A Study on Remaining Useful Life Prediction for Prognostic Applic

Embed Size (px)

Citation preview

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    1/30

    University of New Orleans

    ScholarWorks@UNO

    University of New Orleans Theses andDissertations

    Dissertations and Theses

    8-4-2011

    A Study on Remaining Useful Life Prediction forPrognostic Applications

    Gang LiuUniversity of New Orleans, [email protected]

    This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UNO. It has been accepted for inclusion in

    University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact

    [email protected].

    Recommended CitationLiu, Gang, "A Study on Remaining Useful Life Prediction for Prognostic Applications" (2011). University of New Orleans Theses andDissertations. Paper 456.http://scholarworks.uno.edu/td/456

    http://scholarworks.uno.edu/http://scholarworks.uno.edu/tdhttp://scholarworks.uno.edu/tdhttp://scholarworks.uno.edu/etdsmailto:[email protected]:[email protected]://scholarworks.uno.edu/etdshttp://scholarworks.uno.edu/tdhttp://scholarworks.uno.edu/tdhttp://scholarworks.uno.edu/
  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    2/30

    AStudyonRemainingUsefulLifePredictionforPrognosticApplications

    AThesis

    SubmittedtotheGraduateFacultyofthe

    UniversityofNewOrleans

    inpartialfulfillmentofthe

    requirementsforthedegreeof

    MasterofScience

    In

    Engineering

    ElectricalEngineering

    by

    GangLiu

    M.S.DonghuaUniversity,2004

    M.S.UniversityofNewOrleans,2011

    August,2011

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    3/30

    ii

    Copyright2011,GangLiu

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    4/30

    iii

    AcknowledgementFirst,Iwouldliketothankmythesisadvisor,Dr.HuiminChen,forhispatienceand

    mentoring. Hedevotedhimselffullyintoacademicteachingandresearch.Heismorethan

    willingtohelpmeoutevenathisbusiestperiod. NomatterhowlateIsendmywritingtohim,

    healwaysrepliesinaverypromptmanner.Hecultivatedmytechnicalwritingskillsandledme

    throughtheacademicresearchworld.Hehiredmeasresearchassistantandintroducedmeto

    theresearchcommunity,suchasPrognosticCenterofExcellenceatNASAAmesResearch

    CenterandPHMsociety.Thankyouforsteeringmeintherightdirectionandthankyoufor

    yourhelpinpasttwoyears.

    Thankyou,Dr.X.RongLi,Dr.VesselinPJilkov,forservingthethesiscommittee,

    teachingmestatisticscourses,hostingtheISLseminarandgraduateseminar.Youguidedme

    therightwayandbestwayofgeneralresearchandprovidedmevaluablecommentstomy

    works.

    Iwanttoexpressmylovetomywife,XiaolanZhou,whodidmorethanhershare

    aroundthehouseasIsatatthecomputer.Withouthersupportandgentlepushing,Iwouldstill

    behangingaroundmyhometown.Ialsowanttothankmyparents.Withouttheirpatience,

    understanding,support,thecompletionofthisworkwouldnothavebeenpossible.

    IwanttoexpressmythanktoDr.KaiGoebel,Dr.SahaBhaskar,Dr.SaxenaAbhinavand

    otherresearchersatPrognosticCenterofExcellenceinNASAAmesResearchCenter.Duringthe

    sitevisit,theygavemeatouroftheirtestplatformsandsharedtheirthoughtsintheprognostic

    field.Dr.KaireviewedmyPHMdatachallengecompetitionalgorithmandprovidedvaluable

    suggestions.

    Iamgratefultothefundingagencies:LouisianaBoardofRegents(LINKSwithIndustry,

    ResearchCenters,andNationalLabs LINK)andNASA(EPSCoRDART2).Ialsowanttothank

    theGraduateSchoolofUniversityofNewOrleans,andtheOfficeofResearchandSponsored

    Programsfor

    providing

    the

    supplemental

    fund

    through

    the

    masters

    Thesis

    Improvement

    Grant

    (TIG),whichsupportedthedevelopmentofUNObatterytestplatform.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    5/30

    iv

    TableofContents

    ListofFigures.................................................................................................................................. vi

    Abstract.......................................................................................................................................... vii

    1 Introduction............................................................................................................................. 1

    1.1 Motivation........................................................................................................................ 1

    1.2 PrognosticsandHealthManagement.............................................................................. 2

    1.2.1 DataDrivenPrognostics........................................................................................... 3

    1.2.2 Modelbasedprognostics......................................................................................... 3

    1.2.3 Hybridapproaches.................................................................................................... 3

    1.3 ApplicationFields............................................................................................................. 3

    1.3.1 LithiumionBatteries................................................................................................ 4

    1.3.2 MillingMachineCutters............................................................................................ 5

    1.4 PreviousResearches......................................................................................................... 5

    1.4.1 EarlyBatteryResearches.......................................................................................... 5

    1.4.2 NASA AmesResearchCenter................................................................................... 6

    1.4.3 ResearchesforMillingMachineCutterPrediction...................................................6

    1.5 Prognosticsapplicationenvironmentandsetup.............................................................6

    1.5.1 NASAAmesResearchCenterBatteryTestbed.........................................................6

    1.5.2 2010PHMDataChallengeCompetition................................................................... 7

    2 ProblemDefinition.................................................................................................................. 7

    2.1 GeneralPrognosticProblemFormulation....................................................................... 7

    2.2 LithiumIonBatteryModel............................................................................................... 8

    2.3 LithiumIonBatteryKeyParameters................................................................................ 8

    2.3.1 OpenCircuitVoltage(OCV)....................................................................................... 8

    2.3.2 ChargeandDischargeCapacity.................................................................................8

    2.4 MillingMachineCutterKeyParameters.......................................................................... 9

    3 ApplyLinearRegressiontoPrognostic.................................................................................... 9

    3.1 UseEstimatedRemainingCapacityastheRegressor......................................................9

    3.2 RegressiontoEstimateEndofChargeTime................................................................. 10

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    6/30

    v

    3.3 RegressionResultonNASAbatterydata....................................................................... 11

    4 UNOBatteryTestPlatform.................................................................................................... 13

    4.1 Motivationofbuildingthetestplatform....................................................................... 13

    4.2 Testcapabilities.............................................................................................................. 13

    4.3 TestSetup....................................................................................................................... 14

    4.3.1 VoltageControlCurrentServo................................................................................ 14

    4.3.2 ConstantCurrentandConstantVoltageChargerCircuit........................................15

    4.3.3 ImpedanceMeasurementDuringDischargeCycle................................................15

    4.4 TestProcedures.............................................................................................................. 16

    5 ConclusionsandFutureWork............................................................................................... 16

    5.1 Conclusions..................................................................................................................... 16

    5.2 FutureWork................................................................................................................... 17

    Appendices.................................................................................................................................... 20

    A1. NASATestBedCircuit.................................................................................................... 20

    A2. TestBatterySpecification.............................................................................................. 20

    VITA............................................................................................................................................... 22

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    7/30

    vi

    ListofFiguresFigure1 BatteryEnergyDensityComparison.............................................................................. 4

    Figure2 CuttingToolCoordinates................................................................................................ 7

    Figure3 SimplifiedBatteryModel................................................................................................ 8

    Figure4 BatteryDischargePlot.................................................................................................. 10

    Figure5 PredictiononSyntheticData........................................................................................ 11

    Figure6 BatteryB0005PredictionResult................................................................................... 11

    Figure7 RULerrorat2000sectoend........................................................................................ 12

    Figure8 RULerrorat500sectoend.......................................................................................... 12

    Figure9 RULerrorat100secondstoend.................................................................................. 13

    Figure10 UNOBatteryTestPlatform......................................................................................... 14

    Figure11 VoltageControlCurrentServo.................................................................................... 15

    Figure12

    Constant

    Current

    and

    Constant

    Voltage

    Charger

    Circuit

    ...........................................

    15

    Figure13 NASAAmesPCoEBatteryTestbed............................................................................. 20

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    8/30

    vii

    AbstractWeconsiderthepredictionalgorithmandperformanceevaluationforprognosticsand

    healthmanagement(PHM)problems,especiallythepredictionofremainingusefullife(RUL)for

    themillingmachinecutterandlithiumionbattery.Wemodeledbatteryasavoltagesourceand

    internalresisters.Byanalyzingvoltagechangetrendduringdischarge,wemadetheprediction

    ofbatteryremaindischargetimeinonedischargecycle.Byanalyzinginternalresistancechange

    trendduringmultiplecycles,wewereabletopredictthebatteryremainingusefultimeduring

    itslifetime.WeshowedthatthebatteryrestprofileiscorrelatedwiththeRUL.Numerical

    resultsusingtherealisticbatteryagingdatafromNASAprognosticsdatarepositoryyielded

    satisfactoryperformanceforbatteryprognosisasmeasuredbycertainperformancemetrics.

    Webuiltabatterytestplatformandsimulatedmoreusagepatternandverifiedtheprediction

    algorithm.Prognosticperformancemetricswereusedtocomparedifferentalgorithms.

    PrognosticsandHealthManagement,RemainingUsefulLife,LithiumionBattery,Linear

    Regression

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    9/30

    1

    1 IntroductionWestudyprognosticandhealthmanagementproblemsrelatedtoremainingusefullife

    predictionofmissioncriticalcomponentssuchasalithiumionbatterystateofchargeandstate

    oflifeandmillingmachinecutterusablecycles.Weimplementedlinearregressionmethods

    andevaluatedthepredictionperformance.Abatterytestplatformissetuptoenablefurther

    prognosticstudies.Wethinkneitherpurelydatadrivennorpurelymodelbasedapproaches

    wouldworkwellinreality.Atmostcaseswhennogroundtruthisavailableandlackofrunto

    failuredata,withthemodelknowledgeandselectivelyprocesscollecteddata,thehybrid

    approachworksbest,asfarasthepredictionaccuracyandspeedareconcerned.

    Chapter1introducesthemotivationofthework,thebackgroundofprognosticresearch

    statusand

    typical

    approaches,

    brief

    lithium

    ion

    battery

    and

    milling

    machine

    cutter

    knowledge,

    previousresearchesandcommercialvalueoftheprognosticproblems.

    Chapter2formulatesgeneralprognosticproblemanddefinethekeyapplication

    parameters.Lithiumionbatteryexternalandinternalkeyindicesaredescribedandmilling

    machinecutterfeaturesarelisted.

    InChapter3,wemodeledlithiumionbatteryopencircuitvoltage(OCV)andevaluated

    themodelfittingresidues.Batterystateofcharge(SOC)andstateofhealth(SOH)estimation

    andpredictionaregiven.Linearregressionisusedtomakepredictionwithconfidenceinterval.

    Chapter4describesthenewbatterytestplatforminUniversityofNewOrleans.Ithas

    theglobaldiagramandkeycircuitdesigns.

    Conclusionsandfutureworkarepresentedinchapter5.Itincludesthefindingsof

    batterymodelandapplicationlessonlearnregardinglinearregressionmethod.Thenewtest

    platformcanbefurtherdevelopedandasateachingresourceforUniversityofNewOrleans.

    1.1 MotivationMyresearchinterestforprognosticsstartsfromthedailyuseofbattery.Inmanybattery

    applications,how

    to

    detect

    good

    batteries

    from

    bad

    ones

    is

    always

    ahot

    topic.

    For

    example

    someAAbatteriesonaWalkmancanlastfortensofhoursbutsomearelessthanhalfhour.

    Somebatteriesaregoodforremotecontrollerbutnotforflashlight.ToevaluateAAbattery

    remainingenergy,someusesopencircuitvoltagewhilesomeusesshortcircuitcurrent.People

    haveexperiencesthatlaptopmeterworksbetterfornewbatteries.Whenbatterygettingold,

    orwhenusinglaptopinoutdoorcoldtemperature,laptopmaydielongbeforethepredicted

    time.AlltheseexperiencesdroveourcuriosityhigherandhigherandsoIchoosetoresearchon

    statisticalfaultprognostics.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    10/30

    2

    Prognosticisveryimportanttoindustrialusagenowadays.Growingdemandfor

    improvingthereliabilityandsurvivabilityofsafetycriticalaerospacesystemshasledtothe

    developmentof

    PHM.

    Instead

    of

    passively

    react

    to

    fault

    symptoms

    with

    limited

    fault

    tolerant

    capability,aPHMsystemshouldpredictfailuresactivelyandreconfigurecontrolactionssothat

    stabilityandacceptableperformanceoftheentiresystemcanbemaintained.Theemergence

    andsuccessfulapplicationsofPHMtechnologyoverthelastdecade,especiallythe

    developmentofonlineprognosistechniques,gaverisetoproactivefaulttolerancecontrol

    system,whichisplayingmoreandmoreimportantroleindeepspaceexploringandmilitary

    weapons.Asalltechnologydevelopmentwouldeventuallyservepublicinciviliandevices,so

    theprognosticresearchhasgreatcommercialvalueaswell.

    InInformationandSystemLab(ISL),ElectricalEngineeringdepartmentofUniversityof

    NewOrleans,

    we

    use

    statistical

    inference

    methods

    on

    target

    tracking

    and

    signal

    estimation.

    Statisticalfaultprognosticisnaturallybecomeourinterest.In2009,LouisianaBoardofRegents

    setuptheNASAEPSCoRDART2funding,forLouisianauniversitiestoapproachindustrial

    groups.In2010programLINKlinksUNOwithindustry,researchcenters,andnationallabs.

    Alsothisfieldisdifferentfromtraditionalreliabilityfieldanditisunderdeveloping.The

    mathematicalfoundationisnotyetsolid.Henceitwasagreatopportunitywegotintothe

    prognosticresearchfield.

    ThePHMsocietyorganizesadatachallengesessionannually,whichprovidesanarenafor

    allprognostic

    algorithms

    to

    compete

    in

    real

    applications.

    In

    year

    2010

    the

    data

    challenge

    focusedonRULestimationforcuttersfromahighspeedComputerNumericalControl(CNC)

    millingmachineusingdynamometer,accelerometer,andacousticemissiondata.Both

    professionalandstudentparticipantsneededtosubmitestimatedmaximumsafecutcyclesfor

    givenwear.IjoinedthedatachallengecompetitionandIwon1stprizeinstudentcategory.It

    gavemegreatconfidencethatinUniversityofNewOrleanscandoverywellintheprognostic

    researchfield.

    1.2 PrognosticsandHealthManagementThere

    is

    no

    agreed

    definition

    of

    PHM

    yet.

    On

    Wikipedia,

    the

    definition

    is

    Prognostics

    is

    anengineeringdisciplinefocusedonpredictingthetimeatwhichacomponentwillnolonger

    performaparticularfunction.Thepredictedtimeisdefinedastheremainingusefullife(RUL).

    Thescienceofprognosticsisbasedontheanalysisoffailuremodes,detectionofearlysignsof

    wearandaging,andfaultconditions.Thedisciplinethatlinksstudiesoffailuremechanismsto

    systemlifecyclemanagementisoftenreferredtoasprognosticsandhealthmanagement

    (PHM).Technicalapproachestobuildingmodelsinprognosticscanbecategorizedintodata

    drivenapproaches,modelbasedapproaches,andhybridapproaches.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    11/30

    3

    1.2.1 DataDrivenPrognosticsDatadriventechniquesutilizemonitoredoperationaldatarelatedtosystemhealth.

    Datadriven

    approaches

    are

    appropriate

    when

    the

    understanding

    of

    first

    principles

    of

    system

    operationisnotcomprehensiveorwhenthesystemissufficientlycomplexthatdevelopingan

    accuratemodelisprohibitivelyexpensive.Themethodmodelscumulativedamageandthen

    extrapolatingouttoadamagethreshold.

    However,aprincipalbottleneckisthedifficultyinobtainingruntofailuredata,in

    particularfornewsystems,expensivesystemsandhumaninvolvedsystems,sincerunning

    systemstofailurecanbealengthy,rathercostlyanddangerprocess.Thesedatasourcesmay

    includetemperature,pressure,oildebris,currents,voltages,power,vibrationandacoustic

    signal,spectrometricdataaswellascalibrationandcalorimetricdata.Featuresmustbe

    extractedhighdimensionaldata.

    1.2.2 ModelbasedprognosticsModelingphysicscanbeaccomplishedatmicroandmacrolevels.Atthemicrolevel,

    physicalmodelsareembodiedbyseriesofdynamicequationsthatdefinerelationships,ata

    giventimeorloadcycle,betweendamageofasystem/componentandenvironmentaland

    operationalconditionsunderwhichthesystem/componentareoperated.Themicrolevel

    modelsareoftenreferredasdamagepropagationmodel.Macrolevelmodelsarethe

    mathematicalmodelatsystemlevel,whichdefinestherelationshipamongsysteminput

    variables,systemstatevariables,andsystemmeasuresvariables/outputswherethemodelis

    oftenasomewhatsimplifiedrepresentationofthesystem.Theresultingsimplificationsneedto

    beaccountedforbytheuncertaintymanagement.

    1.2.3 HybridapproachesHybridapproachesattempttoleveragethestrengthfrombothdatadrivenapproaches

    aswellasmodelbasedapproaches.Agoodexamplefortheformerwouldbewheremodel

    parametersaretunedusingfielddata.Abadexampleforthelatteriswhenthesetpoint,bias,

    ornormalizationfactorforadatadrivenapproachisgivenbymodels.

    1.3 ApplicationFieldsInthisresearch,weimplementedourprognosticalgorithmsonlithiumionbatteriesand

    millingmachinecutters.TheLithiumionbatterywaschosenbecauseitissopopulararoundthe

    world.Wheneveruselaptopcomputeronbattery,peopleunderstandthebatteryremaining

    usefullifeterms.Alsothetestsetupisrelativelyeasyandaccurate.Runtofailuredatais

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    12/30

    4

    inexpensive.Inordertodescribeourresearchapplications,itisnecessarytointroducethebasis

    ofthesetwofields.

    1.3.1 LithiumionBatteriesIn1912,G.N.Lewisbeganpioneeringworkonthelithiumbattery.Thenon

    rechargeableversioniscommerciallyavailableattheearly1970s.Howeverthelithium

    batterieshavefacedabigsetbackduetoissuesinvolvingsafety.Becauseoftheinstabilityof

    lithiummetalduringcharging,researcheffortsshiftedtoanonmetalliclithiumbatteryusing

    lithiumions.Attemptstodeveloprechargeablelithiumbatteriesfollowedinthe1980sbutthe

    endeavorfailedbecauseofinstabilitiesinthemetalliclithiumusedasanodematerial.In1991,

    theSonyCorporationcommercializedthefirstlithiumionbattery.

    Theinstability

    of

    lithium

    metal

    shifted

    research

    to

    anon

    metallic

    solution

    using

    lithium

    ions.Althoughlowerinspecificenergythanlithiummetal,Lithiumionissafe.Batterypackers

    usuallyputaprotectionchipinsidebatterycelltokeepvoltageandcurrentstosecurelevels.

    AfterSonycommercializedthefirstLiionbattery,thischemistryhasbecomethemost

    promisingandfastestgrowingonthemarket.

    Figure1 BatteryEnergyDensityComparison

    ThespecificenergyofLiionistwicethatofNiCdandthehighnominalcellvoltageof

    3.6Vascomparedto1.2Vfornickelsystemscontributestothisgain.Improvementsinthe

    activematerialsoftheelectrodehavethepotentialoffurtherincreasesinenergydensity.The

    loadcharacteristicsaregood,andtheflatdischargecurveofferseffectiveutilizationofthe

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    13/30

    5

    storedenergyinadesirablevoltagespectrumof3.70to2.80V/cell.Nickelbasedbatteriesalso

    haveaflatdischargecurvethatrangesfrom1.25to1.0V/cell.

    In1994,thecosttomanufactureLiioninthe18650cylindricalcellwithacapacityof

    1100mAhwasmorethan$10.In2001,thepricedroppedto$2andthecapacityroseto1900

    mAh.Today,highenergydense18650cellsdeliverover3000mAhandthecostshavedropped

    further.Costreduction,increaseinspecificenergyandtheabsenceoftoxicmaterialpavedthe

    roadtomakeLiiontheuniversallyacceptedbatteryforportableapplication,firstinthe

    consumerindustryandnowincreasinglyalsoinheavyindustry,includinghybridelectric

    vehicles.

    In2009,roughly38percentofallbatteriesbyrevenuewereLiion.Liionisalow

    maintenancebattery,

    an

    advantage

    that

    many

    other

    type

    batteries

    cannot

    claim.

    The

    battery

    hasnomemoryanddoesnotneedexercisingtokeepinshape.Selfdischargeislessthanhalf

    thatofnickelbasedsystems.ThismakesLiionwellsuitedforfuelgaugeapplications.The

    nominalcellvoltageof3.60Vcandirectlypowercellphonesanddigitalcameras,offering

    simplificationsandcostreductionsovermulticelldesigns.Thedrawbacksaretheneedfor

    protectioncircuitstopreventabuse,aswellashighprice.

    AgingisaconcernformostLithiumIonbatteries.Somecapacitydeteriorationis

    noticeableafteroneyear.Thebatterymayfrequentlyfailovertwoperhapsthreeyears.The

    lossofchargeacceptanceoftheLithiumIonbatteriesisduetocelloxidation,whichis

    permanent.Theestimationofhowmuchchargeacceptancecapacityandthepredictionofhow

    longabatterycanbeusedareinterestingresearchtopicsandmanyresearchersareworkingon.

    Thepredictionofthiscapacityiscrucialinsomemissioncriticalapplications,suchasouter

    spacevehicles,unmannedaerialvehicles(UAV)andportablemilitarydevices

    1.3.2 MillingMachineCuttersAreliableandintelligentmonitoringsystemisveryimportantforcuttingprocess.A

    successfulmonitoringsystemcaneffectivelyestimatetoolwearprogress.Inalotof

    applications,suchasmillingmachinesthatcutoneworkpiecewithoutchangingthecutterin

    themiddleoftheprocess,themonitoringsystemmustpredictthecutterremainingusefullife.

    1.4 PreviousResearches1.4.1 EarlyBatteryResearches

    In1990,T.Matsushimaetal.introducedanddemonstratedrechargeableleadacid

    batteriesremainingusefultimecalculationinamperehoursmethod[1].In1994animproved

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    14/30

    6

    stateofchargeindicatorwasproposedbyT.B.Atwateranditwaspatentedin1995[12].K.

    KutluaypublishedonlineestimationofLeadAcidbatteryremainingusefullife[3].In[4]and[7],

    twonoval

    battery

    model

    were

    discussed

    for

    battery

    prognostic.[6]

    and

    [11]

    are

    real

    prognostic

    applicationusageinHybirdElectricalVehicleandElectroMechanicalActuators.

    1.4.2 NASA AmesResearchCenterSeveralpredictionmethodsareavailable,ofwhichthemostcommonarebasedon

    batteryinternalresistance.However,theimpedancemeasurementaloneprovidesonlyarough

    sketchofthebatterysperformance.Forexample,afullychargedbatterythathasjustbeen

    removedfromthechargershowsahigherimpedancereadingthanonethathasrestedfora

    fewhoursaftercharge.

    1.4.3 ResearchesforMillingMachineCutterPredictionVariousmethodshavebeenstudiedintheareaoftoolwearestimation.XiangLietal.[2]

    presentedthemethodofwaveletpackettransformforonlinewearingpredictionofahigh

    speedmillingcutter.Highspeedcutterwearingmechanismsinphysicsmodelswereaddressed.

    However,noneofabovepaperpredictedremainingusefullifewithrespecttotheasymmetric

    penaltyfunctionasinthe2010PHMdatachallenge.Thispaperdescribesouralgorithminfull

    andpaysspecialattentiontotheconnectionbetweenprognosticanddiagnosticproblems.

    1.5 Prognosticsapplicationenvironmentandsetup1.5.1 NASAAmesResearchCenterBatteryTestbed

    NASAPCoEpublishedadatasetof34batteriesasofthisthesisiswritten. Allbatteries

    werechargedinaconstantcurrent(CC)modeuntilthebatteryvoltagereached4.2Vandthen

    continuedinaconstantvoltage(CV)modeuntilthechargecurrentdroppedto20mA.

    Impedancemeasurementwascarriedoutthroughanelectrochemicalimpedancespectroscopy

    (EIS)frequencysweepfrom0.1Hzto5kHz.Thedatawascollectedduringtheperiodofspring

    2009tospring2011.

    Thesebatteries

    were

    run

    through

    3different

    operational

    profiles

    (charge,

    discharge

    and

    impedance)atdifferentambienttemperature(4,24and43degreeC).Dischargewascarried

    outat1Amp,2Ampor4Ampuntilthebatteryvoltagefelltoacertainvaluerangedfrom2.0V

    to2.7V.

    TheindividualtestdiagramandbatterytestprofilearedescribedinappendixA1.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    15/30

    7

    1.5.2 2010PHMDataChallengeCompetitionThe2010PHMDataChallengeCompetitionprovidedmillingmachinedata.Thetestbedis

    similarto

    the

    one

    used

    in

    paper

    [2].

    Cutters

    are

    6mm

    ball

    nose

    tungsten

    carbide

    cutter.

    The

    endofthesecuttersishemispherical,whichisidealformachineswith3dimensionalcontoured

    shapes.Eachcutterwasusedrepeatedlytocutthesameworkpiecelittlebylittle.Thespindle

    speedofthecutterwasabout10400rotatesperminute(RPM).Thefeedratewas1555mmper

    minute.Ydepthofcutwas0.125mmandZdepthofcutwas0.2mm.Figure2showsthe

    coordinatesofX,YandZ.Datawereacquiredat50kHzforallsevenchannels.

    Figure2 CuttingToolCoordinates

    Therearesixindividualcutterrecords,namedc1,c2...c6.Recordsc1,c4andc6are

    trainingdata,andrecordsc2,c3,andc5aretestdata.Eachtrainingrecordcontainsone"wear"

    file

    that

    lists

    wear

    after

    each

    cut

    in

    10

    3

    mm,

    and

    315

    individual

    data

    acquisition

    files.

    In

    total

    1890cutfileswereprovidedtoallparticipants.

    2 ProblemDefinition2.1 GeneralPrognosticProblemFormulation

    Theprognosticproblemisanoptimizationproblem.Whenasystemisrunning,prognostic

    algorithmshouldcollectdatainrealtimeandgivethebestpredictedremainingusefultime,

    whichshouldminimizethepossiblecostofunderestimateandoverestimate.

    Minimize U U O O f t P t C P t C (1)

    where tispredictedremainingusefullife; f t isthetotalestimatedcost. UP t isthe

    probabilityofunderestimateand OP t istheprobabilityofoverestimate.The UC and OC are

    underestimatecostandoverestimatecostrespectively

    Differentfromotherestimationproblems,thecostfunctionisusuallyunsymmetrical.

    OC couldbelargerthan

    OC inmanytimes.Takeanexampleforaircraftbatteryremaininguseful

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    16/30

    8

    lifeestimation.Underestimatewillresultinjustexcessivewastedfuelbutoverestimatecould

    resultincrashorpeopleindanger.

    2.2 LithiumIonBatteryModelWefoundusuallybatterydischargeprofileisprettyconstant.Thereisusuallyafilter

    circuitinbetweenbatteryandload.Itflatsthedischargecurrent.HencethebatteryDC

    characteristicismoreofaconcern.InFigure3thesimplestmodelisproposed.

    Figure3 SimplifiedBatteryModel

    Abatteryhasanopencircuitvoltage.Itisusuallynotmeasurableexternallybutitcanbe

    calculatedwheninternalimpedance ER isknown.

    2.3 LithiumIonBatteryKeyParameters2.3.1 OpenCircuitVoltage(OCV)

    OCVismeasuredwhennoelectricloadappliedtobattery.OCVindicatesthebattery

    remainingusefullife.SometimetheOCVissuperficialandhardtoestimate.Weproposeda

    waytodynamicallyonlineestimatetheinternalresistance.Duringdischargephase,we

    introduceasmallamount(+/10%)loadripple.Thecorrespondingvoltageandcurrentchanges

    canbeusedtocalculatebatteryinternalimpedance.

    int

    VR

    I

    (2)

    Knowingthe

    impedance,

    OCV

    can

    be

    calculated

    as

    intOCV TermU U I R (3)

    2.3.2 ChargeandDischargeCapacityThebatteryrealtimeStateofCharge(SoC)isnotmeasurablebytoolsdirectly.However

    SoCdifferencebetweentwotimepointsiscalculablewithcurrentandtimeinformation.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    17/30

    9

    1

    N

    n n

    n

    C I t

    (4)

    2.4 MillingMachineCutterKeyParametersForthecutterwearing,weneedtoestimatethemaximumnumberofcutsonecould

    "safely"makeforagivenwearlimit.By"safely",itmeansthatthemaximumwearofanyflute

    doesnotexceedthewearlimit.Thepenaltyforoverpredictionissmallerthanthatofunder

    prediction.

    TheestimationerrorisdefinedasEq.(6)

    Estimated Actuald n RUL n RUL n (5)where n isawearlimit. d n istheestimationerroratwearlimit n .Whenoverestimated,

    i.e.theestimatedRULismorethantheactualRUL, d n ispositive.Whenunderestimated,

    d n isnegative.ThepenaltyfunctionsaregivenasymmetricallyasEq.(2).

    /10

    /4.5

    , 0

    , 0

    d n

    d n

    e d ns n

    e d n

    (6)

    Thetotal

    score

    is

    calculated

    by

    summing

    up

    all

    penalties

    and

    least

    score

    wins.

    165

    66n

    S s n

    (7)

    Thereisnopresetscorebenchmarkforthiscompetition.Bytestingthecuttingcycle

    predictionscoresofcutter2,cutter3andcutter5,thebestalgorithmsareselectedin

    professionalteamandstudentteam.

    3 ApplyLinearRegressiontoPrognostic3.1 UseEstimatedRemainingCapacityastheRegressor

    Linearregressionallowsustoestimate,andmakeinferencesaboutpopulationslope

    coefficients. OuraimistoestimatethecausaleffectonYofaunitchangeinX.Westartfrom

    fittingastraightlinetodataontwovariables,YandX.

    HerewechoosetimeasX,estimatedcapacityastheregressorY.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    18/30

    10

    Figure4 BatteryDischargePlot

    Figure4showsatypicalbatterydischargecurve.Theblueline(withstarmarkers)

    indicatesthevoltagegraduallygoesdown.Theredline(withxmarkers)showsthisisaconstant

    currentdischargeat2Amprate.Thegreenline(withcirclemarkers)isthecumulativeused

    capacity.

    3.2 RegressiontoEstimateEndofChargeTimeForeverynewdischargecycle,wesetthesampletimeasX.Bycomparingthecurrent

    voltagewithlastcyclevoltage,weestimatedcurrentdischargecapacityasregressorY.Thenwe

    uselinearregressiontopredictatwhattimetheestimatedcapacityreachesthelimit,whichis

    availablefromlastdischargecycle.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    19/30

    11

    Figure5 PredictiononSyntheticData

    Figure5showsthelinearregressionprogress.Itshowsattimet=100,astraightlineisfit

    toexisteddata.Byextrapolationitispredictedattimet=150,thekeyparameterreachesa

    presetlevel.Forbatteryprediction,wepredictatwhattimethecapacitywillreachlastcycle

    value.

    3.3 RegressionResultonNASAbatterydataEachsetofNASAbatterydatahas200+dischargecycles.Figure6showsthebattery

    B0005predictionresults.Thexaxisisactualremainingusefultimeinseconds.Theyaxisisthe

    predictedremainingusefultime.

    Figure6 BatteryB0005PredictionResult

    WeusehistogramtodemonstratethepredicationresultasinFigure7,Figure8and

    Figure9.

    The

    Xaxis

    is

    the

    prediction

    error.

    Less

    than

    zero

    is

    underestimating

    and

    above

    zero

    is

    overestimating.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    20/30

    12

    Figure7 RULerrorat2000sectoend

    Figure8 RULerrorat500sectoend

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    21/30

    13

    Figure9 RULerrorat100secondstoend

    4 UNOBatteryTestPlatform4.1 Motivationofbuildingthetestplatform

    Ibelievethefirsthanddataiscriticaltodatadrivenprognosticresearch.Thereareafew

    batterytestbedsweresetinotherresearchfacilities.Butalocalbatterytestbedwouldenable

    ourresearcherstoimmediatelyverifythealgorithmsandtocultivatemorethoughts.Buildinga

    batterytestplatformcostnotmuchbutitwillbethefirstplatformforprognosticpurposein

    UniversityofNewOrleans.

    Astheprognosticandhealthmanagementsciencebranchbecomestrongerandstronger,

    Ibelievemoreresearcherswilljointhisfield.Andmorestudentsmaychooseitastheirresearch

    interest.UniversityofNewOrleanshassetuptheResearchExperienceofUndergraduates

    problemtorecruitagroupofdiverse,talentedundergraduatestudentsfromaroundthenation,

    andtoactivelyengagetherecruitedstudentsintocuttingedgeIntegratedSensingand

    AutomatedSceneUnderstanding(ISASU)research.Thisbatterytestplatformwillbeavery

    goodtoolforsomeofthemtopracticeprognosticresearches.

    4.2 TestcapabilitiesToconductbatterytestandcollectdataforprognosticpurpose,followingobjectiveswereset.

    Keepuptofourbatteriesinsideacontrolledtemperatureenvironment Temperaturecanbesetfrom2degreeCto60degreeC.Hysteresisis1degreeC. Chargervoltagefrom1.2Vto22.2V,currentlessthan5A,totalpowerlessthan50W.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    22/30

    14

    Dischargerworksfrom1.2Vto22.2V,dischargecurrentlessthan10A.Totalpowerlessthan100W

    16bitDACtokeepvoltageandcurrentsensingresolution0.025%,accuracy1%.Temperatureaccuracy1degreeC.

    MATLABandLabViewInterfaceforcontrolandmonitoring.4.3 TestSetup

    Thetestsetupisasfollowingfigure.AKWC2512Vfridgeisusedasconstanttemperature

    chamber.AComputerpowersupplyprovidesallpowertorelaysandchargers.NIUSB6009

    DataAcquisitiondevicecollectsvoltage,currentandtemperaturereadingsandcontrolsrelays.

    Figure10 UNOBatteryTestPlatform

    4.3.1 VoltageControlCurrentServoTocontrolthebatterychargeanddischargecurrent,avoltagecontrolledcurrentsource

    isdesignedasfollowingschematic.ThecontrolvoltageisfromUSB6009analogoutputport.

    ThecircuitwillkeepthevoltageonR3equivalenttotheinputvoltage,sothatacontrollable

    currentisgoingthroughthetargetdevice.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    23/30

    15

    Figure11 VoltageControlCurrentServo

    4.3.2 ConstantCurrentandConstantVoltageChargerCircuit

    Figure12 ConstantCurrentandConstantVoltageChargerCircuit

    TheCCCVcircuitisdesignedforlithiumionbatterycharging.Whenbatteryvoltageisless

    than4.2V,IC2willnotfunctionsothatLM317blockisrunninginconstantcurrentmode.It

    keepsvoltage

    across

    R1+R2

    into

    1.25V,

    which

    makes

    1.25A

    charging

    current.

    When

    battery

    reaches4.2VtheIC2willmakeLM317intoconstantvoltagemode.ThevoltageacrossR5and

    R4willnotexceed4.2V.

    4.3.3 ImpedanceMeasurementDuringDischargeCycleEvery5minutesduringdischargephase,a+10%and 10%rippleisappliedtodischarge

    currentcontroller.Thecorrespondingvoltagechangesareusedtocalculatebatteryinternal

    impedance.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    24/30

    16

    4.4 TestProceduresAMATLABcodeiswrittentocontroltheUSB6009DAQactionsandtocollectallanalog

    inputvalues.

    Detailed

    algorithm

    is

    omitted

    in

    this

    thesis.

    In

    general

    the

    procedure

    is

    Initializeallrelaysandselftest Enablechargercircuitandcollectvoltage,currentandtemperature Afterbatteryisfullycharged,restforatleast30minutesandwaittemperaturebackto

    constant

    Dischargethebattery.Addimpedancetestwaveformsevery5minutes.Collectalldataandprotectbatteryfromoverdischarging.

    Rest30minutesandaftertemperaturebacktoconstant,startanothertestcycle5 ConclusionsandFutureWork5.1 Conclusions

    Byapplyinglinearregressiontobatteryandmillingmachineprognostics,wefoundthat

    whenlastcycledischargecapacityisknown,thepredictionaccuracycanbeveryaccurate.At

    1000secondsbeforeendofcharge,theerrorisnomorethan50seconds.Thelinearregression

    performanceis

    satisfactory.

    AbatterytestplatformwasdevelopedatISLforprognosticdatacollectionandalgorithm

    development.WenoticedthattoestimatebatterySOCisakeytoEndofChargeprediction.

    TheexistingbatteryprognosticdatasetsfromNASAdidnotprovidereliablebatteryimpedance

    data,anditishardtoidentifyoutliers.Usingourowntestplatform,wecangenerateaccurate

    batteryusagedatawithrealtimemeasurementsoftemperatureandinternalimpedance.

    Duringtheperiodofprognosticresearch,Ijoinedthe2010PHMDataChallenge

    CompetitionandIwonfirstprizeinthestudentcategory.Isubmittedapaperdisclosingthe

    winningstrategy

    to

    Int.

    Journal

    of

    Prognostics

    and

    Health

    Management

    (ijPHM).

    Iapplied

    for

    ThesisImprovementGrantfromgraduateschoolofUniversityofNewOrleansandtheproposal

    wasawarded.

    Thisthesisdescribedthelinearregressionapplytolithiumionbatteryandmilling

    machinecutterwearingapplications.Followthesamemethodmanyotherprognosticproblems

    canbesolvedinsimilarmanner.IhopethisthesiscanbeabridgeforreaderssolvemorePHM

    challenges.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    25/30

    17

    5.2 FutureWorkIexpecttoexpandthethesisworkinthefollowingavenuesiftimeallows.

    a) Applyweightedlinearregressiontoimprovethepredictionaccuracy.Currentlythealgorithmsetsallpointsequalweights.Earlytimedatakeepimpactthewholestraight

    linefitting.

    b) Analyzetherelationshipbetweenbatterytemperatureandinternalimpedancesoastoestimatebatteryopencircuitvoltagemoreaccurately.Itwillreducethestateof

    chargeestimationerrorsothatremainingusefullifecanbemoreaccurate.

    c) Forthebatterytestplatform,thelongtimerunningreliabilityneedtobeimproved.The

    USB

    bus

    is

    still

    not

    reliable

    enough

    to

    sustain

    long

    time

    testing.

    A

    dedicated

    systembus,orembeddedmicrocontrollerwillenablelongtermreliablecycletest.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    26/30

    18

    Bibliography[1]

    Toshio

    Matsushima,

    "PREDICTION

    OF

    REMAINING

    BATTERY

    DISCHARGE

    TIME

    IN

    TELECOMMUNICATIONSSYSTEMS",1990.

    [2]XiangLietal.,"FuzzyNeuralNetworkModellingforToolWearEstimation,"inAnnual

    ConferenceofthePrognosticsandHealthManagementSociety,2009.

    [3]KorayKutluay,YigitCadirci,YakupS.Ozkazanc,andIsikCadirci,"ANewOnlineStateof

    ChargeEstimationandMonitoringSystemforSealedLeadAcidBatteriesin

    TelecommunicationPowerSupplies",vol.52,No.5,2005.

    [4]Fotis

    Kerasiotis,

    Aggeliki

    Prayati,

    Christos

    Antonopoulos,

    Christos

    Koulamas,

    and

    George

    Papadopoulos,"BatteryLifetimePredictionModelforaWSNPlatform",2010.

    [5]NormanR.DraperandHarrySmith,AppliedRegressionAnalysis,3rded.WileySeriesIn

    ProbabilityAndStatistics,1998.

    [6]HaifengDai,XuezheWei,andSunzeChang,"ANewSOHPredictionConceptforthePower

    LithiumionBatteryUsedonHEVs",2009.

    [7]MinChenandGabrielA.RinconMora,"AccurateElectricalBatteryModelCapableof

    PredictingRuntime

    and

    IV

    Performance"

    in

    IEEE

    TRANSACTIONS

    ON

    ENERGY

    CONVERSION,2006,vol.21,No.2.

    [8]IsidorBuchmann,BatteriesinaPortableWorld:AHandbookonRechargeableBatteriesfor

    NonEngineers,2nded.CadexElectronicsInc,2009.

    [9]PatrickJ.VanBree,AndreVeltman,WillH.A.Hendrix,andPaulP.J.VanDenBosch,

    "PredictionofBatteryBehaviorSubjecttoHighRatePartialStateofCharge",vol.58,No.

    2,2009.

    [10]PieroP.BonissoneandKaiF.Goebel,"Whenwillitbreak?AHybridSoftComputingModel

    toPredictTimetobreakMarginsinPaperMachines",2002.

    [11]EdwardBalabanetal.,"ADiagnosticApproachforElectroMechanicalActuatorsin

    AerospaceSystems"2009.

    [12]TerrillB.Atwater,"StateOfChargeIndicators", 1994.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    27/30

    19

    [13]BayramAKDEMIR,SalihGUNES,andIsmailComlekcilerTaha,"MicrocontrollerCompatible

    SealedLeadAcidBatteryRemainingEnergyPredictionUsingAdaptiveNeuralFuzzy

    InferenceSystem"

    in

    International

    Conference

    on

    Web

    Information

    Systems

    and

    Mining,

    2009.

    [14]DanielP.Abraham,"DiagnosticExaminationofGeneration2LithiumIonCellsand

    AssessmentofPerformanceDegradationMechanisms"2005.

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    28/30

    20

    AppendicesA1. NASATestBedCircuit

    InNASAPrognosticCenterofExcellencewebsite,thereisnotexplicitschematicofthe

    testbed.Inordertobetterunderstandtheironlinedata,thefollowingschematicsare

    drewafteronsitevisitanddiscussiontoNASAresearchers.

    Figure13 NASAAmesPCoEBatteryTestbed

    A2. TestBatterySpecificationWeused3.7V2200mAhTenergyLiion18650Cylindricalbatterywithtabsinourtestruns.This

    appendixgivesthebatteryspecificationforreference.

    Illustration1 Tenergy3.7V2200mAHLiion18650Battery

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    29/30

    21

    Features LiIon18650cylindricalrechargeablebatterywithtabs; 3.7V2200mAhhighcapacity Highenergydensityandlowerweightthanotherrechargeablebatteries ManufacturedunderISO90012000toassurequality UL#MH48285 BatterytestedbasedonInternationalElectrotechnicalCommission(IEC)standardto

    ensurecapacity,quality,andlifetime

    Applications BuildingLaptopBattery Buildingportablepowerdeviceneedinghighenergydensityandlowweight

    ProductSpecifications Capacity*Nominal 2200mAh,Minimum2150mAh Dimensions: Diameter18+/ 0.2mm Height65+/ 0.2mm Weight(Typical)Approx.46gyes NominalVoltage:Average3.7V CutoffVoltage:3.0V InternalImpedance:lessorequalto180 milliohm(withPTC) CyclePerformance:90%ofinitialcapacityat400cycles Cyclelife:>500cycles Charge:Current=0.5CmAVoltage=4.2VEndCurrent=0.01mA Discharge:Current=0.5CmAEndVoltage=3.0V Max.Chargingcurrent:1.5Cma Max.Dischargingcurrent1.5Cma(forcontinuousdischarge)

  • 8/3/2019 A Study on Remaining Useful Life Prediction for Prognostic Applic

    30/30

    22

    VITATheauthorwasborninNingxiang,Hunan,China.HeobtainedhisCollegediplomain

    computersciencefromHunanUniversityin1995andMastersdegreeincomputerscience

    fromDonghuaUniversityin2004,respectively.HejoinedUniversityofNewOrleanselectrical

    engineeringprogramtopursueaMastersDegree,andbecomeamemberofAssociate

    ProfessorHuiminChensresearchgroupin2009.BeforethathewaswithGeneralElectricalasa

    teamleaderandprogrammanager.