52
A multiscale approach to the analysis of anisotropic plasma turbulence (Or studying turbulence wearing wavelet spectacles) Khurom Kiyani

A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

A multiscale approach to the analysis of anisotropic plasma turbulence

(Or studying turbulence wearing wavelet spectacles)

Khurom Kiyani

Page 2: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

the aim

to compute theoretically relevant statistical quantities from a turbulent

(stochastic) time-series

Page 3: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

background guide field

0 1 2 3 4 5 6 7 8 9 10

0.5

0

0.5

1

1.5

2

2.5

Page 4: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

background guide field

0 1 2 3 4 5 6 7 8 9 10

0.5

0

0.5

1

1.5

2

2.5

Page 5: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

background guide field

Page 6: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

background guide field

!! !"#! !" !$#! !$ !%#! !% !&#!!%

!&#!

!&

!'#!

'

'#!

&

&#!

%

%#!

$

()*&'+,-./-01234567

()*&'8)9-,340:%56!&7

3

3

Page 7: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

question 1

!! !"#! !" !$#! !$ !%#! !% !&#!!%

!&#!

!&

!'#!

'

'#!

&

&#!

%

%#!

$

()*&'+,-./-01234567

()*&'8)9-,340:%56!&7

3

3

Can we some how define a background field which takes all intermediate scales

into account, self-consistently?

Page 8: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

question 1

!! !"#! !" !$#! !$ !%#! !% !&#!!%

!&#!

!&

!'#!

'

'#!

&

&#!

%

%#!

$

()*&'+,-./-01234567

()*&'8)9-,340:%56!&7

3

3

Can we some how define a background field which takes all intermediate scales

into account, self-consistently?

Page 9: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

extreme time locality (Haar filter)

! " # $ % & ' ( ) * "!

+,"!&

!'!!

!%!!

!#!!

!

#!!

%!!

'!!

)!!

-./0

12-3 τ

incrementsy(t, τ) = x(t + τ)− x(t)

0.5 1 1.5 2 2.50.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

Page 10: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

extreme time locality (Haar filter)

! " # $ % & ' ( ) * "!

+,"!&

!'

!%

!#

!

#

%

'

-./0

+1-2!3

! " # $ % & ' ( ) * "!

+,"!&

!'!!

!%!!

!#!!

!

#!!

%!!

'!!

)!!

-./0

12-3 τ

incrementsy(t, τ) = x(t + τ)− x(t)

0.5 1 1.5 2 2.50.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

Page 11: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

question 2

Can we obtain the best of both worlds and live ‘well’ in the time and frequency

domains?

time (space)domain

Fourierdomain

much theory; normally coarse-grained picture

better reference to detailed physics and

structure

Page 12: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

question 2

Can we obtain the best of both worlds and live ‘well’ in the time and frequency

domains?

timedomain

Fourierdomain

Page 13: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

outline

•Discrete wavelets as band-pass digital filters

•Picking and designing an appropriate wavelet/transform

•Some results on separating anisotropic signatures in plasma turbulence in the solar wind

Page 14: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

adaptive local scale-dependent fluctuations and background guide field

background field fluctuations

smallscales

largescales

Page 15: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

fluctuationsbackground field

frequency

spec

tral

pow

erlocal scale-dependent fluctuations and background field using low/high pass filters

f1b1

Page 16: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

frequency

spec

tral

pow

er

b2 f2

local scale-dependent fluctuations and background field using low/high pass filters

f1b1

b3 f3

filter bank implementation

using quadrature mirror filters

fluctuationsbackground field

Page 17: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

discrete wavelet transform (dwt)

1 2 3 4 5 6 7 80.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80 90 10014

12

10

8

6

4

2

0

2

4

Page 18: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

discrete wavelet transform (dwt)

1 2 3 4 5 6 7 80.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80 90 10014

12

10

8

6

4

2

0

2

4

DWT steps:Leave filter as it isDecimate signal by 2

0 5 10 15 20 25 30 35 40 45 5012

10

8

6

4

2

0

2

4

Page 19: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

let’s see it working

2 1 0 1 2

8

6

4

2

0

2

log 10

PSD

((si

gnal

uni

ts)2 H

z1 )

log10 Frequency (Hz)

Page 20: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

let’s see it working

2 1 0 1 215

10

5

0

log 10

PSD

((si

gnal

uni

ts)2 H

z1 )

log10 Frequency (Hz)

Page 21: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

let’s see it working

2 1 0 1 2

15

10

5

0

log 10

PSD

((si

gnal

uni

ts)2 H

z1 )

log10 Frequency (Hz)

Page 22: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

let’s see it working

2 1 0 1 2

15

10

5

0

log 10

PSD

((si

gnal

uni

ts)2 H

z1 )

log10 Frequency (Hz)

Page 23: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

importance of zero moments

4 2 0 2 410

5

0

5lo

g 10 P

SD (s

igna

l uni

ts)2 H

z1

log10 frequency (Hz)

nr of levels = 21 wavelet is haar

Page 24: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

importance of zero moments

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 45001.5

1

0.5

0

0.5

1

1.5

Page 25: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

importance of zero moments

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n > (β − 1)/2

PSD(f) ∼ f−β

�xnψ(x)dx = 0

Page 26: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

importance of zero moments

4 2 0 2 410

5

0

5lo

g 10 P

SD (s

igna

l uni

ts)2 H

z1

log10 frequency (Hz)

nr of levels = 19 wavelet is db2

Page 27: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

importance of zero moments

0 0.5 1 1.5 2 2.5 3 3.5x 10 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 140001.5

1

0.5

0

0.5

1

1.5

2

Page 28: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

importance of zero moments

3 2 1 0 1 2 310

5

0

5lo

g 10 P

SD (s

igna

l uni

ts)2 H

z1

log10 frequency (Hz)

nr of levels = 18 wavelet is db4

Page 29: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

importance of zero moments

db4 response

0 0.5 1 1.5 2x 10 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3x 104

1

0.5

0

0.5

1

1.5

Page 30: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

importance of zero moments

2 0 2 4 6 8 10 12 14 16x 10 4

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16x 104

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

Page 31: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

choice of wavelet transform & filters

1. Self-consistent high/low pass filters [Quadrature Mirror Filters], full reconstruction -- can’t use continuous wavelets.

2. Time event preservation -- can’t use normal discrete wavelets.

3. Zero or linear phase (symmetric filters) -- for exact time localisation of events.

4. Sharp Fourier frequency resolution for studying spectra -- need higher order wavelets.

5. Time domain implementation with compact digital filters to minimise edge effects, increase time locality and reduce computational expense -- wavelet order can’t be too high; again can’t use continuous wavelets.

Page 32: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

choice of wavelet transform & filters

Solution: Undecimated discrete wavelet transform

Page 33: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

undecimated discrete wavelet transform (udwt)

1 2 3 4 5 6 7 80.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80 90 10014

12

10

8

6

4

2

0

2

4

Page 34: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

undecimated discrete wavelet transform (udwt)

1 2 3 4 5 6 7 80.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80 90 10014

12

10

8

6

4

2

0

2

4

UDWT steps:Leave signal as it isUpsample filter by 2

0 2 4 6 8 10 12 14 160.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Page 35: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

choice of wavelet transform & filters

Solution: Undecimated discrete wavelet transform

[Coiflet-2 wavelet and scaling (digital) time-domain filters ]

scaling (low-pass)

filterwavelet

(high-pass) filter

Page 36: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

choice of wavelet transform & filters

Solution: Undecimated discrete wavelet transform

[Coiflet-2 wavelet and scaling (digital) time-domain filters ]

scaling function

wavelet function

Page 37: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

choice of wavelet transform & filters

Solution: Undecimated discrete wavelet transform

[Coiflet-2 wavelet and scaling (digital) time-domain filters ]

Page 38: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

choice of wavelet transform & filters

Solution: Undecimated discrete wavelet transform

[Coiflet-2 wavelet and scaling (digital) time-domain filters ]

Page 39: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

choice of wavelet transform & filters

Solution: Undecimated discrete wavelet transform

0 0.2 0.4 0.6 0.8 10.1

0.05

0

0.05

0.1residuals

0 0.2 0.4 0.6 0.8 1

10

5

0Coif2 Phase Response

Normalized Frequency (× rad/sample)

Phas

e (ra

dian

s)

qmf(Lo D,0) [Walden] linear

Page 40: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

choice of wavelet transform & filters

Solution: Undecimated discrete wavelet transform

Rice wavelet toolbox for Matlab (C mex files)

https://github.com/ricedsp/rwthttp://dsp.rice.edu/software/rice-wavelet-toolbox

PyWavelets (Cython)

http://www.pybytes.com/pywavelets/

Page 41: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

Anisotropic plasma turbulence applications

Page 42: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

fluctuationsbackground field

frequency

spec

tral

pow

erlocal scale-dependent fluctuations and background field using low/high pass filters

f1b1

Page 43: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

frequency

spec

tral

pow

er

b2 f2

local scale-dependent fluctuations and background field using low/high pass filters

f1b1

b3 f3

filter bank implementation

using quadrature mirror filters

fluctuationsbackground field

Page 44: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

adaptive local scale-dependent fluctuations and background guide field

background field fluctuations

smallscales

largescales

Page 45: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

power spectral density

!8

!6

!4

!2

0

2

log10

PSD

[nT2 H

z!1 ]

!2 !1 0 1

!1.2!1

!0.8!0.6!0.4

log10 spacecraft frame frequency [Hz]

log10

PSD

||/PSD

!

paralleltransversesearch coil noise

isotropy

kρe � 1

kρi � 1

Kiyani et al. ApJ (2013)

!8

!6

!4

!2

0

2

log10

PSD

[nT2 H

z!1 ]

!2 !1 0 1

!1.2!1

!0.8!0.6!0.4

log10 spacecraft frame frequency [Hz]

log10

PSD

||/PSD

!

paralleltransversesearch coil noise

isotropy

Cluster FGM and STAFF search-coil

Page 46: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

angles of measurement w.r.t. B

-VSW

VA

VSW< 1MHD else

VSW< 1

k =2πfsc

VSW

Taylor frozen-in approx, for low-frequency

phenomena

Page 47: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

Anisotropy (angle between B and V)

20 30 40 50 60 70 80 90 100 110 1200

1

2

3

4

5

6

7

8

9x 10

4

B.V angle (degrees)

His

tog

ram

cou

nt

DR

IR

k Perpk oblique k oblique

Page 48: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

higher order scaling

! " #!$

!

$

%!

%$

"!

"$

&'()*)+,-+./0+/.),1/20+342-

*45%!6!,7-)0-89

*45%!6:;9 +.'2-().-)

<'.'**)*

! " #!

!="

!=#

!=>

!=?

%

%="

%=#@2).+3'*,.'25),-0'*325,)A<42)2+-

B4;)2+,;

"6;9

,

,

<'.'**)*

+.'2-().-)

!" ! "!$

!

$

%!

%$

"!

"$

C!&'()*)+,-+./0+/.),1/20+342-

*45%!6!,7-)0-89

*45%!6:;9

DE:D,-+/11

+.'2-().-)

<'.'**)*

,

,

! " #!

%

"

C

#

$F3--3<'+342,.'25),-0'*325,)A<42)2+-

B4;)2+,;

"6;9

,

,

<'.'**)*GH!=?I

+.'2-().-)GH!=J>

(a i.)

(a ii.)

(b i.)

(b ii.)note: Inertial range data is from ACE

Also see:K. H. Kiyani et al. Phys. Rev. Lett.

103, 075006 (2009)

Sm�(⊥)(τ) =

1N

N�

j=1

����δB�(⊥)(tj , τ)

√τ

����m

Structure Functions

Page 49: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

standardised probability densities

!20 0 20!7

!6

!5

!4

!3

!2

!1

0

! Bs [nT/"]log

10 P

s(! Bs )["

nT!

1 ] DissipationRange

paralleltransverse

!20 !10 0 10 20!6

!5

!4

!3

!2

!1

0

1

! Bs [nT/"]

log10

Ps(!

Bs )[" n

T!1 ]

InertialRangeparallel

transverse

!20 !10 0 10 20!7!6!5!4!3!2!1

01

! Bs [nT/"]

log10

Ps(!

Bs )[" n

T!1 ] Parallel

Fluctuationsdissipation

rangeinertialrange

!20 !10 0 10 20!7!6!5!4!3!2!1

01

! Bs [nT/"]

log10

Ps(!

Bs )[" n

T!1 ] dissipation

rangeinertialrange

TransverseFluctuations

isotropyKiyani et al.ApJ (2013)

Page 50: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

magnetic compressibility

10 2 10 1 100 10110 2

10 1

100

Normalised wavenumber k i

Mag

netic

Com

pres

sibi

lity

C||

local field 55º-65ºlocal field 65º-75ºlocal field 75º-85ºlocal field 85º-95ºglobal field

isotropy

C�(f) =1

N

N�

j=1

δB2�(tj , f)

δB2�(tj , f) + δB2

⊥(tj , f)

Kiyani et al.ApJ (2013)

Page 51: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

take home message

•Wavelets are excellent tools for studying turbulence and anisotropy

•They are especially useful for both simultaneous event localisation as well as frequency localisation

•Tried extending this to m-band wavelet packets to get better frequency resolution; but generally this is not possible. Recent work on over/undersampling is more promising.

Page 52: A multiscale approach to the analysis of anisotropic plasma turbulence · 2014-08-20 · 2. Time event preservation -- can’t use normal discrete wavelets. 3. Zero or linear phase

guides and literature

Ten Lectures on WaveletsI. Daubechies

Essential Wavelets for Statistical Applications and

Data Analysis T. Ogden

A Wavelet Tour of Signal ProcessingS. Mallat

• M. Farge et al., Wavelets and Turbulence, Proc. IEEE, 84(4), 639, (1996)• A. Walden & A. Cristan, Proc. R. Soc. Lond. A, 454, 2243 (1998)• K. Kiyani et al, ApJ, (2013)

Wavelet Methods for Time Series Analaysis

D. Percival & A. Walden