54
A linear collider for A linear collider for the future the future Physics, Accelerator, detectors Physics, Accelerator, detectors Yannis Karyotakis Yannis Karyotakis

A linear collider for the future Physics, Accelerator, detectors Yannis Karyotakis

Embed Size (px)

Citation preview

A linear collider for the futureA linear collider for the futurePhysics, Accelerator, detectorsPhysics, Accelerator, detectors

Yannis KaryotakisYannis Karyotakis

22

Physics TodayPhysics Today

A very successful SM describes our particle word at low A very successful SM describes our particle word at low energyenergy

BUT open questions still unanswered:BUT open questions still unanswered:

– Electroweak symmetry breaking ( Higgs ??)Electroweak symmetry breaking ( Higgs ??)– Unification of the forces ( Supersymetrie ??)Unification of the forces ( Supersymetrie ??)– Space time structure at short distances ( extra dims ?)Space time structure at short distances ( extra dims ?)– Dark matter and energy ( ??? )Dark matter and energy ( ??? )

Fundamental discoveries are expected with LHC, high precision measurements with LC to constrain our theory

33

+

Unitarity restored with a Higgs MH < 700 GeV

New physics states E < 4gMW~1TeV

New Physics < 1TeVNew Physics < 1TeV

Unitarity is violated at perturbatif level

44

The Higgs around the cornerThe Higgs around the corner Precision data Precision data (LEP,SLD,CDF,D0)(LEP,SLD,CDF,D0)

favor a light SM Higgsfavor a light SM HiggsSummer ‘05

MH > 114.4 GeV from direct searches

55

Le CERN découvre le

HiggsAprès 20 ans d’efforts, enfin au CERN, l’expérience LHCb met la main sur le Higgs, aussitôt confirmé par CMS.

Lire en Page 2 l’interview du Pr B.Pietrzyk

9

Indeed we all expect LHC to discover the Higgs

BUTBUT

Is it really the Higgs ???

Must study its properties and compare with those

from SM

66

Higgs production @ ILCHiggs production @ ILC

For MH=120GeV @Ecm=500GeV and L=500fb-1 105 Higgs events !!

77

Is the mass generator ?Is the mass generator ?

Couplings Couplings fermion and fermion and gauge boson massesgauge boson massesMeasure Br’sMeasure Br’sRich phenomenology for MRich phenomenology for MHH < <

2*M2*MWW

bb gbb / gbb2 % cc gcc / gcc22.5 % g / g 5 % WW* gww/ gHww2 % ZZ g/ gHZZ6 % gg ggg / ggg12.5 % g / g 10 %

Total width is measured

mi = v ki

88

Higgs couplings @LHCHiggs couplings @LHC

Total width unknown

99

Higgs self couplingHiggs self coupling

Cross sections very Cross sections very lowlow

Total Total = 0.18fb or 92 = 0.18fb or 92 events for L=500fbevents for L=500fb-1-1 @E@Ecmcm=500GeV and =500GeV and

mmhh=120GeV=120GeV

Only 0.1 fb useful to Only 0.1 fb useful to measure measure hhhhhh

increases with Eincreases with Ecmcm

4 or 6 jets events, b enhanced : need to separate W/Z, b tagging

1010

Scalar Higgs ?Scalar Higgs ?

If hIf h J J≠≠1 (LHC)1 (LHC) versus Eversus Ecmcm

Angular distributionsAngular distributions CP even/oddCP even/odd * reflects CP nature* reflects CP nature

ee->Zh (Higgsstrahlung threshold)

1111

SUSYSUSY

Possibility to unify forces and couplingsPossibility to unify forces and couplings Offers a non baryonic dark matter candidateOffers a non baryonic dark matter candidate

•A priori, some super partners are light < 1TeV

• Hundreds of new parameters

At a LC sparticles are produced through simple processes using eventually polarized electrons

allowing measurements of masses quantum numbers and couplings

1212

s massess masses~ ~

e e

scalars

1313

ILC and CosmologyILC and Cosmology

Is SUSY LSP Is SUSY LSP responsible for Cold responsible for Cold Dark Matter ?Dark Matter ?– Need to study LSP Need to study LSP

properties, need properties, need precision precision measurements to measurements to compare with future compare with future experimentsexperiments

1414

1515

Towards an ILCTowards an ILC

We recommend that LC be based on super-We recommend that LC be based on super-conducting RF technology.conducting RF technology.– ... we are recommending a technology not a design. We expect t... we are recommending a technology not a design. We expect t

hat the final design be developed by a team drawn from the hat the final design be developed by a team drawn from the comcombined warm and cold linear collider communitiesbined warm and cold linear collider communities......

1616

ILC parametersILC parameters 1st stage1st stage

– Energy 200→500 GeV, scannableEnergy 200→500 GeV, scannable– 500 fb500 fb-1-1in first 4 years in first 4 years

with option of x2 lum. in additional 2 yearswith option of x2 lum. in additional 2 years– Beam energy precision < 0.1%Beam energy precision < 0.1%– Electron polarization > 80%Electron polarization > 80%– Two IRsTwo IRs

2nd stage2nd stage– Energy upgrade to ~1TeVEnergy upgrade to ~1TeV– ~1000 fb~1000 fb-1 -1 in 3-4 years in 3-4 years

OptionsOptions , , e-, e-e-, Giga-Ze-, e-e-, Giga-Z

ILC satisfies the feasibility criteria set by the International Technical Review Committee

The GDE Plan and

Schedule 2005 2006 2007 2008 2009 2010

Global Design Effort Project

Baseline configuration

Reference Design

ILC R&D Program

Technical Design

Expression of Interest to Host

International Mgmt

LHCPhysics

CLIC

18

The Key Decisions

Critical choices: luminosity parameters & gradient

1919

Baseline Configuration DocumentBaseline Configuration Document

2020

Need higher Energy ??Need higher Energy ??CLIC @ 3-5TeVCLIC @ 3-5TeV

2121

2222

2323

Detector concepts for ILCDetector concepts for ILC

SID LDC

GLD

2424

Calorimetry drives the detector Calorimetry drives the detector designdesign

2525

Momentum resolutionMomentum resolution

Higgs’ mass Higgs’ mass reconstructionreconstruction

32

2 5 1

5 10 /( sin )

/ 5 10 ( )T

r rz

p T

p m

p GeV

2626

b taggingb tagging

Need to measure Need to measure Higgs to c couplingHiggs to c coupling– H H cc only 10% of H cc only 10% of H

bbbb– Huge background Huge background

measurement, non b measurement, non b and 2 b jetsand 2 b jets

2727

Forward coverageForward coverage

Very important for low Very important for low m SUSY particlesm SUSY particles

Cosmology favors low Cosmology favors low mass differencemass difference 0~ ~

1

Veto needed down to 0.2 – 0.6 deg

2828

CalorimetryCalorimetry

A 100 Mpixel jet pictureA 100 Mpixel jet picture– Si and TungstenSi and Tungsten

Need for a highly dense and highly segmented calorimetry

2929

ECAL PixelsECAL Pixels

Prototypes in hands of 16 Prototypes in hands of 16 mm2

Designing for 12 Designing for 12 mm2 or 1024 or 1024 pixels per 6” waferpixels per 6” wafer

-> +o

3030

Particle flowParticle flowJet composition :

• 64 % charged particles

• 21% photons

• 11% neutral hadrons

PFA :

•Measure charged track momentum

•Separate charged hits from neutral

•Measure photons and neutral hadrons in the calorimeters

•Perfect PFA 14%/sqrt(E)

Effect [GeV]

separate

[GeV]

not joined

[GeV]

total ( E/% )

%

to total

0vE 0.84 0.84 0.84 (8.80%) 12.28 oCone 5 0.73 1.11 1.11(11.65%) 9.28

36.0tP 1.36 1.76 1.76(18.40%) 32.20

HCAL 1.40 1.40 2.25(23.53%) 34.12

ECAL 0.57 1.51 2.32(24.27%) 5.66

neutralM 0.53 1.60 2.38(24.90%) 4.89

chargedM 0.30 1.63 2.40(25.10%) 1.57

Assumed resolutions ECAL 11%/√E, HCAL 50%/√E +4%

H.Weerts

Detector outline considerations

Architecture arguments

Calorimeter (and tracker) Silicon is expensive, so limit area by limiting radius (and length)

Maintain BR2 by pushing B (~5T) Excellent tracking resolution by using silicon strips 5T field allows minimum VXD radius. Do track finding by using 5 VXD space points to

determine track – tracker measures sagitta. Exploit tracking capability of EMCAL for V’s.

Accept the notion that excellent energy flow calorimetry is required, use W-Si for EMCAL and the implications for the detector architecture…This is the monster assumption of

SiD (MB quote)

H.Weerts

Conception / Optimisation

SiD

H.Weerts

SiD DESI GN STUDY COORDI NATORSJ .J aros, H.Weerts,H.Aihara & J .Karyotakis

SI LI CON TRACKERM.DemarteauR.Partridge

--

EXECUTI VE COMMI TTEEH.Aihara, J .Brau, M.Breidenbach, J .J aros,

J .Karyotakis, H.Weerts & A.White

SOLENOI DFLUX RETR.Smith

--

VERY FORWARD--

--

SI MULATI ONN.Graf

--

MDIP.BurrowsT.Tauchi

--

VERTEXI NGSu Dong

--

CALORI METERSR.Frey

J .Repond

--

MUONH.BandH.E.Fisk

--

BENCHMARKI NGT.Barklow

--

COSTM.Breidenbach

--

R& D COORDI NATORA. White

ADVI SORY COMMI TTEEAll names on this chart

Join the SiD effort

3434

ConclusionsConclusions

Reaching the TeV scale is an appointment with Reaching the TeV scale is an appointment with new physics.new physics.

It is important we all together design the best It is important we all together design the best accelerator and detectors to unveil the unknown.accelerator and detectors to unveil the unknown.

The linear collider is the future for high energy The linear collider is the future for high energy physics and for the next generation, but it is physics and for the next generation, but it is prepared now.prepared now.

3535

BackupBackup

3636

3737

3838

spin measurementspin measurement

3939

Masses summaryMasses summary

LHC+ILC complementary coverage over the sparticle spectrum

4040

More on Couplings More on Couplings

SUSY, multi Higgs, extra dimensions SUSY, multi Higgs, extra dimensions different from SM couplings.different from SM couplings.

4141

Higgs self coupling (2)Higgs self coupling (2)

ProcessProcess hhZ sel.hhZ sel. vvhh-sel.vvhh-sel.

BackgBackg 21.821.8 9.19.1

signalsignal 88.088.0 34.34.

Eff. (%)Eff. (%) 30.2%30.2% 37.3%37.3%

8.28.2 5.25.2

‘hh’

‘hhZ’

P.Gay

s b s

Expected precision d/ ~ 20% per channel for 1ab-1

4242

Higgs and MSSMHiggs and MSSM

Five HiggsFive Higgs– hh00 light m light mhh < 140 GeV < 140 GeV

– HH00, A, A00, H, H typically masses up to 1TeVtypically masses up to 1TeV

4343

ECAL overviewECAL overview

CAD overview

R 1.27 m

• ( 20 layers x 2.5 mm thick

+ 10 layers x 5 mm thick) Tungsten

• ~ 1mm Si detector gaps

• Preserve Tungsten RM eff= 12mm

• Highly segmented Si pads 12 mm2

44

Cost Drivers

cf31%

structures18%rf

12%

systems_eng8%

installation&test7%

magnets6%

vacuum4%

controls4%

cryo4%

operations4%

instrumentation2%

Civil

SCRF Linac

4545

46

Vous avez dit Linéaire ??

Usr énergie perdue par tour

LEP @ 100 GeV/ faisceau, 27Km 2GeV/tourExtrapolation à 250 GeV/faisceau, r=150Km (r~E2) et Usr = 13 GeV/tour

Pour L ~ 10 34 cm-2 s-1 alors I ~ 2 A donc puissance RF = 26 GW

5 4[ / ] 8.85 10 [ ] / [ ]srU GeV tour E GeV r m

47

La luminosité* pour tous (1)

Luminosité ~

Trains de nb paquets, faisceaux gaussiens

fc : fréquence de collision par paquets

Nb : nombre de particules / paquets

A : recouvrement des faisceaux

*collisionneurs e+e-

Dyx

repbb HfNn

L4

2

A

Nf bc2

frep fréquence de répétitionHD auto focalisation (>1) dimensions des faisceaux

Rappel : Section efficaces ~ 1/E2cm donc L ~ E2

cm

48

Nano faisceaux

Quadrupoles puissants au point d’interactionGrande densité de charge

Forte auto-focalisation HD augmenteBeamstrahlung Champ E ~GV/m !!!! Faisceau défléchi, émission de Dilution de la lumi pour Ecm

Création des paires e+e- bruit de fond

Sensibilité aux vibrations des éléments optiques et spécialement des FF quads

49

Vibrations

Mouvements du sol

Bruits culturels générés par l’activité de la machine

Eau de refroidissementPompes

50

Feed back par le faisceau

Déflection mutuelle et mesurable des faisceaux

bb 150rad

Mesure de l’angle (e+) par BPM

Correction des e- par dipôle et pour le paquet suivant

Pour un quad qui oscille avec une fréquence f0 et un taux de répétition

du faisceau frep, l’efficacité du feed back ~2~2ff00/f/freprep

frep limitera donc ce feed back

51

Timing and IR layout

5252

Proof of principle for CLICProof of principle for CLIC

The three R1 issues are:The three R1 issues are:

R1.1 Test of damped accelerating structure at design gradient and R1.1 Test of damped accelerating structure at design gradient and pulse length pulse length

R1.2 Validation of the drive beam generation scheme with a fully loaded R1.2 Validation of the drive beam generation scheme with a fully loaded linaclinac

R1.3 Design and test of an adequately damped power-extraction R1.3 Design and test of an adequately damped power-extraction structure, which can be switched ON and OFFstructure, which can be switched ON and OFF

The two R2 issues are:The two R2 issues are:

R2.1 Validation of beam stability and losses in the drive beam R2.1 Validation of beam stability and losses in the drive beam decelerator, and design of a machine protection systemdecelerator, and design of a machine protection system

R2.2 Test of a relevant linac sub-unit with beam R2.2 Test of a relevant linac sub-unit with beam

All five of these key feasibility issues can be demonstrated in CTF3.All five of these key feasibility issues can be demonstrated in CTF3.

5353

Measuring Higgs MassMeasuring Higgs MassRecoil mass from e+e- ZH

22recoil ll llM s sE M

Upstream and downstream spectrometers

5454

SM Higgs versus MSSMSM Higgs versus MSSM

For mA < 600 GeV likely to distinguish