47
A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari, A. Mairani, S. Muraro, R. Nicolini, P. Ortega, K. Parodi, V. Patera, P. Sala, V. Vlachoudis (and others)

A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Embed Size (px)

Citation preview

Page 1: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

A review of FLUKA applications for medical physics

G. Battistoni, INFN Milano

Contributions of:T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari, A. Mairani, S. Muraro, R. Nicolini, P. Ortega, K. Parodi, V. Patera, P. Sala, V. Vlachoudis (and others)

Page 2: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

FLUKA

Developed and maintained under an INFN-CERN agreement Copyright 1989-2013 CERN and INFN

http://www.fluka.org

Main authors: A. Fassò, A. Ferrari, J. Ranft, P.R. Sala

Contributing authors: G. Battistoni, F. Cerutti, M. Chin, T. Empl, M.V. Garzelli, M. Lantz, A. Mairani, V. Patera, S. Roesler, G. Smirnov,

F. Sommerer, V. Vlachoudis

>5000 users

Page 3: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

The FLUKA International Collaboration

M. Brugger, M. Calviani, F. Cerutti, M. Chin, Alfredo Ferrari, P. Garcia Ortega, A. Lechner, C. Mancini-Terracciano, M. Magistris, A. Mereghetti, S. Roesler, G. Smirnov, C. Theis, Heinz Vincke,

Helmut Vincke, V. Vlachoudis, J.Vollaire, CERN

G. Kharashvili, Jefferson Lab, USA J. Ranft, Univ. of Siegen, Germany

G. Battistoni, F. Broggi, M. Campanella, F. Cappucci, E. Gadioli, S. Muraro, R. Nicolini, P.R. Sala, INFN & Univ. Milano, Italy

L. Sarchiapone, INFN Legnaro, Italy G. Brunetti, A. Margiotta, M. Sioli, INFN & Univ. Bologna, Italy

V. Patera, INFN Frascati & Univ. Roma Sapienza, Italy

M. Pelliccioni, INFN Frascati & CNAO, Pavia, Italy A. Mairani, CNAO Pavia, Italy

M. Santana, SLAC, USA M.C. Morone, Univ. Roma II, Italy

K. Parodi, I. Rinaldi, LMU Munich, Germany

L. Lari, Univ. of Valencia, Spain A. Empl, L. Pinsky, B. Reddell, Univ. of Houston, USA M. Nozar, TRIUMF, Canada

V. Boccone, Univ. of Geneva, Switzerland K.T. Lee, T. Wilson, N. Zapp, NASA-Houston, USA

T. Boehlen, S. Rollet, AIT, Austria

A. Fassò, R. Versaci, ELI-Beamlines, Prague, CR M. Lantz, Uppsala Univ., Sweden

S. Trovati, PSI, Switzerland P. Colleoni, Ospedali Riuniti di Bergamo, Italy

M.V. Garzelli, Nova Gorica Univ., Slovenia Anna Ferrari, S. Mueller HZDR Rossendorf, Germany

Page 4: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

The Physics Content of FLUKA

60 different particles + Heavy Ions Nucleus-nucleus interactions from Coulomb barrier up to 10000

TeV/n Electron and μ interactions 1 keV – 10000 TeV Photon interactions 100 eV - 10000 TeV Hadron-hadron and hadron-nucleus interactions 0–10000 TeV Neutrino interactions Charged particle transport including all relevant processes Transport in magnetic fields Neutron multigroup transport and interactions 0 – 20 MeV Analog calculations, or with variance reduction

Page 5: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

FLUKA Applications

Cosmic ray physics Neutrino physics Accelerator design ( n_ToF, CNGS, LHC systems) Particle physics: calorimetry, tracking and detector simulation etc. ( ALICE, ICARUS, ...) ADS systems, waste transmutation, (”Energy amplifier”, FEAT, TARC,…) Shielding design Dosimetry and radioprotection Radiation damage Space radiation Hadron therapy Neutronics

Regions of high losses(e.g., Collimators,…)

ATLAS

Regions with low losses(e.g., due to residual gas)

The LHCLoss Regions

Point 1

Point 2

Point 3.2

Point 3.3

Point 4 Point 5

Point 6

Point 7

Point 8

ALICE

LHCb

MomentunCleaning

RF CMS

LHC Dump

BetatronCleaning

Page 6: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Application for medicine: some examples

• Nuclear Medicineo Dosimetry

• Radiotherapyo Simulation of therapy devices o Check of treaments

• Hadrontherapyo Commissioning of facilitieso Treatment planning and forward checkso Predictions for monitoring applications (imaging for

hadrontherapy)o Design of instruments, dosimetryo Calculation for shielding and rad. protection in facilities

Page 7: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

The FLUKA voxel geometry

7

anthropomorphic phantom

Now available the official ICRP Human PhantomICRP Publication 110: Adult Reference Computational Phantoms -

Annals of the ICPR Volume 39 Issue 2

It is possible to describe a geometry in terms of “voxels”, i.e., tiny parallelepipeds (all of equal size) forming a 3-dimensional grid

You can importa CT scan to a FLUKA Voxel Geometry

Page 8: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

CT stoichiometric calibration

CT segmentation into 27 materials of defined elemental composition (from analysis of 71 human CT scans)

Soft tissue

Air, Lung,Adipose tissue

Skeletal tissue

Schneider et al PMB 45, 2000

Page 9: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

CT stoichiometric calibration (II)Assign to each material a “nominal mean density”, e.g. using the

density at the center of each HU interval (Jiang et al, MP 2004)

Schneider et al PMB 45, 2000

But “real density” (and related physical quantities) varies continuously with HU value: a HU-dependent correction on density on each voxel is applied

Page 10: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Application in nuclear medicine

FLUKA contains data about decaying schemes of radioactive isotopes, allowing to select an isotope as radiation source. Complete databases are generated from the data collected from National Nuclear Data Center (NNDC) at Brookhaven National Laboratory.

Radioactive source decay

Page 11: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Application in nuclear medicineCalculation of absorbed dose at voxel level starting from 3D images

of activity distribution (SPECT, PET images)

Simulated 99Tc-SPECT of water phantoms (SIMIND code):

Dose calculation: Cylinder + spheres filled with 90Y

Simulations in homogeneous water

# 1 # 2

Page 12: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

SPECT/PET - CT images handling

VOXELDosimetry

MONTE CARLO109 particles

DOSE Maps

With 109 particles simulated, FLUKA and VOXEL DOSIMETRY (a standard analytic procedure in nuclear medicine) results in water agree within 5%

Collaboration INFN and IEO

Page 13: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,
Page 14: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Applications in radiotherapy

IORT

Page 15: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Simulation of a Linac for RadioTherapy

15

Page 16: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

6 MeV Accelerator –photon fluence

Page 17: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Dosimetric validation

Page 18: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

The Leksell Gamma Knife Perfexion (LGK-PFX) is a 60Co based medical device, manufactured by Elekta AB Instruments Stockholm, Sweden. The It is emplyed in the cure of different brain pathologies: small brain and spinal

cord tumors (benign and malignant), blood vessel abnormalities, as well as neurologic problems can be fully treated.

Fabrizio CappucciINFN, Milan.

The Leksell Gamma Knife Perfexion:

Page 19: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

The ionizing gamma radiation is emitted from 192 60Co sources (average activity ~1TBq each).

The sources are arranged on 8 identical sectors of 24 elements.

The sectors can be placed in correspondence of three different collimation set able to focus the gamma rays on a common spot, called the isocenter of the field, having a radial dimension of about 4, 8 and 16 mm respectively.

Fabrizio CappucciINFN, Milan.

The Leksell Gamma Knife Perfexion:

Page 20: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Protective shield; LEAD.

Collimator channels;TUNGSTEN.

Isocenter of the field.

Radiative sources encapsulated in stainless steel

bushings.

Gammex 457 Solid Water

Fabrizio CappucciINFN, Milan.

Geometry Modelization: Materials

~ 1350 bodies

Thanks to the collaboration with ELEKTA, which provided, under a confidential agreement the detail of the geometry and all the involved material, has been possible to implement an accurate model for the radiation unit.

Page 21: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Metallic bushing.

60Co cylindrical pellets of 1 mm in diameter and 1 mm in length.

The β- electron (average energy of about 315 keV) is supposed to be absorbed from the source or the bushing itself, therefore, each MC primary history is composed only by the two photons.

Fabrizio CappucciINFN, Milan.

Source Modeling: Geometry and materials

Page 22: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Relative dose distribution:

Page 23: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

All within acceptance threshold as derived from the Report of the American Association of Physicists in Medicine for stereotactic radiosurgery

16mm X profile

8mm Y profile

4mm Z profile

Relative dose profiles

Page 24: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

We have investigated the relative linear dose distribution along the three coordinated axes. Monte Carlo results have been compared with standard treatment planning provided by Elekta in the same homogeneous conditions of the target. 4∙109 primary histories (total calculation time of about 20h on 26 nodes) have been performed for each simulation.

Results:

Page 25: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Δ is the percentage difference between the results from Monte Carlo calculation and the Elekta values: 100% · 1-

FLUKA

ELEKTA

OF

OF

Collimator size

ElektaROF

FLUKAROF

MC Statistical

Error∆

8 mm 0.924 0.920 0.88% 0.43%

4 mm 0.805 0.800 0.92% 0.63%

Relative Output Factors (ROF):

ROFs are the ratio between the dose given by a set of collimators and the dose given by the largest collimators, i.e. the 16 mm.

Page 26: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Applications in hadrotherapy

Page 27: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Recent Physics Developments

27CERN, 10 Jan 2013

Accurate stopping power calculation with all relevant high order corrections

Continuous development Interactions of hadrons and nuclei from few tens MeV/u to several hundreds/MeV/u

Refiniment of nuclear models for de-excitation, production of relevant isotopes, see P.Sala Varenna 2012, Proc. of int. conf. on Nuclear Reaction Mechanisms.

All e.m. physics important for gamma imaging: Compton and annihilation on bound electrons see JINST 2012 JINST 7 P07018 doi:10.1088/1748-0221/7/07/P07018

Other work in progress: interactions of He and light ions…

Page 28: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Present application of MC calculationsin hadron therapy

• Commissioning of infrastructures

• Commissioning of Treatment Planning System (TPS in the following) (Heidelberg, CNAO)

• Calculation of input physics databases (for example: the case of TPS developed within the INFN-IBA collaboration)

• Check of TP predictions (and possibly provide corrections)

• Calculation of secondary particle production

• Data analysis in dosimetry experiments

Page 29: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Example: use of FLUKA @CNAO to provide input databases

Required parameters 147 Energy steps (30-320 mm)

1 Focus size @ ISO

Beam delivery

Scanning with active energy variation

FLUKA calculated FWHM at the isocentre as function of the proton beam energy

CNAO Med Phys Group

S. Molinelli et. al.Phys. Med. Biol. 58 (2013) 3837

Page 30: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Use of FLUKA @CNAO to provide input databases

FLUKA calculated depth-dose distribution in water

S. Molinelli et. al.Phys. Med. Biol. 58 (2013) 3837

Page 31: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Dosimetric checks

Page 32: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

FLUKA recalculation of a patient PLAN

• Capability to import a CT scan to build 3D voxel geometry• Capability to assigm materials and composition according to HU numbers from CT

scan (now automatic!)• Capability of coupling to radiobiological models based on Dual

Radiation Approach Theory Calculation of RBE-weighted dose (DRBE)

Page 33: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Treatment planning and Monte Carlo

• Currently treatment planning for hadron therapy are commonly based on fast analytic dose engines using Pencil Beam algorithms.

• MC calculation of doses and fluences are superior in accuracy because they take into account heterogeneities, large densities, geometry details. They can predict secondary particle production. However they require much longer execution times…

Page 34: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Towards a new TPS approach based on MC

• Can we build a TPS using the accuracy achievable by a detailed MC calculation?

• to explore the possibility of a treatment planning which overcomes the “water-equivalent” approach

• to take into account all details about geometry and materials

• which can be applied to realistic treatment conditions with acceptable CPU time

• That can be applied in planning for ions with 1<Z<8: today’s talk will be focused on protons only

An integrated MC+optimization tool:

Page 35: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Components and program flow

Page 36: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

A 3-port chordoma case

The Syngo TPS prescription

MC fw simutation of TPS prescription

Result of our MCOptimization

A. Mairani et al. PMB 58 (2013) 2471

Page 37: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

QA in hadrontherapy

Use of detection of b+ activity (PET) or of prompt g’s (or charged particle) produced in the patient. MC is the only possible tool to achieve a reliable prediction of the observables.

In the literature: • Potentiality of FLUKA: F. Sommerer et al Phys. Med. Biol. 54 2009• K. Parodi et al. pioneered the application of PET as a tool to check

hadrontherapy treatments comparing measurements with FLUKA• Work going on to achieve a true “in-beam” application of the technique to

minimize problems such as metabolic washout

Page 38: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

The case for prompt g (nuclear de-excitation)

• Large flux, maybe enough stats for in-beam

• Collimation like Anger camera in SPECT

• Well known technique, robust, compact• Wide g energy

spectrum careful design

• Neutron background rejection? TOF not so easy to exploit.

• Collimation reduces stats

Page 39: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

ENVISION WP6, June 2013 39

GANIL: 90 deg photon yields by 95 MeV/n 12C in PMMA

Blue: FlukaRed: dataGreen: dose profileP

hoto

n y

ield

[sketch and exp. data taken from F. Le Foulher et al IEEE TNS 57 (2009), E. Testa et al, NIMB 267 (2009) 993. exp. data have been reevaluated in 2012 with substantial corrections]

E> 2 MeV, within few ns from spill

Z (mm)

Page 40: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

NaI detector

PMMAtarget

Pb Collimator

Schematic layout(dimensions mm) from J.Smeets et al., IBA

Photon yields by 160 MeV p in PMMA: final

Page 41: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Photon yields by 160 MeV p in PMMA: final

Energy spectrum of “photons” after background subtraction (collimator open – collimator closed) for 160 MeV p on PMMA. FLUKA red line (with exp. resolution folded in), data black line (J.Smeets et al., IBA, ENVISION WP3)

Absolute comparison

Page 42: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Univ. Pisa, Roma, Torino and INFN Project in collab. with CNAO

• Agreement with CNAO to build a Full in-beam (full-beam) PET system able to sustain annihilation and prompt photon rates during the beam irradiation.

• FLUKA strongly used for the design

Page 43: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

[email protected]

Dicom sets

Slices

Slice Information

The FLUKA interface: importing DICOM files

Page 44: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

2D projections

3D

Page 45: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

FLUKA interface: superimposing results to CT images

Dose2 Beams b+ Activity

1 Beam

g g Emission Map1 Beam

Page 46: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

New tool for PET detector simulation

Generation of PET scanner geometry and management of FLUKA output and signal reconstruction

Page 47: A review of FLUKA applications for medical physics G. Battistoni, INFN Milano Contributions of: T.T. Böhlen, F. Cappucci, P. Colleoni, M. Chin, A. Ferrari,

Development of new facilities

The TOP-IMPLART Project

Usingf a linac for proton-therapy:Introduction of the use of FLUKA in shielding calculation (S. Muraro)