1
A Non-Aqueous Solution Synthesis of Boron Carbide by Control of In-Situ Carbon J. L. Watts a,b , Ian D. R. Mackinnon a , Peter C.Talbot a,b , and Jose A. Alarco a,b a Institute for Future Environments b Science and Engineering Faculty, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD Australia 4001 . ABSTRACT PRECURSOR ANALYSIS FORMATION OF B 4 C INTRODUCTION Synthesis of high quality boron carbide (B 4 C) powder is achieved by carbothermal reduction of boron oxide (B 2 O 3 ) from a condensed boric acid (H 3 BO 3 ) / polyvinyl acetate (PVAc) product. Precursor solutions are prepared via polymerisation of vinyl acetate (VA) in methanol in the presence of dissolved H 3 BO 3 . With excess VA monomer being removed during evaporation of the solvent, the polymerisation time is then used to manage availability of carbon for reaction. Boron carbide is used in a wide range of engineering applications due to a combination of properties including high hardness, a high resistance to chemical corrosion, a high melting point and a low specific weight. The most widely used commercial technique for producing B 4 C is the reduction of H 3 BO 3 with carbon black (referred to as the carbothermal method) at ~1750°C in electric arc furnaces. 1 The overall reaction mechanism for the carbothermal process is: 4H 3 BO 3 + 7C → B 4 C + 6CO + 6H 2 O Commercial production methods result in high amounts of undesirable residual carbon as well a course product that requires milling. Theses issues have lead research to focus on alternative lower temperature synthesis methods that result in a fine powder with less residual carbon. 2 Solution based synthesis techniques have shown promise in addressing these problems by achieving a greater degree of homogeneity between precursor components before final calcination. Specifically in this research B 4 C powders without excess carbon are formed at temperatures as low as 1250°C with a 4 hour residence time. PRECURSOR PREPARATION Dissolution of H 3 BO 3 Addition of VA monomer Polymerisation Solvent evaporation Homogeneous product Polymerisation time controls the amount of carbon available for reaction as confirmed by XRD (right). XRD pattern of a commercial sample of B 4 C (below). DSC of isolated and mixed components indicating bonding between precursors (above). SEM images of precursor powders before (A, B) and after (C) washing with hot DI water (right). ATR-FTIR spectra of precursor powder confirming the form of the boron phase (below). B 4 C PRODUCT SEM images of B 4 C formed from a 1 hour polymerisation (A) and a 19 hour polymerisation (B). Scale bars: 10 µm, inset image: 1 µm. CONCLUSION REFERENCES 1. J. Bigdeloo and A. Hadian, International Journal of Recent Trends in Engineering 2009, 1, 176-180. 2. M. Kakiage, N. Tahara, S. Yanagidani, I. Yanase and H. Kobayashi, Journal of the Ceramic Society of Japan 2011, 119, 422- 425. The developed technique realises fine, near carbon-free B 4 C powders by controlling the carbon reactant via the polymerisation time. Enhanced homogeneity of precursors is achieved without the need for excess carbon in the precursor product.

A Non-Aqueous Solution Synthesis of Boron Carbide by Control of In-Situ Carbon

Embed Size (px)

DESCRIPTION

J. L. Watts a,b , Ian D. R. Mackinnon a , Peter C.Talbot a,b , and Jose A. Alarco a,b a Institute for Future Environments b Science and Engineering Faculty, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD Australia 4001. - PowerPoint PPT Presentation

Citation preview

Page 1: A Non-Aqueous Solution Synthesis of Boron Carbide by Control  of In-Situ Carbon

A Non-Aqueous Solution Synthesis of Boron Carbide by Control

of In-Situ Carbon J. L. Wattsa,b, Ian D. R. Mackinnona, Peter C.Talbota,b, and Jose A. Alarcoa,b 

a Institute for Future Environmentsb Science and Engineering Faculty, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD Australia 4001

 

ABSTRACT PRECURSOR ANALYSIS FORMATION OF B4C

INTRODUCTION

Synthesis of high quality boron carbide (B4C) powder is achieved by carbothermal  reduction  of  boron  oxide  (B2O3)  from  a  condensed boric  acid  (H3BO3)  /  polyvinyl  acetate  (PVAc)  product.  Precursor solutions  are  prepared  via  polymerisation  of  vinyl  acetate  (VA)  in methanol  in  the  presence  of  dissolved  H3BO3.  With  excess  VA monomer  being  removed  during  evaporation  of  the  solvent,  the polymerisation  time  is  then  used  to manage  availability  of  carbon for reaction. 

Boron  carbide  is  used  in  a wide  range  of  engineering  applications due to a combination of properties including high hardness, a high resistance  to  chemical  corrosion,  a  high  melting  point  and  a  low specific  weight.  The  most  widely  used  commercial  technique  for producing B4C is the reduction of H3BO3 with carbon black (referred to as the carbothermal method) at ~1750°C in electric arc furnaces.1 The overall reaction mechanism for the carbothermal process is:

4H3BO3 + 7C → B4C + 6CO + 6H2O

Commercial  production  methods  result  in  high  amounts  of undesirable  residual  carbon as well  a  course product  that  requires milling.  Theses  issues  have  lead  research  to  focus  on  alternative lower  temperature  synthesis methods  that  result  in a fine powder with less residual carbon.2 Solution based synthesis techniques have shown promise in addressing these problems by achieving a greater degree of homogeneity between precursor components before final calcination. Specifically in this research B4C powders without excess carbon are formed at temperatures as low as 1250°C with a 4 hour residence time.

PRECURSOR PREPARATION

Dissolution of H3BO3 Addition of VA monomer Polymerisation Solvent evaporation Homogeneous product

Polymerisation  time  controls the  amount  of  carbon available  for  reaction  as confirmed by XRD (right). XRD pattern  of  a  commercial sample of B4C (below).

DSC  of  isolated  and  mixed components  indicating  bonding between  precursors  (above).  SEM images of precursor powders before (A, B) and after (C) washing with hot DI water (right). ATR-FTIR spectra of precursor  powder  confirming  the form of the boron phase (below).

B4C PRODUCT

SEM images of B4C formed from a 1 hour polymerisation (A) and a 19 hour polymerisation (B). Scale bars: 10 µm, inset image: 1 µm.

CONCLUSION

REFERENCES1. J. Bigdeloo and A. Hadian, International Journal of Recent Trends in Engineering 2009, 1, 

176-180.2. M. Kakiage, N. Tahara, S. Yanagidani, I. Yanase and H. Kobayashi, Journal of the Ceramic

Society of Japan 2011, 119, 422-425.

The  developed  technique  realises  fine,  near  carbon-free  B4C powders by  controlling  the  carbon  reactant  via  the polymerisation time. Enhanced homogeneity of precursors is achieved without the need for excess carbon in the precursor product.