57
Materials Process Design and Control Laboratory Materials Process Design and Control Laboratory C C O O R R N N E E L L L L U N I V E R S I T Y C C O O R R N N E E L L L L U N I V E R S I T Y Materials Process Design and Control Laboratory Sibley School of Mechanical and Aerospace Engineering 169 Frank H. T. Rhodes Hall Cornell University Ithaca, NY 14853-3801 Email: [email protected] URL: http://www.mae.cornell.edu/zabaras NICHOLAS ZABARAS NICHOLAS ZABARAS A MULTISCALE APPROACH TO A MULTISCALE APPROACH TO MATERIALS USING STOCHASTIC MATERIALS USING STOCHASTIC AND COMPUTATIONAL STATISTICS AND COMPUTATIONAL STATISTICS TECHNIQUES TECHNIQUES

A MULTISCALE APPROACH TO MATERIALS USING ...paulino.ce.gatech.edu/.../TUESDAY/T_Morning_II/Zabaras.pdfmodel - FEM Experimental, Monte Carlo/ MD models Spectral stochastic/ support-space

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    Materials Process Design and Control LaboratorySibley School of Mechanical and Aerospace Engineering

    169 Frank H. T. Rhodes HallCornell University

    Ithaca, NY 14853-3801

    Email: [email protected]: http://www.mae.cornell.edu/zabaras

    NICHOLAS ZABARASNICHOLAS ZABARAS

    A MULTISCALE APPROACH TO A MULTISCALE APPROACH TO MATERIALS USING STOCHASTIC MATERIALS USING STOCHASTIC

    AND COMPUTATIONAL STATISTICS AND COMPUTATIONAL STATISTICS TECHNIQUESTECHNIQUES

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    NEED FOR MULTISCALE ANALYSISNEED FOR MULTISCALE ANALYSISFingering in porous media

    Water injector

    site

    Porous bed-rock

    • Water displaces the oil layer to the receiving site

    • Water accelerates more in areas with high permeability

    • Fingering reduces quality of the oil received (polluted with water)

    Oil receiver

    site • Permeability of bed rock is inherently stochastic

    • Statistics like mean permeability, correlation structure are usually constant for a given rock type

    • Stationary probability models can be used

    • Direct simulation of the effect of uncertainty in permeability on the amount of oil received requires enormous computational power

    • Bed rock length scale – typically of order of kms

    • Length scale for permeability variation – typically of order of cms

    • Requirement – 10000 blocks for a single dimension (1012 blocks overall)

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    NEED FOR MULTISCALE ANALYSISNEED FOR MULTISCALE ANALYSISTransport phenomena in material processes like solidification

    Engineering component

    Microstructural features

    Formation of dendrites, micro-scale flow structure, heat transfer patterns are highly sensitive to perturbations

    • Microstructure is dynamic and evolves with the materials process

    • Uncertainties at the micro-scale are loosely correlated, however macro-scale features like species concentration, temperature, stresses are highly correlated

    • Uncertainty analysis at micro-scale requires considerable computational effort

    • Macro-properties dependant on the dendrite patterns and uncertainty propagation at the micro-scales

    • Uncertainty interactions are no longer satisfy stationarity assumptions – newer probability models based on image analysis and experimentation needed

    Length scale ~ meters

    Length scale ~ 10-4 meters

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    STOCHASTIC VARIATIONAL MULTISCALESTOCHASTIC VARIATIONAL MULTISCALE

    Physical model

    • Statistical variations in properties are significant

    • Discontinuities, loosely correlated structures in properties

    Large scale system

    Micro scale features

    • Statistical variations are relatively negligible

    • Discontinuities get smoothed out

    • Process interactions, properties become correlated

    Uncertainties in boundary and initial conditions

    • Discrete probability distributions to model properties

    • Image analysis to develop the correlation structure

    Bayesian data analysis interface

    Green’s functions, RFB

    type models

    Explicit subgrid scale model - FEM

    Experimental, Monte Carlo/ MD models

    Spectral stochastic/ support-space representation of uncertainty

    Discretization method like FEM, Spectral, FDM

    Subgrid scale models

    Large scale simulation

    Averaging out the higher statistical features of

    subgrid scale solutions using Karhunen-loeve/

    wavelet filtering

    Residual

    Statistical features

    Large scale solutions obtained from the

    explicit discretization approach

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    MULTISCALE TRANSPORT SYSTEMSMULTISCALE TRANSPORT SYSTEMS

    Flow past an aerofoil Atmospheric flow in Jupiter

    Solidification process

    Modeling of dendrites at small scale, fluid flow and transport at large scale

    Large scale turbulent structures, small scale dissipative eddies, surface irregularities

    Astro-physical flows, effects of gravitational and magnetic fields

    • Presence of a variety of spatial and time scales - commonality

    • Varied applications – Engineering, Geophysical, Materials

    • Boundary conditions, material properties, small scale behavior inherently are uncertain

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    IDEA BEHIND VARIATIONAL MULTISCALE IDEA BEHIND VARIATIONAL MULTISCALE -- VMSVMS

    Solidification process

    Physical model

    Micro-constitutive laws from experiments,

    theoretical predictions

    Subgrid model

    Resolved model

    • Green’s function• Residual free bubbles• MsFEM “Hou et al.”• TLFEM “Hughes et al.”

    • FEM

    • FDM

    • Spectral

    Large scale behavior – explicit

    resolution

    Small scale behavior –statistical resolution

    Large scale

    Residual

    Subgrid scale

    solution

    Where does uncertainty fit in

    ?

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    WHY STOCHASTIC MODELING IN VMS ?WHY STOCHASTIC MODELING IN VMS ?Model uncertainty

    Material uncertainty Computational uncertainty

    • Imprecise knowledge of governing physics

    • Models used from experiments

    • Uncertain boundary conditions• Inherent initial perturbations• Small scale interactions

    Surroundings uncertainty

    Solidification microscale features

    • Material properties fluctuate – only a statistical description possible

    • Uncertainty in codes

    • Machine precision errors

    Not accounted for in analysis here

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    SOME PROBABILITY THEORYSOME PROBABILITY THEORY

    Probability space – A triplet - - Collection of all basic outcomes of the experiment- - Permutation of the basic outcomes- - Probability associated with the permutations

    Ω( , , )F PΩFP

    : ( )( , , )

    W D TW x t ω

    × ×Ω →

    Sample space Real interval

    ξ ω( )Random variable –a function

    Stochastic process – a random function at each space and time point

    Notations:

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    SPECTRAL STOCHASTIC EXPANSIONSSPECTRAL STOCHASTIC EXPANSIONS

    1( , , ) ( , ) ( , ) ( )i i

    iW x t W x t W x tω ξ ω

    =

    = +∑

    • Covariance kernel required – known only for inputs• Best possible representation in mean-square sense

    • Series representation of stochastic processes with finite second moments

    ( , )W x t( , )iW x t

    ( )iξ ω

    - Mean of the stochastic process

    - Coefficient dependant on the eigen-pairs of the covariance kernel of the stochastic process

    - Orthogonal random variables

    Karhunen-Loeve expansion

    Generalized polynomial chaos

    expansion 0( , , ) ( , ) (ξ( ))i i

    iW x t W x tω ψ ω

    =

    =∑( , )(ξ( ))

    i

    i

    W x tψ ω

    - Coefficients dependant on chaos-polynomials chosen

    - Chaos polynomials chosen from Askey-series (Legendre –uniform, Jacobi – beta)

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    SUPPORTSUPPORT--SPACE/STOCHASTIC GALERKINSPACE/STOCHASTIC GALERKIN( ( ))f ξ ω - Joint probability density function of the inputs

    { ( ) : ( ( )) 0}A fξ ω ξ ω= > - The input support-space denotes the regions where input joint PDF is strictly positive

    Triangulation of the support-space

    Any function can be represented as a piecewise polynomial on the triangulated support-space

    - Function to be approximated( ( ))X ξ ω

    ( ( ))hX ξ ω - Piecewise polynomial approximation over support-space

    ( ( ))hX ξ ω

    L2 convergence – (mean-square)2 1( ( ( )) ( ( ))) ( ( ))dh q

    A

    X X f Chξ ω ξ ω ξ ω ξ +− ≤∫h = mesh diameter for the support-space discretization

    q = Order of interpolation

    Error in approximation is penalized severely in high input joint PDF regions. We use importance based refinement of

    grid to avoid this

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    BOUSSINESQ NATURAL CONVECTIONBOUSSINESQ NATURAL CONVECTION

    g

    2

    0

    ( ) Pr( ) e

    2 Pr( ) ( )1( ) [ ( ) ]2

    T

    vv v v Rat

    vt

    pI v

    v v v

    ω ω θ σ

    θ θ θ

    σ ω ε

    ε

    ∇ =∂

    + ∇ = − +∇∂

    ∂+ ∇ = ∇

    ∂= − +

    = ∇ + ∇

    i

    i i

    i

    hmΓ

    gmΓ

    gtΓ

    htΓ

    gv v=

    gθ θ=

    0.n qθ∇ =

    .n hσ∇ =

    • Temperature gradients are small

    • Constant fluid properties except in the force term

    • viscous dissipation negligible

    Momentum equation boundary conditions

    Energy equation boundary conditions

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    DEFINITION OF FUNCTION SPACESDEFINITION OF FUNCTION SPACES

    1 2 2

    22

    22

    1

    ( ) { : ( ( ) )d }

    ( ) { : d }

    ( ) { : d }

    ( ) { : d }

    D

    D

    T

    T

    H D v v v x

    L D v v x

    L T w w t

    L T w w t

    = + ∇ < ∞

    = < ∞

    = < ∞

    = < ∞

    ∫DT

    - Spatial domain

    - Time interval of simulation [0,tmax]

    Function spaces for deterministic quantities

    Function spaces for stochastic quantities

    22 ( ) { : dP }L ξ ξ

    Ω = < ∞∫

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    DERIVED FUNCTION SPACESDERIVED FUNCTION SPACES

    1 d2 2

    1 d0 2

    2 1 2

    0 2 21

    2 2

    10 2

    { : [ ( ) ( ) ( )] , }

    { : [ ( ) ( )] , 0 }

    { : ( ) ( ) ( )}{ : ( ) ( )}

    { : ( ) ( ) ( ), }

    { : ( ) ( ), 0 }

    g gm

    gm

    g gt

    gt

    V v v H D L T L v v on

    V w w H D L w on

    Q p p L D L T LQ q q L D L

    E H D L T L on

    E w w H D L w on

    θ θ θ θ

    = ∈ × × Ω = Γ

    = ∈ × Ω = Γ

    = ∈ × × Ω= ∈ × Ω

    = ∈ × × Ω = Γ

    = ∈ × Ω = Γ

    Velocity function spaces

    • Uncertainty is incorporated in the function space definition

    • Solution velocity, temperature and pressure are in general multiscale quantities (as Rayleigh number increases) the computational grid capture less and less information

    Pressure function spaces

    Temperature function spaces

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    WEAK FORMULATION WEAK FORMULATION –– BOUSSINESQ EQNSBOUSSINESQ EQNS

    v 0( , ) ( . , ) ( , ) ( , ) htt w v w w q wθ θ θ Γ∂ + ∇ + ∇ ∇ =

    v g( , ) ( . , ) ( , ( )) ( , ) ( ( ) Pr( ) e , )

    ( , ) 0hmt

    v w v v w v h w Ra w

    v q

    σ ε ω ω θΓ∂ + ∇ + = −

    ∇ =i

    Eθ ∈ 0w E∈Find such that for all , the following holds

    [ , ] [ , ]v p V Q∈ 0 0[ , ] [ , ]w q V Q∈Find such that for all , the following holds

    Energy equation – weak form

    Momentum and continuity equations – weak form

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    VARIATIONAL MULTISCALE DECOMPOSITIONVARIATIONAL MULTISCALE DECOMPOSITION

    0 0 0

    0 0 0 0 0 0

    ', ', '

    ', ', '

    V V V V V V Q Q Q

    Q Q Q E E E E E E

    = ⊕ = ⊕ = ⊕

    = ⊕ = ⊕ = ⊕

    ', ', 'v v v p p p θ θ θ= + = + = +

    • Bar denotes large scale/resolved quantity• Prime denotes subgrid scale/ unresolved quantity

    Induced multiscale decomposition for function spaces

    Interpretation• Large scale function spaces correspond to finite element spaces – piecewise polynomial and hence are finite dimensional

    • Small scale function spaces are infinite dimensional

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    SCALE DESOMPOSED WEAK FORM SCALE DESOMPOSED WEAK FORM -- ENERGYENERGY

    v 0

    v 0

    ( ', ) ( . . ', ) ( ', ) ( , )

    ( ', ') ( . . ', ') ( ', ') ( , ')ht

    ht

    t t

    t t

    w v v w w q w

    w v v w w q w

    θ θ θ θ θ θ

    θ θ θ θ θ θΓ

    Γ

    ∂ + ∂ + ∇ + ∇ + ∇ +∇ ∇ =

    ∂ + ∂ + ∇ + ∇ + ∇ +∇ ∇ =

    Find and such that for all and , the following holds

    ' 'Eθ ∈Eθ ∈ 0w E∈ 0' 'w E∈

    Small scale strong form of equations

    2 2' . ' ' ( . )t tv v Rθ θ θ θ θ θ∂ + ∇ −∇ = − ∂ + ∇ −∇ =2( ) : .L vθ θ θ= ∇ −∇

    1 11 ( ), (1 )t n n n n n nf f f f f ft γ

    γ γδ + + +

    ∂ = − = + −Time discretization rule

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    ELEMENT FOURIER TRANSFORMELEMENT FOURIER TRANSFORM

    DSpatial domain

    ( )eD

    ( )

    ˆ ˆexp( ) ( , )d ( , ) ( , )e

    j jj

    D

    k kg k xn i g x i g k i g kx h h h

    ω ω ω∂ = − Γ + ≈∂ ∫

    i

    ( )

    ˆ ( , ) exp( ) ( , )deD

    k xg k i g x xh

    ω ω= −∫i

    Subgrid scale solution denotes unresolved part of the solution, hence dominated by large wave number modes!!

    Spatial derivative approximation

    • Other techniques to solve for an approximate subgrid solution include:

    - Residual-free bubbles, Green’s function approach

    - Two-level finite element method – explicit evaluation

    - Multiscale FEM – Incorporates subgrid features in large scale weighting function

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    ALGEBRAIC SUBGRID SCALE MODELALGEBRAIC SUBGRID SCALE MODEL2 2' . ' ' ( . )t tv v Rθ θ θ θ θ θ∂ + ∇ −∇ = − ∂ + ∇ −∇ =

    ' '( )t n n nL Rγ γθ θ + +∂ + =

    2' '

    2

    1 1ˆ ˆˆn n n

    kv ki Rt h h tγ γ

    θ θγδ γδ+ + + + = +

    i

    122 2

    ' '1 22

    1 1 1,n t n n tv

    R c ct h t hγ γ

    θ τ θ τγδ γδ

    + +

    ≈ + = + +

    Time discretization

    Element Fourier transform

    Parseval’s theorem

    Mean value theorem

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    STABILIZED FINITE ELEMENT EQUATIONSSTABILIZED FINITE ELEMENT EQUATIONSStrong regularity conditions

    v 0

    2 2

    1

    ' 2

    1

    ( , ) ( , ) ( , ) ( , )

    ( , ( )

    ( , /( ) ) ) 0

    htt n n n

    Nel

    t n n n te

    Nel

    n t te

    w v w w q w

    v w v w w

    w t v w w w

    γ γ

    γ γ

    θ θ θ

    θ θ θ τ

    θ τ γδ τ

    + + Γ

    + +=

    =

    ∂ + ∇ + ∇ ∇ −

    + ∂ + ∇ −∇ − + ∇ +∇

    + − ∇ −∇ − =

    i

    i i

    i

    2v v( ', ) ( ', ), ( ', ) ( ', )v w v w w wθ θ θ θ∇ = − ∇ ∇ ∇ = − ∇i i

    Stabilized weak formulation

    /( )w w tγδ=where

    Time integration has a role to play in the stabilization (Codina et al.)

    Stochastic intrinsic time scale (subgrid scale solution has a stochastic model)

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    CONSIDERATIONS FOR MOMENTUM EQUATIONCONSIDERATIONS FOR MOMENTUM EQUATIONPicard’s linearization 'v v v v v v∇ ≈ ∇ + ∇i i iFairly accurate for laminar up to transition (moderate Reynolds number flows)

    For high Reynolds number flows, the term assumes importance since small scales act as momentum dissipaters

    ' 'v v∇i

    Small scale strong form of equations

    g' ' ( ', ') ( ) Pr( ) e ( , )

    't tv v v v p Ra v v v v p

    v v

    σ ω ω θ σ∂ + ∇ −∇ = − −∂ − ∇ +∇

    ∇ = −∇

    i i i ii i

    g( ) Pr( ) e ( , )mom t n n n nR Ra v v v v pγ γ γω ω θ σ+ + += − − ∂ − ∇ +∇i i

    con nR v γ+= −∇i

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    SUBGRID VELOICTY AND PRESSURESUBGRID VELOICTY AND PRESSURE2

    ' ' '2

    '

    1 1ˆˆ ˆ ˆPr( )

    ˆ ˆ

    n n mom n

    ncon

    k v k ki v i p R vt h h h t

    k vi R

    h

    γ γ

    γ

    ωγδ γδ+ +

    +

    + + + = +

    =

    i

    i

    Element Fourier transform

    Simultaneous solve

    Parseval’s theorem

    Mean-value theorem1

    22 222'

    1 1

    ' 2'

    1

    , Pr( )

    ,

    n c con c

    nn m mom m

    c

    c v hhp Rc t c

    v hv Rt c

    γ

    γ

    τ τ ωγδ

    τ τγδ τ

    +

    +

    ≈ = + +

    ≈ + =

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    STABILIZED FINITE ELEMENT EQUATIONSSTABILIZED FINITE ELEMENT EQUATIONSStrong regularity conditions

    v v( ', ) ( ', ), (Pr( ) ( '), ( )) ( ', Pr( ) ( ))v v w v v w v w v wω ε ε ω ε∇ = − ∇ = − ∇i i i

    Stabilized weak formulation

    /( )w w tγδ=where

    ( )'

    g1

    '

    ( , ) ( , ) (2 Pr( ) ( ), ( )) ( , )

    ( ) Pr( ) e ( , ) , Pr( ) ( )

    ( , ) ( , ) 0

    hmt n n n n

    Neln

    t n n n n me

    n n c

    v v v w p w v w h w

    vRa v v v v p w v w wt

    v w v w

    γ γ γ

    γ γ γ

    γ

    ω ε ε

    ω ω θ σ τ ω εγδ

    τ

    + + + Γ

    + + +=

    +

    ∂ + ∇ − ∇ + −

    + − −∂ − ∇ + − + ∇ + ∇

    − + ∇ ∇ =

    i i

    i i i

    i i

    '

    g1

    ( , ) ( ( ) Pr( ) e ( , ) , 0Nel

    nn t n n n n m

    e

    vv q Ra v v v v p qtγ γ γ γ

    ω ω θ σ τγδ+ + + +=

    ∇ + − −∂ − ∇ + − ∇ =

    ∑i i

    Momentum equation

    Continuity equation

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    IMPLEMENTATION ISSUES IMPLEMENTATION ISSUES -- GPCEGPCE

    DSpatial domain

    ( )eD

    nbf

    1

    ( , ) ( ) ( )f x f N xα αα

    ω ω=

    =∑

    Generic function

    Random coefficient

    Galerkin shape

    function

    GPCE expansion for random coefficients

    0

    ( ) (ξ( ))P

    i ii

    f fα αω ψ ω=

    =∑

    Random coefficient

    Askey polynomial

    • Each node has P+1 degrees of freedom for each scalar stochastic process

    • Interpolation is accomplished by tensor-product basis functions

    • (P+1) times larger than deterministic problems

    • Assume the inputs have been represented in Karhunen-Loeve expansion such that the input uncertainty is summarized by few random variables

    1 nξ( ) {ξ ( ), ,ξ ( )}ω ω ω= …

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    IMPLEMENTATION ISSUES IMPLEMENTATION ISSUES –– SUPPORT SPACESUPPORT SPACE

    DSpatial domain

    A stochastic process can be interpreted as a random variable at each spatial point

    ( , , )W x t ω

    Two-level grid approach

    Spatial grid

    Support-space grid

    • Mesh dense in regions of high input joint PDF

    ( )eD

    Element

    ( , )x ω

    A

    ( ')eA

    nbf nbf ' nbf'

    1 1 1( , ) ( ) ( ) ( ) ( )i i i j j i

    i j if x f N x f N N xω ω ω

    = = =

    = =∑ ∑∑

    • There is finite element interpolation at both spatial and random levels

    • Each spatial location handles an underlying support-space grid

    • Highly OOP structure

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    NUMERICAL EXAMPLESNUMERICAL EXAMPLES• Flow past a circular cylinder with uncertain inlet velocity – Transient behavior

    • RB convection in square cavity with adiabatic body at the center – uncertainty in the hot wall temperature (simulation away from critical points)

    - Transient behavior- Simulation using GPCE, validation using deterministic simulation

    • RB convection in square cavity – uncertainty in Rayleigh number (simulation about a critical point)

    - Failure of the GPCE approach- Analysis support-space method - Comparison of prediction by support-space method with deterministic simulations

    In the last example, temperature contours do not convey useful information and hence are ignored

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    FLOW PAST A CIRCULAR CYLINDERFLOW PAST A CIRCULAR CYLINDER

    X

    Y

    0 5 10 15 200

    2

    4

    6

    8

    • Computational details – 2000 bilinear elements for spatial grid, third order Legendre chaos expansion for velocity and pressure, preconditioned parallel GMRES solver

    • Time of simulation – 180 non-dimensional units

    • Inlet velocity –Uniform random variable between 0.9 and 1.1

    • Kinematic viscosity 0.01

    • Time stepping –0.03 non-dimensional units

    Inlet

    Traction free outlet

    ( )U ω

    No-slip

    No-slip

    Investigations

    • Onset of vortex shedding

    • Shedding near wake regions, flow statistics

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    ONSET OF VORTEX SHEDDINGONSET OF VORTEX SHEDDING

    X

    Y

    0 2 4 6 8 10 12 14 16 18 200

    2

    4

    6

    8

    -0.50 -0.42 -0.34 -0.26 -0.18 -0.10 -0.02 0.06 0.14 0.22 0.30 0.39 0.47 0.55 0.63

    X

    Y

    0 2 4 6 8 10 12 14 16 18 200

    2

    4

    6

    8

    -0.14 -0.12 -0.10 -0.08 -0.06 -0.04 -0.03 -0.01 0.01 0.03 0.05 0.07 0.09 0.10 0.12

    Mean pressure at t = 79.2

    • Vortex shedding is just initiated

    • Not in the periodic shedding mode

    First order term in Legendre chaos expansion of pressure at t = 79.2

    • Vortex shedding is predominant

    • Periodic shedding behavior noticed

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    FULLY DEVELOPED VORTEX SHEDDINGFULLY DEVELOPED VORTEX SHEDDING

    Mean pressure contours

    First order term in LCE of pressure contours

    Second order term in LCE of pressure contours

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    VORTEX SHEDDING VORTEX SHEDDING -- CONTDCONTD

    Frequency

    Ampl

    itude

    0.1 0.2 0.3 0.4 0.50

    0.03

    0.06

    0.09

    0.12

    0.15

    • The FFT of the mean velocity shows a broad spectrum with peak at frequency 0.162

    • The spectrum is broad in comparison to deterministic results wherein a sharp shedding frequency is obtained

    • Mean velocity has superimposed frequencies

    • Mean velocity has comparatively lower magnitude than the deterministic velocity (Y-velocities compared at near wake region)

    X

    V

    5 8 11 14 17 20-0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    DeterministicMean

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    RB CONVECTION RB CONVECTION -- CENTRAL ADIABATIC BODYCENTRAL ADIABATIC BODY• Computational details – 2048 bilinear elements for spatial grid, third order Legendre chaos expansion for velocity, pressure and temperature, preconditioned parallel GMRES solver

    • Time of simulation –1.5 non-dimensional units

    • Rayleigh number - 104

    • Prandtl number – 0.7

    • Time stepping – 0.002 non-dimensional units

    • Transient behavior of temperature statistics ( Flow results in paper )

    X

    Y

    0 0.25 0.5 0.75 10

    0.25

    0.5

    0.75

    1Cold wall

    Hot wall

    Insulated InsulatedAdiabatic

    body

    0cθ =

    [0.95,1.05]h Uθ =

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    TRANSIENT BEHAVIOR TRANSIENT BEHAVIOR –– TEMPERATURETEMPERATURE

    • Mean temperature contours

    • Steady conduction like state not reached

    • Second order term in the Legendre chaos expansion of temperature

    • First order term in the Legendre chaos expansion of temperature

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    CAPTURING UNSTABLE EQUILIBRIUMCAPTURING UNSTABLE EQUILIBRIUM• Computational details – 1600 bilinear elements for spatial grid

    • Time of simulation – 1.5 non-dimensional units

    • Rayleigh number – uniformly distributed random variable between 1530 and 1870 (10% fluctuation about 1700)

    • Prandtl number – 6.95

    • Time stepping – 0.002 non-dimensional units

    • Support-space grid – One-dimensional with ten linear elements

    • Simulation about the critical Rayleigh number – conduction below, convection above

    • Both GPCE and support-space methods are used separately for addressing the problem

    • Failure of Generalized polynomial chaos approach

    • Support-space method – evaluation and results against a deterministic simulation

    Cold wall

    Hot wall

    Insulated Insulated

    0cθ =

    1hθ =X

    Y

    0 0.25 0.5 0.75 10

    0.25

    0.5

    0.75

    1

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    FAILURE OF THE GPCEFAILURE OF THE GPCE

    X

    Y

    0 0.25 0.5 0.75 10

    0.25

    0.5

    0.75

    19.2E-07 5.7E-06 1.0E-05 1.5E-05 2.0E-05 2.5E-05 3.0E-05 3.4E-05

    X

    Y

    0 0.25 0.5 0.75 10

    0.25

    0.5

    0.75

    1-6.4E-08 4.3E-07 9.3E-07 1.4E-06 1.9E-06 2.4E-06 2.9E-06 3.4E-0

    X

    Y

    0 0.25 0.5 0.75 10

    0.25

    0.5

    0.75

    1-5.0E-03 -3.6E-03 -2.1E-03 -7.1E-04 7.1E-04 2.1E-03 3.6E-03 5.0E-03

    XY

    0 0.25 0.5 0.75 10

    0.25

    0.5

    0.75

    1-3.2E-03 -2.0E-03 -8.0E-04 3.9E-04 1.6E-03 2.8E-03 4.0E-03 5.2E-03

    X-vel

    X-vel

    Y-vel

    Y-vel

    Mean X- and Y-velocities determined by GPCE yields extremely low values !! (Gibbs effect)

    X- and Y-velocities obtained from a deterministic simulation with Ra = 1870 (the upper limit)

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    PREDICTION BY SUPPORTPREDICTION BY SUPPORT--SPACE METHODSPACE METHOD

    X

    Y

    0 0.25 0.5 0.75 10

    0.25

    0.5

    0.75

    1-5.0E-03 -3.6E-03 -2.1E-03 -7.1E-04 7.1E-04 2.1E-03 3.6E-03 5.0E-03

    XY

    0 0.25 0.5 0.75 10

    0.25

    0.5

    0.75

    1-3.2E-03 -2.0E-03 -8.0E-04 3.9E-04 1.6E-03 2.8E-03 4.0E-03 5.2E-03

    X-vel

    X-vel

    Y-vel

    Y-vel

    Mean X- and Y-velocities determined by support-space method at a realization Ra=1870

    X- and Y-velocities obtained from a deterministic simulation with Ra = 1870 (the upper limit)

    X

    Y

    0 0.25 0.5 0.75 10

    0.25

    0.5

    0.75

    1-5.0E-03 -3.6E-03 -2.1E-03 -7.1E-04 7.1E-04 2.1E-03 3.6E-03 5.0E-03

    X

    Y

    0 0.25 0.5 0.75 10

    0.25

    0.5

    0.75

    1-3.2E-03 -2.0E-03 -7.4E-04 4.9E-04 1.7E-03 2.9E-03 4.2E-03 5.4E-03

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    MICROSTRUCTURE RECONSTRUCTION MICROSTRUCTURE RECONSTRUCTION & CLASSIFICATION WITH & CLASSIFICATION WITH

    APPLICATIONS IN APPLICATIONS IN MATERIALSMATERIALS--BYBY--DESIGNDESIGN

    Materials Process Design and Control LaboratorySibley School of Mechanical and Aerospace Engineering

    188 Frank H. T. Rhodes HallCornell University

    Ithaca, NY 14853-3801

    Email: [email protected]: http://www.mae.cornell.edu/zabaras/

    Veeraraghavan Sundararaghavan and Nicholas Zabaras

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    MATERIALS DESIGN FRAMEWORK

    Machine learning schemes

    Microstructure Information library

    Accelerated Insertion of new

    materials

    Optimization of existing

    materials

    Tailored application specific material

    properties

    Virtual process simulations to

    evaluate alternate designs

    Computational process design

    simulator

    Virtual materials design

    framework

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    DESIGNING MATERIALS WITH TAILORED PROPERTIES

    Micro problem driven by the velocity gradient L

    Macro problem driven by the macro-design

    variable βBn+1

    Ω = Ω (r, t; L)~Polycrystal

    plasticityx = x(X, t; β)L = L (X, t; β)

    ODF: 1 2 3 4 5 6 7

    L = velocity gradient

    Fn+1

    B0

    Reduced Order Modeling

    Data mining techniques

    Database

    Multi-scale Computation

    Design variables (β) are macrodesign variables Processing sequence/parameters

    Design objectives are micro-scaleaveraged material/process

    properties

  • Process Process parameters Values ..Tension Strain rate, time, velocity gradient 0.56Forging Forging velocity ,Initial Temperature 2.13

    Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    DATABASE FOR POLYCRYSTAL MATERIALS

    Meso-scale database for polycrystalline materials Machine Learning

    Database

    Feature Extraction

    Data Organization

    Reduced order basisgeneration

    You

    ngsM

    odul

    us

    RD TD

    Multi-scale microstructure

    evolution models

    Process design for desired properties

    RD

    R-v

    alue

    0.9850.99

    0.9951

    1.0051.01

    1.0151.02

    1.0251.03

    1.035

    0 10 20 30 40 50 60 70 80 90

    Angle from rolling direction

    InitialIntermediateOptimalDesired

    TD

    ODF

    Pole Figures

    0 20 40 60 80144

    144.1

    144.2

    144.3

    144.4

    144.5

    144.6

    144.7

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    MOTIVATIONMOTIVATION1. Creation of 3D microstructure models for property analysis from

    2D images

    2. 3D imaging requires time and effort. Need to address real–time methodologies for generating 3D realizations.

    3. Make intelligent use of available information from computational models and experiments.

    vision

    Database

    Pattern recognition

    MicrostructureAnalysis

    2D Imaging techniques

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    PATTERN RECOGNITION (PR) STEPSPATTERN RECOGNITION (PR) STEPS

    DATABASE CREATION

    FEATURE EXTRACTION

    TRAINING

    PREDICTION

    Datasets: microstructures from experiments or physical models

    Extraction of statistical features from the databaseCreation of a microstructure class hierarchy: Classification methodsPrediction of 3D reconstruction, process paths, etc.

    PATTERN RECOGNITION : A DATA-DRIVEN OPTIMIZATION TOOL•Feature matching for reconstruction of 3D microstructures•Microstructure representation•Texture(ODF) classification for process path selection Real-time

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    3D MICROSTRUCTURE RECOGNITION: A TWO3D MICROSTRUCTURE RECOGNITION: A TWO--CLASS PROBLEMCLASS PROBLEM

    Training Features

    36.5236.5214.0814.0852.1552.1524.0224.02--11

    9.529.5220.0120.01160.12160.1221.3021.3011

    11.3011.3025.3025.30158.20158.2020.1020.1011

    2.522.5223.0123.01154.12154.1223.3223.3211

    Feature Vector (x) Feature Vector (x) –– single feature type (Grain size feature)single feature type (Grain size feature)Class(y)Class(y)

    Match lower order features using PR

    New Feature (From a 2D image) – To which 3D class does this belong?2.312.3124.1024.10153.14153.1421.4521.45

    Heyn intercept histogram of a 2D cross-section

    Feature Extraction

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    MULTIPLE CLASSESMULTIPLE CLASSES

    Class-AClass-B

    Class-CA

    CB

    AB

    C

    Given a new planar microstructure with its ‘s’ features given by

    find the class of 3D microstructure (y ) to which it is most likely to belong.

    [1,2,3,..., ]p∈1 2

    1 1 1 2 2 21 1 2 2 1 2 1 2{ , , ...., }, { , , ...., }, ..., { , , ...., }sT T T s s s

    m m s mx x x x x x x x x x x x= = =

    p = 3One Against One Method:

    • Step 1: Pair-wise classification, for a p class problem

    • Step 2: Given a data point, select class with maximum votes out of ( 1)

    2p p −

    ( 1)2

    p p −

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    TWO PHASE MICROSTRUCTURE: CLASS HIERARCHYTWO PHASE MICROSTRUCTURE: CLASS HIERARCHY

    Class - 1

    3D MicrostructuresFeature vector : Three point probability

    function

    3D Microstructures

    Class - 2

    Feature:Autocorrelation

    function

    LEVEL - 1 LEVEL - 2

    r µm

    γ

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    STATISTICAL CORRELATION MEASURESSTATISTICAL CORRELATION MEASURES

    MC Sampling: Computing the three point probability function of a 3D microstructure(40x40x40 mic)

    S3(r,s,t), r = s = t = 2, 5000 initial points, 4 samples at each initial point.

    Rotationally invariant probability functions (SiN ) can be interpreted as the probability of finding the N vertices of a polyhedron separated by relative distances x1, x2,..,xN in phase i when tossed, without regard to orientation, in the microstructure.

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    3D RECONSTRUCTION3D RECONSTRUCTION

    Ag-W composite (Umekawa 1969) A reconstructed 3D microstructure

    3 point probability function

    Autocorrelation function

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    ELASTIC PROPERTIES: YOUNGS MODULUSELASTIC PROPERTIES: YOUNGS MODULUS

    170

    190

    210

    230

    250

    270

    290

    310

    0 200 400 600 800 1000Temperature (deg-C)

    You

    ngs

    Mod

    ulus

    (GP

    a)

    HS boundsBMMP boundsExperimentalFEM

    3D image derived through pattern

    recognition Experimental image

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    MICROSTRUCTURE REPRESENTATION USING SVM & PCAMICROSTRUCTURE REPRESENTATION USING SVM & PCA

    COMMON-BASIS FOR MICROSTRUCTURE REPRESENTATION

    Does not decay to zero

    A DYNAMIC LIBRARY APPROACH

    •Classify microstructures based on lower order descriptors.

    •Create a common basis for representing images in each class at the last level in the class hierarchy.

    •Represent 3D microstructures as coefficients over a reduced basis in the base classes.

    •Dynamically update the basis and the representation for new microstructures

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    PCA MICROSTRUCTURE RECONSTRUCTIONPCA MICROSTRUCTURE RECONSTRUCTION

    Pixel value round-off

    Basis Components

    X 5.89

    X 14.86

    +

    Project

    onto basis

    Reconstruct using two basis components

    Representation using just 2 coefficients (5.89,14.86)

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    ORIENTATION FIBERS: LOWER ORDER FEATURES OF AN ODF

    1 (1 .

    r h y+ (h+y))h y

    λ= ×+

    Points (r) of a (h,y) fiber in the fundamental region

    angle

    Crystal Axis = h

    Sample Axis = y

    φ φ

    Rotation (R) required to align h with y

    (invariant to , )φ φ

    Fibers: h{1,2,3}, y || [1,0,1]

    {1,2,3} Pole FigurePoint y (1,0,1)

    0 0

    h ||y

    R .h=h , h||y1P (h,y) = (P (h,y)+P (-h,y))21P (h,y) =

    2Adθ

    π ∫

    Integration is performed over all fibers corresponding to crystal direction h and sample direction y

    For a particular (h), the pole figure takes values P(h,y) at locations y on a unit sphere.

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    LIBRARY FOR TEXTURES

    [100] pole figure

    [110] pole figure

    Parameter Feature Vector DATABASE OF ODFs

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    SUPERVISED CLASSIFICATION USING SUPPORT VECTOR MACHINES

    Given ODF/texture

    Tension (T)

    Stage 1

    LEVEL – 2 CLASSIFICATIONPlane strain compression

    T+P

    LEVEL – I CLASSIFICATIONTension identified

    Stag

    e 2

    Stage 3

    Multi-stage classification with each class affiliated with a unique process

    Identifies a unique processing sequence:

    Fails to capture the non-uniqueness in the

    solution

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    UNSUPERVISED CLASSIFICATION

    Find the cluster centers {C1,C2,…,Ck} such that the sum of the 2-norm distance squared between each feature xi , i = 1,..,n and its nearest cluster center Ch is minimized.

    21 2

    21,..,1

    1( , ,.., ) ( )2min

    nk h

    ih ki

    J c c c x C==

    = −∑

    Identify clusters

    Clusters

    DATABASE OF ODFs

    Feature Space

    Cost function Each class is affiliated with multiple processes

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    PROCESS PARAMETERS LEADING TO DESIRED PROPERTIESY

    oung

    ’s M

    odul

    us (G

    Pa)

    Angle from rolling direction

    CLASSIFICATION BASED ON PROPERTIES

    Class - 1 Class - 2

    Class - 3Class - 4 0.5 0.25 00.25 -1.25 0

    0 0 0.75

    0.5 0 00 0.75 00 0 -1.25

    Velocity Gradient

    Different processes, Similar properties

    Database for ODFs

    Property Extraction

    ODF Classification

    Identify multiple solutions

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    A TWOA TWO--STAGE PROBLEMSTAGE PROBLEM

    Process – 2 Plane strain compression α = 0.3515

    Process – 1 Tension α = 0.9539Initial Conditions:

    Stage 1

    Sensitivity of material property

    Initial Conditions- stage 2

    DATABASE Reduced Basis

    φ(1) φ(2)

    Direct problem

    Sensitivity problem

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    MULTIPLE PROCESS ROUTESMULTIPLE PROCESS ROUTES

    0 10 20 30 40 50 60 70 80 90144

    144.5

    145

    145.5

    Angle from the rolling direction

    You

    ngs

    Mod

    ulus

    (GP

    a)

    Desired Young’s Modulus distribution

    Magnetic hysteresis loss distribution

    0 10 20 30 40 50 60 70 80 901.205

    1.21

    1.215

    1.22

    1.225

    1.23

    1.235

    1.24

    Mag

    netic

    hys

    tere

    sis

    loss

    (W/k

    g) Stage: 1 Shear-1 α = 0.9580

    Stage: 2 Plane strain compression (α = -0.1597 )

    Stage: 1 Shear -1 α = 0.9454

    Stage: 2 Rotation-1

    (α = -0.2748)

    Stage 1: Tension α = 0.9495

    Stage 2: Shear-1 α = 0.3384

    Stage 1: Tension α = 0.9699

    Stage 2: Rotation-1 α = -0.2408

    Classification

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    DESIGN FOR DESIRED ODF: A MULTI STAGE PROBLEMDESIGN FOR DESIRED ODF: A MULTI STAGE PROBLEM

    0 5 10 15 20 250

    0.2

    0.4

    0.6

    0.8

    1

    Iteration Index

    Nor

    mal

    ized

    obj

    ectiv

    e fu

    nctio

    nInitial guess, α1 = 0.65,

    α2 = -0.1

    Desired ODF Optimal- Reduced order control

    Full order ODF based on reduced order control parameters

    Stage: 1 Plane strain compression (α1 = 0.9472)

    Stage: 2 Compression (α2 = -0.2847)

  • Materials Process Design and Control LaboratoryMaterials Process Design and Control LaboratoryCCOORRNNEELLLL U N I V E R S I T Y CCOORRNNEELLLL U N I V E R S I T Y

    DESIGN FOR DESIRED MAGNETIC PROPERTYDESIGN FOR DESIRED MAGNETIC PROPERTY

    I te ra t io n I n d e x

    Nor

    mal

    ized

    obj

    ectiv

    e fu

    nctio

    n

    5 1 0 1 50

    0 .2

    0 .4

    0 .6

    0 .8

    1

    h

    Crystal direction.

    Easy direction of

    magnetization – zero power

    loss

    External magnetization direction

    0 20 40 60 80

    1.21

    1.215

    1.22

    1.225

    1.23

    1.235

    Angle from the rolling direction

    Mag

    netic

    hys

    tere

    sis

    loss

    (W/K

    g)

    Desired property distributionOptimal (reduced)Initial

    Stage: 1 Shear – 1 (α1 = 0.9745)

    Stage: 2 Tension

    (α2 = 0.4821)