rappaport, S. & Podsiadlowski, P. The Galactic population of low-and intermediate-mass X-ray binaries. Astrophys. J. 597, 1036–1048 (2003).

113. Zorotovic, M., Schreiber, M. R., Gänsicke, B. T. & Nebot Gómez-Morán, A. Post-common-envelope binaries from SDSS. IX: Constraining the common-envelopeefficiency. Astron. Astrophys. 520, A86 (2010).

114. De Marco, O. et al. On the α formalism for the common envelope interaction.Mon. Not. R. Astron. Soc. 411, 2277–2292 (2011).

115. Camacho, J. et al. Monte Carlo simulations of post-common-envelope whitedwarf + main sequence binaries: comparison with the SDSS DR7 observed sample.Astron. Astrophys. 566, A86 (2014).

116. Taam, R. E., Bodenheimer, P. & Ostriker, J. P. Double core evolution. I. A 16 M ☉star with a 1 M ☉ neutron-star companion. Astrophys. J. 222, 269–280 (1978).

117. Taam, R. E. & Bodenheimer, P. The common envelope evolution of massivestars. In X-Ray Binaries and Recycled Pulsars: Proc. NATO Advanced Research Workshopon X-Ray Binaries and the Formation of Binary and Millisecond Radio Pulsars (eds vanden Heuvel, E. P. & Rappaport, S. A.) 281–291 (Springer Dordrecht, 1992).

Page 16: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

118. Tauris, T. M. & Dewi, J. D. M. On the binding energy parameter of commonenvelope evolution. Dependency on the definition of the stellar core boundaryduring spiral-in. Astron. Astrophys. 369, 170–173 (2001).

119. Rappaport, S. et al. Discovery of two new thermally bloated low-mass whitedwarfs among the Kepler binaries. Astrophys. J. 803, 82 (2015).

120. Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models.Astrophys. J. 823, 102 (2016).

121. Rappaport, S., Podsiadlowski, P., Joss, P. C., Di Stefano, R. & Han, Z. Therelation between white dwarf mass and orbital period in wide binary radio pulsars.Mon. Not. R. Astron. Soc. 273, 731–741 (1995).

122. Kalomeni, B. et al. Evolution of cataclysmic variables and related binariescontaining a white dwarf. Astrophys. J. 833, 83 (2016).

123. Passy, J.-C., Mac Low, M.-M. & De Marco, O. On the survival of brown dwarfsand planets engulfed by their giant host star. Astrophys. J. Lett. 759, 30 (2012).

124. Bear, E. & Soker, N. Evaporation of Jupiter-like planets orbiting extremehorizontal branch stars. Mon. Not. R. Astron. Soc. 414, 1788–1792 (2011).

125. Schreiber, M. R., Gänsicke, B. T., Toloza, O., Hernandez, M.-S. & Lagos, F. Coldgiant planets evaporated by hot white dwarfs. Astrophys. J. 887, L4 (2019).

126. Kozai, Y. Secular perturbations of asteroids with high inclination andeccentricity. Astron. J. 67, 591–598 (1962).

127. Lidov, M. L. The evolution of orbits of artificial satellites of planets under theaction of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759(1962).

Page 17: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

128. Stephan, A. P., Naoz, S. & Zuckerman, B. Throwing icebergs at white dwarfs.Astrophys. J. Lett. 844, 16 (2017).

129. Chambers, J. E. A hybrid symplectic integrator that permits close encountersbetween massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

130. Veras, D. & Fuller, J. The dynamical history of the evaporating or disrupted icegiant planet around white dwarf WD J0914+1914. Mon. Not. R. Astron. Soc. 492,6059–6066 (2019).

131. Lainey, V., Arlot, J.-E., Karatekin, Ö. & van Hoolst, T. Strong tidal dissipation inIo and Jupiter from astrometric observations. Nature 459, 957–959 (2009).

132. Kozakis, T., Kaltenegger, L. & Hoard, D. W. UV surface environments andatmospheres of Earth-like planets orbiting white dwarfs. Astrophys. J. 862, 69 (2018).

133. Bonsor, A. & Veras, D. A wide binary trigger for white dwarf pollution. Mon.Not. R. Astron. Soc. 454, 53–63 (2015).

134. Chang, Y. C. A study of the orientation of the orbit-planes of 16 visual binarieshaving determinate inclinations. Astron. J. 40, 11–15 (1929).

135. Agati, J. L. et al. Are the orbital poles of binary stars in the solar neighbourhoodanisotropically distributed? Astron. Astrophys. 574, A6 (2015).

136. Heintz, W. D. A statistical study of binary stars. J. Roy. Astron. Soc. Can. 63, 275(1969).

137. Adams, F. C. & Bloch, A. M. Evolution of planetary orbits with stellar mass lossand tidal dissipation. Astrophys. J. 777, L30 (2013).

Page 18: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

139.

140.

141.

142.

143.

144.

145.

146.

147.

138. Rasio, F. A., Tout, C. A., Lubow, S. H. & Livio, M. Tidal decay of close planetaryorbits. Astrophys. J. 470, 1187 (1996).

139. Payne, M. J., Veras, D., Holman, M. J. & Gänsicke, B. T. Liberating exomoons inwhite dwarf planetary systems. Mon. Not. R. Astron. Soc. 457, 217–231 (2016).

140. Bromley, B. C., Kenyon, S. J., Geller, M. J. & Brown, W. R. Binary disruption bymassive black holes: hypervelocity stars, S stars, and tidal disruption events.Astrophys. J. 749, L42 (2012).

141. Faber, J. A., Rasio, F. A. & Willems, B. Tidal interactions and disruptions ofgiant planets on highly eccentric orbits. Icarus 175, 248–262 (2005).

142. Mainetti, D. et al. The fine line between total and partial tidal disruptionevents. Astron. Astrophys. 600, A124 (2017).

143. Kreidberg, L. Exoplanet atmosphere measurements from transmissionspectroscopy and other planet star combined light observations. In Handbook ofExoplanets (eds Deeg, H. J. & Belmonte, J. A.) 2083–2105 (2018).

144. Stevenson, K. B. Quantifying and predicting the presence of clouds inexoplanet atmospheres. Astrophys. J. 817, L16 (2016).

145. Loeb, A. & Gaudi, B. S. Periodic flux variability of stars due to the reflexDoppler effect induced by planetary companions. Astrophys. J. Lett. 588, 117–120(2003).

146. van Kerkwijk, M. H. et al. Observations of Doppler boosting in Kepler lightcurves. Astrophys. J. 715, 51–58 (2010).

147. Rauer, H. et al. The PLATO 2.0 mission. Exp. Astron. 38, 249–330 (2014).

Page 19: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

148.

149.

150.

148. Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at:https://www.arxiv.org/abs/1612.05560 (2016).

149. Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131,1163–1183 (2006).

150. Cutri, R. M. et al. VizieR Online Data Catalog: AllWISE Data Release (Cutri+2013). VizieR Online Data Catalog II/328 (accessed 5 October 2019); http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=II/328

Acknowledgements

We thank S. Lepine for providing the archival spectrum of G 229-20 A, and P. Berlind andJ. Irwin for collecting and extracting velocities from the TRES spectrum. We thank B.-O. Demory for comments on the manuscript, and F. Rasio, D. Veras, P. Gao, B. Kaiser,W. Torres, J. Irwin, J. J. Hermes, J. Eastman, A. Shporer and K. Hawkins forconversations. A.V.’s work was performed under contract with the California Institute ofTechnology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through theSagan Fellowship Program executed by the NASA Exoplanet Science Institute. I.J.M.C.acknowledges support from the NSF through grant AST-1824644, and from NASAthrough Caltech/JPL grant RSA-1610091. T.D. acknowledges support from MIT’s KavliInstitute as a Kavli postdoctoral fellow. D.D. acknowledges support from NASA throughCaltech/JPL grant RSA-1006130 and through the TESS Guest Investigator programme,grant 80NSSC19K1727. S.B. acknowledges support from the Laboratory DirectedResearch and Development programme of Los Alamos National Laboratory underproject number 20190624PRD2. C.M. and B.Z. acknowledge support from NSF grantsSPG-1826583 and SPG-1826550. A.V. was a NASA Sagan Fellow; J.C.B. is a 51 Pegasi bFellow; L.A.P. is an NSF Graduate Research Fellow; A.C. is a Large Synoptic SurveyTelescope Corporation Data Science Fellow; T.D. is a Kavli Fellow; and C.X.H. is a JuanCarlos Torres Fellow. Resources supporting this work were provided by the NASA High-

Page 20: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

End Computing (HEC) programme through the NASA Advanced Supercomputing(NAS) Division at Ames Research Center for the production of the SPOC data products.This work is partially based on observations made with the Nordic Optical Telescope,operated by the Nordic Optical Telescope Scientific Association at the Observatorio delRoque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias.This article is partly based on observations made with the MuSCAT2 instrument,developed by ABC, at Telescopio Carlos Sánchez operated on the island of Tenerife bythe IAC in the Spanish Observatorio del Teide. This work is partly supported by JSPSKAKENHI, grant numbers JP17H04574, JP18H01265 and JP18H05439, and JST PRESTOgrant number JPMJPR1775. This research has made use of NASA’s Astrophysics DataSystem, the NASA Exoplanet Archive, which is operated by the California Institute ofTechnology, under contract with the National Aeronautics and Space Administrationunder the Exoplanet Exploration Program, and the SIMBAD database, operated at CDS,Strasbourg, France. This work is based in part on observations made with the SpitzerSpace Telescope, which is operated by the Jet Propulsion Laboratory, California Instituteof Technology under a contract with NASA. This work is partially based on observationsobtained at the International Gemini Observatory, a program of NOIRLab, which ismanaged by the Association of Universities for Research in Astronomy (AURA) under acooperative agreement with the National Science Foundation, on behalf of the GeminiObservatory partnership: the National Science Foundation (United States), NationalResearch Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile),Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência,Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space ScienceInstitute (Republic of Korea). The authors wish to recognize and acknowledge the verysignificant cultural role and reverence that the summit of Maunakea has always hadwithin the Indigenous Hawaiian community. We are most fortunate to have theopportunity to conduct observations from this mountain.

Author information

Page 21: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

Affiliations

1. Department of Astronomy, University of Wisconsin-Madison, Madison, WI, USA

Andrew Vanderburg

2. Department of Astronomy, The University of Texas at Austin, Austin, TX, USA

Andrew Vanderburg, Caroline V. Morley & Andreia Carrillo

3. Department of Physics and Kavli Institute for Astrophysics and Space Research,Massachusetts Institute of Technology, Cambridge, MA, USA

Saul A. Rappaport, George R. Ricker, Roland K. Vanderspek, Sara Seager, David

Berardo, Tansu Daylan, Ana Glidden, Natalia M. Guerrero, Xueying Guo, Chelsea X.

Huang & Liang Yu

4. NSF’s NOIRLab/Gemini Observatory, Hilo, HI, USA

Siyi Xu

5. Department of Physics and Astronomy, University of Kansas, Lawrence, KS, USA

Ian J. M. Crossfield

6. Division of Geological and Planetary Sciences, California Institute of Technology,Pasadena, CA, USA

Juliette C. Becker

7. Hereford Arizona Observatory, Hereford, AZ, USA

Bruce Gary

Page 22: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

8. Instituto de Astrofísica de Canarias (IAC), Tenerife, Spain

Felipe Murgas, Enric Palle, Hannu Parviainen, Akihiko Fukui & Norio Narita

9. Departamento Astrofísica, Universidad de La Laguna (ULL), Tenerife, Spain

Felipe Murgas, Enric Palle & Hannu Parviainen

10. Los Alamos National Laboratory, Los Alamos, NM, USA

Simon Blouin

11. Raemor Vista Observatory, Sierra Vista, AZ, USA

Thomas G. Kaye

12. Laboratory for Space Research, The University of Hong Kong, Hong Kong, China

Thomas G. Kaye

13. Center for Astrophysics and Space Sciences, University of California, San Diego,San Diego, CA, USA

Carl Melis

14. Center for Space and Habitability, University of Bern, Bern, Switzerland

Brett M. Morris & Kevin Heng

15. Max Planck Institute for Astronomy, Heidelberg, Germany

Laura Kreidberg

Page 23: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

16. Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, USA

Laura Kreidberg, Warren R. Brown, David W. Latham, Karen A. Collins & John A. Lewis

17. NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA,USA

Varoujan Gorjian & Farisa Morales

18. Department of Physics and Astronomy, University of North Carolina at Chapel Hill,Chapel Hill, NC, USA

Andrew W. Mann

19. Steward Observatory, University of Arizona, Tucson, AZ, USA

Logan A. Pearce

20. Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA

Elisabeth R. Newton

21. Department of Physics and Astronomy, University of California, Los Angeles, LosAngeles, CA, USA

Ben Zuckerman & Beth Klein

22. Department of Physics and Astronomy, Bishop’s University, Sherbrooke, Quebec,Canada

Lorne Nelson

23. Hobby–Eberly Telescope, University of Texas, Austin, Austin, TX, USA

Page 24: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

Greg Zeimann

24. DTU Space, National Space Institute, Technical University of Denmark, KongensLyngby, Denmark

René Tronsgaard, Lars A. Buchhave & Andreea I. Henriksen

25. Department of Earth and Planetary Sciences, Massachusetts Institute of Technology,Cambridge, MA, USA

Sara Seager & Ana Glidden

26. Department of Aeronautics and Astronautics, Massachusetts Institute ofTechnology, Cambridge, MA, USA

Sara Seager

27. Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA

Joshua N. Winn

28. NASA Ames Research Center, Moffett Field, CA, USA

Jon M. Jenkins, Douglas A. Caldwell, Jack J. Lissauer, Mark E. Rose & Jeffrey C. Smith

29. Physics Department, University of Michigan, Ann Arbor, MI, USA

Fred C. Adams

30. Astronomy Department, University of Michigan, Ann Arbor, MI, USA

Fred C. Adams

Page 25: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

31. Départment de Physique, Université de Montréal, Montreal, Quebec, Canada

Björn Benneke & Patrick Dufour

32. Institut de Recherche sur les Exoplanètes (iREx), Université de Montréal, Montreal,Quebec, Canada

Björn Benneke & Patrick Dufour

33. SETI Institute, Mountain View, CA, USA

Douglas A. Caldwell & Jeffrey C. Smith

34. Caltech/IPAC-NASA Exoplanet Science Institute, Pasadena, CA, USA

Jessie L. Christiansen

35. Exoplanets and Stellar Astrophysics Laboratory (Code 667), NASA Goddard SpaceFlight Center, Greenbelt, MD, USA

Knicole D. Colón

36. Noqsi Aerospace, Billerica, MA, USA

John Doty

37. Department of Earth, Planetary, and Space Sciences, University of California, LosAngeles, Los Angeles, CA, USA

Alexandra E. Doyle

38. Department of Physics and Astronomy, University of New Mexico, Albuquerque,NM, USA

Page 26: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

Diana Dragomir

39. Department of Astronomy, University of California, Berkeley, Berkeley, CA, USA

Courtney Dressing

40. Department of Earth and Planetary Science, Graduate School of Science, TheUniversity of Tokyo, Tokyo, Japan

Akihiko Fukui

41. Carl Sagan Institute, Cornell University, Ithaca, NY, USA

Lisa Kaltenegger

42. Department of Astronomy and Space Sciences, Ithaca, NY, USA

Lisa Kaltenegger

43. Department of Earth and Planetary Sciences, University of California, Riverside,Riverside, CA, USA

Stephen R. Kane

44. Department of Physics and Astronomy, Moorpark College, Moorpark, CA, USA

Farisa Morales

45. Astrobiology Center, Tokyo, Japan

Norio Narita

46. PRESTO, JST, Tokyo, Japan

Page 27: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

Norio Narita

47. National Astronomical Observatory of Japan, Tokyo, Japan

Norio Narita

48. Komaba Institute for Science, The University of Tokyo, Tokyo, Japan

Norio Narita

49. Department of Physics, Lehigh University, Bethlehem, PA, USA

Joshua Pepper

50. Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA

Keivan G. Stassun

51. Department of Physics, Fisk University, Nashville, TN, USA

Keivan G. Stassun

52. ExxonMobil Upstream Integrated Solutions, Spring, TX, USA

Liang Yu

Contributions

A.V. led the TESS proposals, identified the planet candidate, organized observations,performed the transit and flux limit analysis, and wrote the majority of the manuscript.S.A.R. helped to organize observations, performed independent data analysis, and wroteportions of the manuscript. S.X. helped to organize observations, obtained and analysedthe Gemini data, measured fluxes from the Spitzer data, and helped to guide the strategy

Page 28: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

of the manuscript. I.J.M.C., L. Kreidberg, V.G., B.B., D.B., J.L.C., D.D., C.D., X.G., S.R.K.,F. Morales and L.Y. acquired and produced a light curve from the Spitzer data. S.A.R.,J.C.B., L.N., B.Z., F.C.A. and J.J.L. investigated the formation of the WD 1856 system.B.G., F. Murgas, T.G.K., E.P., H.P., A.F. and N.N. acquired follow-up photometry. S.B.,P.D. and K.G.S. determined the parameters of the white dwarf, and A.W.M. and E.R.N.studied the M-dwarf companions. C.M., G.Z., W.R.B., R.T., B.K., L.A.B., A.E.D. andA.I.H. acquired spectra of the white dwarf and/or M-dwarf companions. B.M.M., K.H.and T.D. performed an independent analysis of the TESS data, and J.A.L. performed anindependent analysis of the white dwarf SED. C.V.M. provided expertise on browndwarf models, and L. Kaltenegger investigated the system’s implications. L.A.P.determined parameters for the binary M-dwarf orbits and white dwarf/M-dwarf orbits,A.C. investigated the system’s galactic kinematics. G.R.R., R.K.V., D.W.L., S.S., J.N.W.,J.M.J., D.A.C., K.A.C., K.D.C., J.D., A.G., N.M.G., C.X.H., J.P., M.E.R. and J.C.S. aremembers of the TESS mission team.

Corresponding author

Correspondence to Andrew Vanderburg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Artie Hatzes, Steven Parsons and the other,anonymous, reviewer(s) for their contribution to the peer review of this work. Peerreviewer reports are available.

Page 29: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Archival imaging of WD 1856.a, From the Palomar Observatory Sky Survey on a photographic plate with a blue-sensitive emulsion. b, From the Panoramic Survey Telescope and Rapid ResponseSystem (Pan-STARRS) survey in the i band. c, From the Pan-STARRS survey in the iband, zoomed out to show the co-moving M-dwarf pair (labelled G 229-20). d, CoaddedTESS image from sector 14. The photometric apertures for the three sectors of TESSobservations (14, 15 and 19) are shown as red-, purple- and blue-coloured outlines,respectively. The present-day location of WD 1856 is shown with a red cross in allimages.

Extended Data Fig. 2 All transit observations of WD 1856.From top to bottom, we show the light curves (arbitrarily offset for visual clarity) fromTESS; data from several private telescopes in Arizona (operated by B.G. and T.G.K.) withodd and even-numbered transits shown separately; simultaneous light curves in fourcolours from MuSCAT2; a light curve from the GTC, and a light curve from Spitzer. Theindividual two-minute-cadence TESS flux measurements are shown as grey points, andthe rose-coloured points are averages of the brightness in roughly 30 s in orbital phase.The TESS data have been corrected for dilution from nearby stars so that the transitdepth matches that of the GTC data. Source data

Extended Data Fig. 3 Spectral energy distribution of WD 1856. Photometricmeasurements from Pan-STARRS148, 2MASS , WISE and Spitzer areshown as blue, orange, dark red and pink points, respectively.The formal 1σ (standard deviation) photometric uncertainties on the Pan-STARRS, WISE,and Spitzer points are smaller than the symbol size. Four different SED models areshown as solid curves: a pure hydrogen atmosphere model (red), a 50% hydrogen, 50%

149 150

Page 30: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

helium model (blue), a pure helium model (gold), and a blackbody curve (black). Noneof the SED models capture all of the SED’s features, but all four yield mostly consistenteffective temperatures and stellar parameters.

Extended Data Fig. 4 Spectrum of WD 1856 near the Hα line.Our summed Hobby–Eberly/LRS2 spectrum (black connected points) is shown incomparison with three atmosphere models: a pure hydrogen model (red), a 50%hydrogen, 50% helium model (blue), and a pure helium model (gold). We disfavour apure hydrogen atmosphere on the basis of our non-detection of an Hα feature in ourLRS2 spectra, but otherwise remain uncertain about the precise composition of theenvelope of WD 1856.

Extended Data Fig. 5 Posterior probability distributions of transit parameters.This ‘corner-plot’ shows correlations between pairs of parameters in our MCMC transitfit (with circular orbits enforced) and histograms of the marginalized posteriorprobability distributions for each parameter. For clarity, we have plotted correlationswith the inclination angle i instead of the fit parameter cosi and subtract the median timeof transit (tt). The orbital inclination i, scaled semimajor axis a/R⁎, and the planet–star

radius ratio Rp/R⁎ are strongly correlated, owing to the grazing transit geometry, but

constrained by the prior on the stellar density. We do not include rows for the GTC andSpitzer photometric jitter terms because these are nuisance parameters that showed nocorrelation with the other physical parameters.

Extended Data Fig. 6 Posterior probability distributions of transit parameterswhen eccentric orbits are allowed.This ‘corner-plot’ shows correlations between pairs of parameters in our MCMC transitfit (allowing eccentric orbits) and histograms of the marginalized posterior probabilitydistributions for each parameter. This plot shows a subset of the parameters thatcorrelate with the orbital eccentricity. For clarity, we have plotted correlations with theeccentricity e, argument of periastron w and orbital inclination i instead of the fitparameters \(\sqrt{e}\cos \,\omega \), \(\sqrt{e}\sin \,\omega \) and δ.

Page 31: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

Extended Data Fig. 7 Hα equivalent width for G 229-20 A/B compared toother nearby M dwarfs.The histogram shows the Hα equivalent widths for a large sample of M dwarfs withsimilar spectral types from the Sloan Digital Sky Survey . G 229-20 A/B (shown as ablue arrow) has a lower than average Hα equivalent width, but falls well within thedistribution of field M dwarfs.

Extended Data Fig. 8 Theoretical relationships between the star’s radius andthe mass of its core.We show MIST evolution tracks in the radius–core mass plane for solar compositionmodels with masses ranging from 1M☉–2.8M☉. The RGB phase is clearly identifiable for

core masses between 0.2M☉ and 0.47M☉, whereas the thermal pulses on the AGB are

readily recognized at higher core masses of ≳0.5M☉. The lime-green curve is the analytic

expression given by equation (8). The vertical lines for each star mark the point wherethe envelope has been exhausted by the AGB wind.

Extended Data Fig. 9 The minimum value of the efficiency parameter αλCErequired for WD 1856 b to form via common-envelope evolution as a functionof the progenitor stellar mass.The two dashed curves show the minimum αλCE values from our analytic calculation

(equation (11)) required for a 15MJ object to eject the primary star’s envelope. The purple

dashed curve is taken directly from equation (11), and the brown dashed curve results ifthe progenitor star has lost 0.1M☉ in a stellar wind by the time of the common envelope.

The three solid curves show the minimum αλCE computed directly from MIST tracks in

three different situations: before the star reaches the AGB (red), before more than 30% ofthe star’s envelope mass has been lost (black), and at any point in the star’s evolution,regardless of the mass lost (blue). Stars in the grey region at low masses evolve tooslowly for the system to have left the main sequence more than 5.85 Gyr ago and are notviable solutions. For values of αλCE > 1 (horizontal grey line), one must invoke the

internal energy of the star to help to unbind the envelope during the common-envelopephase. Before mass is lost during the AGB phase, it is difficult for WD 1856 b to eject the

103

120

Page 32: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

common envelope, but it is possible that WD 1856 b could have ejected its progenitor’senvelope if the common-envelope phase began after the progenitor reached the AGB. Wehave smoothed the lower two curves to remove some unphysical scatter that is probablydue to numerical artefacts in the model grids.

Extended Data Table 1 Comparison of white dwarf parameters from differentatmosphere models

Supplementary information

Supplementary DataThis file contains a comma separated value file with spectroscopic data on the M-dwarfcompanions.

.Peer Review File

Source data

Source Data Fig. 2Source Data Extended Data Fig. 2

Rights and permissions

Reprints and Permissions

About this article

Page 33: A giant planet candidate transiting a white dwarf · 2020. 10. 24. · into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far,

Cite this article

Vanderburg, A., Rappaport, S.A., Xu, S. et al. A giant planet candidate transiting a whitedwarf. Nature 585, 363–367 (2020). https://doi.org/10.1038/s41586-020-2713-y

Received 16 March 2020 Accepted 15 July 2020 Published 16 September 2020

Issue Date 17 September 2020 DOI https://doi.org/10.1038/s41586-020-2713-y

Subjects Exoplanets • Stellar evolution

Further reading

Planet discovered transiting a dead star

Steven Parsons

Nature (2020)

Nature ISSN 1476-4687 (online)

© 2020 Springer Nature Limited