11
A Transl at ion al Po l ar iza ti on Ro t ator Davi d T . ( hu ssY Edward J. Wolla ck,l Gi ampaolo Pi sano,2, Sheridan Ackiss,3 Kongpop U- Yen, 1 Min g wa h N g2 Cosmology LoborcaWJl', Code 66$, NASA God4arrl flight Center, MD tOm , uSA 0/ M"rachalu, Mandiukr, Ul( IGeoryia Teo:h, Alwnt<l, GA, USA 'Corn4ponding il1llAor: David. T.Ch"""Onasa, gov We exploro a free..spa.ce polarizaLion modu .... t.or in which a variable pro- introduction between rigbt- and 1cft.-h8nded ciroultll polarizati,m compom.:nl.6 Is ullCd to rotate the linear polari:<ation of outgoing beam relative to of tbe inoomlng beam. In thi$ devIce, the polam:&tion stlUO:l ace !!eparaled by a eircultu' pOlarizer (hILt COIlSU,1.6 of a qul\.ftef- waWl plate in oomhination with a wire grid. A movable mirr<>r is positioned behind and paral]eI to the circular polarirer. All the pol&rl1.cr-mirror disl.anl:xl ill IlCPlU'atOO. , an incidMt linear poIarizlLlion will be rotat.cd &Il angle that is proportional w the introduced phMe delay. We demo!l8trate a prototype device !.hat modullLl.CJI Stokes Q and U over a 20% bandwidth. © 20] 2 Optical Society of Americt. OelS CltIda: 350.1270, 120.&110, 231).41\0, 240.5440, 050 . 6624. 1. I nt roducti on Polarisation modulation Is lhe sYSlematlc mllpJlllll! oflLll incldf!llt pola:rization lIUte iowa tlCW polarization state for 8ubeoquent demodu\&tion lind detection. 1 'hi 9 technique is u&cful for polarimetrie IlpplicatlOIlII in which the polarization signal is signi fic antly smaller thlUl the unpoiariuxi background signal, Rclevt!.nt app]ic&tionB include polarization oontrast imaging 8.I!.d pola.!imet ry [I ]. It is de&r&ble for the polarization modullLtor to \-aJ')' the polariution 61.ate but not the wl.&l of polarization. T hat ill, in t(l!'ms of St olwll paJ1\ZllCteI1I, &II ideal modulator is to the condition (I) https://ntrs.nasa.gov/search.jsp?R=20120014274 2020-02-12T20:11:28+00:00Z

A Translational Polarization Rotator - NASAfor polarimetrie IlpplicatlOIlII in which the polarization signal is significantly smaller thlUl the unpoiariuxi background signal, Rclevt!.nt

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Translational Polarization Rotator - NASAfor polarimetrie IlpplicatlOIlII in which the polarization signal is significantly smaller thlUl the unpoiariuxi background signal, Rclevt!.nt

A Translat ional Polar ization Rot ator

David T . ( hussY Edward J. Wollack,l Giampaolo Pisano,2, Sheridan Ackiss,3

Kongpop U-Yen, 1 Ming wah Ng2

' Ob.J~tWrlal Cosmology LoborcaWJl', Code 66$, NASA God4arrl S~ flight Center,

G~u, MD tOm, uSA

~Umver$itll 0/ M"rachalu, Mandiukr, Ul(

IGeoryia Teo:h, Alwnt<l, GA, USA

'Corn4ponding il1llAor: David. T.Ch"""Onasa,gov

We exploro a free..spa.ce polarizaLion modu .... t.or in which a variable pro­

introduction between rigbt- and 1cft.-h8nded ciroultll polarizati,m compom.:nl.6

Is ullCd to rotate the linear polari:<ation of ~he outgoing beam relative to tha~

of tbe inoomlng beam. In thi$ devIce, the polam:&tion stlUO:l ace !!eparaled

by a eircultu' pOlarizer (hILt COIlSU,1.6 of a qul\.ftef-waWl plate in oomhination

with a wire grid. A movable mirr<>r is positioned behind and paral]eI to the

circular polarirer. All the pol&rl1.cr-mirror disl.anl:xl ill IlCPlU'atOO., an incidMt

linear poIarizlLlion will be rotat.cd ~hrougIl &Il angle that is proportional w the

introduced phMe delay. We demo!l8trate a prototype device !.hat modullLl.CJI Stokes Q and U over a 20% bandwidth.

© 20] 2 Optical Society of Americt.

OelS CltIda: 350.1270, 120.&110, 231).41\0, 240.5440, 050.6624.

1. Introductio n

Polarisation modulation Is lhe sYSlematlc mllpJlllll! oflLll incldf!llt pola:rization lIUte iowa

tlCW polarization state for 8ubeoquent demodu\&tion lind detection. 1 'hi9 technique is u&cful

for polarimetrie IlpplicatlOIlII in which the polarization signal is significantly smaller thlUl the

unpoiariuxi background signal, Rclevt!.nt app]ic&tionB include polarization oontrast imaging

8.I!.d llI!~ronomicaJ pola.!imetry [I ].

It is de&r&ble for the polarizat ion modullLtor to \-aJ')' the polariution 61.ate but not the

wl.&l amoun~ of polarization. T hat ill, in t(l!'ms of Stolwll paJ1\ZllCteI1I, &II ideal modulator is

~ubject to the condition

(I)

https://ntrs.nasa.gov/search.jsp?R=20120014274 2020-02-12T20:11:28+00:00Z

Page 2: A Translational Polarization Rotator - NASAfor polarimetrie IlpplicatlOIlII in which the polarization signal is significantly smaller thlUl the unpoiariuxi background signal, Rclevt!.nt

ThiR condi~ioo corresponds to a modulator that does IIOt chllllge the total coherenoe of

the signal and makes the problem of lDeasOring the poIllrizat ioon eJ<pcr1tno"ntally cleaner.

:\ looulatorJI that sati!f)' t his condition ue nooprellCllted by unitary Jones matricell. In the

homorllorphically-eqnivalcnt ~luelk:r Ionmo.lism, tho mll.l.rix ~t.ation.s of fuel: modn­

llito~ are orthogonal. This I"ft'Itrictioo limit.! the non-lrilial operations 10 either a physical

rot.a.tion or IUl introdnction of a phase delay bet"'een orthogolal polarization componenla

Such operations are reproeented by roti\tions 011 the Poincad Sphore [2[ in whid! the b&..

!ria and magnitude of lhe phsse df:lay det.ennine the axis and magnitude of the rota1ion,

fIlI'Ipnetively.

Apan from the trivial ex&mple of instrumen t rotatiooo, modulaton typicaLly vary either

the balJis of the system or the phll8e betW'(lCfl two orthogonal poIlLrizlitiQDs. F""1gUl"e 1 .mo­modu1lltion topologi{J! for a !iclecl.ion of unitary modu\A.t.ors and their repre8elltatiollS on

the Poine.ro Sphere. Corrl!IIponding Mueller matriees are a.bo shown. Figuro l A 8bov.""5 a

moo"Is.tioll echcme ill which a constlll1t pha;sI! dcIa..v of "IT ill introduced bet.Wl:Ctl two linesr O!"thogonal polarizations. Modulation is lIOCOIUpli.'.ihed by B}'!Il.ematicaJly changing the will of ph85C >lepuatlon in the Q - U planl,l.. A qU88iopticai realiu.tioo of this topology ill the

rol.al.ing haJf-wa,w platA! [3--5J. ThpoIogiC3Ily equivalent waveguide imp\cmentatiollll are also po!!6ible {6]. For ideal delicul, It ie pOIl8lb1e to oomp!et.ely modulate Ullell!" poJlLri1.atioo for a

de1.eCtor that is 1Iell8itiw to linear polariu.tion.

Similarly, !or InellllurenlClU. of circular polarization using a detector l!eIllIiti~ \.0 linear

polarization, It is pOIII>ibJe to introdUlXl a constant pnlll:l(l delay of "./2 between Iirle.v orlllo!­

onal poIari'l.&tioos and changing the baN of separation as shown in Ftgu noo 18. RoUJ.ing

qua.r\.e!"-waw plates and birefringent waveguideril are enmplcs of this an:hitectu!"C [7]. Al tcmat.ivdy, l\Il shown in ~1gure IC, it is po!II!ible to hold the pola.ri7.ation basis <;(I1l­

stant .... hile int roducing a variable phlIIle delay betweell two orthogonal IiDeM polamation8.

A qD.lLl!ioptical example of this is the variable-delay polarizatioll modulator (VPM). VPAfs

ha..-.: beeu ut ilized \.0 modulate polarization [8-10J and baw the pot.eot ial \.0 produre low l1li0.1 control lable syatematic erroh [til using iJmall tram;lat ional motions. Thill is a potential

advantage for .pace ftight applicatio!l8 811 thi! roncept can be realized with high reliabili ty

flexureB Ihat eliminate the need for rotational bearinp. VPMs can onl.v modula.\.e a sin­

gle lille&r Stokes pllf&llleter &lid therefoM must rei)· 011 other dcgreee of freedom ,udI 811

instrument ro\.alion or separate optical pat" ill order to fully modulate both Q and U. For llirge telellcopElll, il1lltrumenl ro1.8.tion may lead to undesirable observat ional constrain ta,

modulated i115trumen\a.l poI~tion, or incomplcte poluizlltioo C(J"OUlI8e in the Iiu.al data

producte. Thus it is desirable t.o!lOCk a eolution that fully mooulatee linear pollLriY.ation in a

single clemen.t.

Introduct ion of a \"&Iiable phaac (~'ig. 10) bc:ween the tWO cm:u/ar polarization statOl

2

Page 3: A Translational Polarization Rotator - NASAfor polarimetrie IlpplicatlOIlII in which the polarization signal is significantly smaller thlUl the unpoiariuxi background signal, Rclevt!.nt

A v ,"_ ,j, g,. "plio" doeIor - .,.,. .on"'" notn; tlnlo ,

U n ",~ .. _ration Is....w.<l • • F.-...... bMlpIr. ~~ ~.~

IIotItlng H.If-N.ve ~te ,i,,49 ~~

-.-''''€><amplol • • ""_gW~ ' ,,~ialph ... shht<

, .... ' • ." . IlI2p11ne~ B beI ___ ft;;boii$

01 pI>o .. _"ion Is JOtItl!d

[ l • • .:" ] _pon ba"",le: """ M ..... 40

Rot""'Q Qu.~,_ pi.to .""40 .... In· 2tI =" W_.ullll EM ..... ., sTnlO -- •

'-- ~ I\oIitlng W.-..guide& 11/2 _ ... phase sNfMr

C ,_,' T: ',p: _plwedNy(6j

I~ .- ~" _11,. __ 1>0.1> 01

[l • • +] p/>Io .. OfpO''''''' Is fI-.I. ___ lump", =. • ~ '-C , Vorl.ble-dtloy PoIorlmlon Modula\Ol' • , . U , .. • =. .N ~ ./ .::F- Wa ,._lumplo,

1t/ld~"" pIIne """' ... """"'-. - " f ..... .,. __ dioIoy6.

D~~ Tap • • j) ' ..w~pha .. dolor(61 1Mt, II" dra.oIM .tftH;i>oolo of

[l 0 • n phoo,elf9*<atltlnls fillll!d <c.6 - lIn6 __ po .. ED.......,

oin6 =. Tron.ladonal Pclariz.odon "" .. tor (TPIIl • 0 W_uldo bamp'*= ~ IIo<ator with <letoy6,

-~

Pig. I. Selected matrix c!cmCIltil for several ideal polarization modulators on

Lho Poincare Sphere &nIMown. The green line sl~ the axis connucting the

lWQ polarization statCII bet.wecn which a phlll!tl delay, 5, is illtroducW. Violet

and data indiCll.te the ini tial MO final polarization irt.&tes , respectively. Blue

IUTOW!I indicate the modulation path on the spbere. Red amJ""lI indicate static pha8e delays. Deviations &om ideal behavior are gMerally caused by finite

b!Uldwid~h , biattenll3l>Ce, diffctenlial reflection, etc. The orthogonal ~ I uclle:r

matrix for each !U'Chit.ecture 18 lIhown OIl the right.

3

Page 4: A Translational Polarization Rotator - NASAfor polarimetrie IlpplicatlOIlII in which the polarization signal is significantly smaller thlUl the unpoiariuxi background signal, Rclevt!.nt

pro..-idl!8 a m6lU1S to fully moduh.tc linear polarization. An example of this i~ implcmenu!ll

in a "·lI.veguide i! a Fw:a.day Rotator [12-14] having a variable phASe delay. in thj~ CIIIIe, thc

circular birefringl,'nce of ferrite material ill altered as 8. functioll of applied magnetic field .

In this paper, M;) present a oonot.'Pt for &ehieving 8. non-magnetic froo.sp&ee modulal.Or

usi!!g topology '0 '. Wc l\CIOOmpHsh ~1Ii6 b)' separating ;he two circular pOiam:ation statllllllnd

iLl.rodl!cing a variable and differential p!lase delay. We refer 1.0 thia device 115 a Tfllflslational

Polariu~ion RoLllI.OT or TPfl 01lr implementation ill relMed 1.0 ~he VPM Ill'Chilecture. In

Section '2 we del!Clibe an implementation of a TPR. In Section 3 WI'! ~rt ttlSting of a

protOtype 'l'PR. We summaciw In Sect ion 4.

2. The TPR

-,

Vl'M TPR -- --

f ig. 2. The topology for the TPR oompared with the VPhl ill ~lIown. The TPR

coll.SiI:IUi of a circular polarizer placed in front of and parallel 1.0 a movable

mirror and introduClllll a variable ph.ue delay bet .... een tbe orthogonal circular

poIariwion states.

1'0 ruIiw a variable phsse delay bet .... ren right- and left-handed circular polaril.ation

romponenU; in a beam of radiation, we employ the a.rchitocture iU\l5I.rAted on the right side

oi Figure 2. Thill device oonsillt8 of a quarter-wave plat<.' placed in front of a VPM with ibs fMt

(or slow) &xiii oriented at a45' angle with re8p1)Ct to the VPM polarir.cr direction. The quarter

WM'II plate oonvcrtl! incoming cireu1&r pollll'i~ation st8.te5 to orthogonal linear pol&!izatiOlJ$.

The VPM then introduces a V&ti8.blc pha8e dda.v bcl.ween the linC8l poIamations. AI, t he

beam exitll t!l(l device, another p8lIII through t ile quarter wsw plate oonvertli the linclU'

pollLlizaliOIlll back 1.0 right- &fld left- cirellI&!.

4

Page 5: A Translational Polarization Rotator - NASAfor polarimetrie IlpplicatlOIlII in which the polarization signal is significantly smaller thlUl the unpoiariuxi background signal, Rclevt!.nt

For purpo8eI' of exp!am.tion, the TPR S)'llUM can be analvZ<'ld using Jonet! malriec [IS].

Thill simple anaIyljll;: that follows Is an ideal approach that is intendlxl. to illU6trate the basic

fUllctionalityof the TPIL TIle appropriatenlHl of this baeie approach reliP\l on the abscnoe

of multiple coherent reflectiol1ll or 8tanding waY'CII bet_I the OOIIl!tituent elements of the

TPR. Use of tranmCl" IlI&trices enablM a more general tffil.trrnmt without this limitation 110[.

We preseut the analysis of a VPM orient~-d lit an athitrary a.ngle willi rf'l'ipeet to a general

Wllve plate. At the end, I'I"i! clln set the wave plate's plw;e dcla.y and the I'I.Ilgle oc1.ween the .:ave plate and VPM Appropriately to reAlize the dllllimd modulation.

The Jones matrix. for the TPR can be written all

(2)

Here, Jw ,,(0, (J) - 3"(fl) represents the dect on the incoming radilLtiOli when plI.'JIiing through

the Wlwe plate on the inpm side of the c!evice. The ILDgu\ar eoordin81.e II)'lIteUl ill chosel! such

tha.L the W8\'e pillte', fa.st tWa ill ILl.I.gned with the 7.cro ar.gle. 8 i~ tbe angle of the VPM

.itel! with respect. to the faat &>ds of the WAVI.l plate, and fJ is the phase delay betWQCn two

orthogollal linear polarilatiOflll iDtroduced ~ tbe 1I'aVll plate. The phllSe delay introdoccd by

t.1}e VPM is 5. The JonI:'s mlltrix foc tbe VPM is then Jvl' .... (9,5) = "R(6)6(5)"R(9). The W8.\"C plllw and VPM can be approlC.imated 1». simple expression!l and thll8,

(3)

.. """ (4)

are the Jonc8 reprellCDtations of a rotaLion by an a.ngle fJ and an inlroduction of pb fL'ie 6 be­tween two on.bogonallinear polarizatiollJ, IllIIp«:tively. Note that becallge the VPiI r open.laI

in reflection, there i8 a mapping betwccn 0 ..... - 6 ~ the input Md output diroction,

n>J8ulting in tbe proper transfunnatlon being R(fJ)6(6)7j(fJ) rather thM R( -e)6(6)1l(O). SuhlltituUuS appropriately, one finds,

JT"R. _ (~(e"I'/2C(l!1l8-e-"f2l>iIl26) . Fii.nU0086/2. ). (S) - sin UCOI! 6/2 e-'~( _ e"I'12 aill2 9 + e-f2COB'6)

We next cakulal.Cl the polarization Lre.uafer fUllctioD fnr Stokes U polBCintiOD stale 1l8i.llg

tbe deMity rnatrix

J'TPII.~.1rI'R. (6)

Thiil result can be dccompOllCd in the Pauli baais [IJ;

D - IOD+QU\+~+ V~ = J( ~ ~) +q(~ ~I)+U(~ ~)+v(~ -; ) o . (7)

,

Page 6: A Translational Polarization Rotator - NASAfor polarimetrie IlpplicatlOIlII in which the polarization signal is significantly smaller thlUl the unpoiariuxi background signal, Rclevt!.nt

The tt'l3Ult of these manipulAtions is the following tTlI.ruUormalion.

U -+2sin 280085/2 [cos~ (I COlI (,8 + 5/2) - sin' 0008 (p - 5/2)J Q

+ [-sin' 280:0s' 5/2 - 2tw'Osin2 o cos 2,8 - Wl!2.8lrin5ein 2,8 + CO!I2,8oos5(sin' 0 + 005· 0)] U

+ [5in 2,8 {2~ OBin' 6 - 1XlII5(sin' 6 + ro9' 6J} - COII2PBin5ca126j v. (8)

T he mellicients of the Stoka! Par&metcB are the elenK.'fIlil of the thi rd oolumn of the ~Iuel!er

maLrix (or the third row of the invertIC ~lueJler matrix). Substitut ing 8 .. -:/4 !Uld P co -:/2,

one ohtaill8

U -+ Q' sin5 - if 0085. (9)

Thill iIloLhe desired tflUlllfOmllltion II.IId demollBtral.E!i L1ut.L the ardlit.ec:ulre dCIICrib«l for !.he TPR <b.1I indeed inject a \"II.ri&blc phase delay between lcl\.. and right- circular poiarizal.ion.

It is con¥CDieDt to ~hink in lerllll 0( F,qU&tioo 9 lUi repru;cnting a polarimeter in tr&ll!lrnilaion

"itb the poIlIrized detecton orienl.ed at 450 with mlpee1. to lbe optical axis of the quarter­

.... ave piaU. The effoct of the modulltor is to vary the polarization !IeIlSitivity of the detoctOr

8VSlern as a (unction of the gird·mirror delay, 5.

3. MClIlIuf<clment

A prototype TPI\ hM bocn COJl!lLruC1.OO using l dielednc.u\"~bedded metal m('5h «UJU"1.er ,,·ave plate of the Iype preI:IeI1tOO in 116, 17] . This 110'&'1 mountOO 1.0 the front of a VPU IIC$I"ly identical to tbe nertl! protoLype [9, IOj (8Ile Fig. 3), and tbe grid·mirror separation 110'.

controlled wsing a manual linear micrometer mage. The metal M66h quaner wave plate ill bMCd on phot.o1ithographic techniqUC8 UAed in the past to rWite hill-wave plate6 [18J. This

devi<:c provide/! a phase shift betwoon orthogonal linear polMizal.io!lS of 89.2" ± 1 .5~ over II.

40% bandwidth (75-110 GHt). The transmittance for the two poiarizatioll8 is me.t.cbcd to 2% from 77·94 GHz where we experimentally concentrate our effort/!. The biattenuanee of

the Wa\"t: plate ill this configuration 1eads to modulated instruml'ltal polarization, and 110

tbe bandwidtb has been limited 1.0 a;Jntrol tltis effect .

To 1.E!i~ the operation of the TPR, the prototype W&.'I included in the test setup shown In

Figun! 4. This largely folJowB the experimental approadiutiHzed in [IOJ. The \.eSt setup \eed a pair of feed hom! to oouple the quasiopt.ie&J tClrtbed to lUI Ajilent PNA·X vector nct"WOl"k

anllly-rer. Mi~&va; polarized in the vertical (-U) direction are t:o\I""$r.ittod from Port 1

(designated the "Source"). A polarizing wlr~ grid was used to rurt·hcr define the polarizlltion

elate and lICrWld t.o redirect the radiation to fLU ellip60id&l mirror that mllps the food'e bearn

.. ·!li9t 011:.0 the TPR. A BeCOOO, identical elllpsoidal mirror re-mappl.'d the beam waist into a

second food hom (the ~teclOf") attached to Port 2 of the PNA· X. Orthomode TrIUL'ldWX'f1l (O~IT) wcre U1Ied to wnnlnale the unllllCd po!arizt.tion in eacb feed horn . The qU&rter-wave

6

Page 7: A Translational Polarization Rotator - NASAfor polarimetrie IlpplicatlOIlII in which the polarization signal is significantly smaller thlUl the unpoiariuxi background signal, Rclevt!.nt

Fig. 3. The metal-mellh wave pial(! ill shown (A) along with a clOlSC--up view of

its 5\lrface (U). The prototype TPR is shown in (C).

plate "Wall tilted at an angle > 5· with Tl'Spect to \.he VPt..1 wire grid, to a\'Oid trapped !ll()(i(!I

illSide of t he T P R..

A oooond lineal" Ulicrometer stage W55 inserted bctwoen tbe TPR and the te!l~ !ltltUp. Thill

linear stllge WIUI used to vary the posi~ion of the T PR ("8" in fo'igure 4) rdative to the rest

of. the optiQi. By taking me88urement.s of the rusPO!llle at di!ferent positions of the TPR,

it 9188 po8Sible to IJIIoe the varied phllBC to eeparate the TPH responlill from Lhat of the rest

of the optiCl using a procedure &imilar to th&!. outlined by Eimer et III. [19). Thus t:aeh ~, scattering parameter me&6uroment described below is a eompo&ite of roor IlIC&11uremenl.8

\.ai<eu a~ 400 I'm iotervals for Lhe TPR paritioo. We ch!lJ"lSderi:red the polari2ation transfer fu:lCtion of the TPR by me&6uring the IlOrTlUIl­

ired line.v StohoJ par&met.erB, q "" Q II and u • U II , at Port 2. This wlIS done by measuring

tlleoomp1ex ~1 sc.ttcring parameter as a function of grid- mirror 6Ilp&latioo at four rotations

of the horn attached to Port 2; 0" (V) , 90" (H), 45· (D_), alld -45" (D+). ThCliC angles Wl..'re

mell/lUred e.t the food horn Aange WId their rel8.l.ive error iA roughly ± l o. 1'0 mcchanically

facilitate coupling to lhe millimeter-wave reoeiver module , a ~hort (1.5-inch) section of ap­

propriate wavegu ide twillt between waa U5Cd between Port 2 Il..ud the OMT for meuunl"!DCIlT.8

of II , D_ , and D ... . The Stokcl! parameters CI\lI be extracted. from tllMe IIWa5Urement8.

u(d) ( 10)

( II )

The values I, and I~ are ~he relativcgain of the B.v8t.cm oc'tween the different rotations. The

g~in upon rotation due to changCll in the feed illumination or waveguide twist ohmic lOllS. The

D+ and D _ measUrl..'IIlcnT.8 each emplo)' 1.5 inch twist8 , 110 WI..' set I. = 1. The measurcmenUl

7

Page 8: A Translational Polarization Rotator - NASAfor polarimetrie IlpplicatlOIlII in which the polarization signal is significantly smaller thlUl the unpoiariuxi background signal, Rclevt!.nt

~­-, OOdeg. Twbt H .4S doog. 1\OIst: D. ~dtg.fW!tt: D.

I'"' ~" o

--" o .

..... Cat""_~ _"'n' __ 1

Fig. 4, The test8Ctup ueed to vaJidat.e the VP M i8 ~bown (left). The grid-mirror

tleparation ;1 given by A, and tile overall di~p1aoement of the TPR is gi'"(:T\ bv

B. The rotational coordinaw system WI8d for the polari~atioo IDe8IIuremcnts

is shown on the right.

8

Page 9: A Translational Polarization Rotator - NASAfor polarimetrie IlpplicatlOIlII in which the polarization signal is significantly smaller thlUl the unpoiariuxi background signal, Rclevt!.nt

of V do not include a twist wetion , while thotto; for /I do. Thcrclore, 1.0 ACCOu nt for tile_

imbaJllllOa in the measurement of V relllLive to thlU of H, /. = 0.99.

The ca..librllted rn~'!l8\lJelJlCllt.s hal'e been integrated O\"l!r t he 77-94 Glb balld and are

shown in Figure 5. The model ro!pOn8e6 for q IUld u 8J"C the I.eruls in equation 9 integrated

IJVer the bandwidth. BecauSO'! tho wavelength is much greater the diameter of the " ire of the

polarizing grid, the pha/lC can be approximated by 41rdcos a / ~ ... ·b~ d is the grid_mirror

~epl'UUion, a = ZOO is tho Incidence 1II'Iio of the r!\diMion on the modulator, and ), is !.he

~"a\'elength [10).

• • • • • • • o· • •

Fi«. S. The rffipo!l!l>llof thc TPR to an incident -u (\-ertically.polarized) signi\l

is shown. The meaaured q and" reIlpollMl for the integraud 77-94 GHz reIlponse

is su~ on the integrated r8f!poRSe exPECt«! from theory.

4. Di!:M:U8B;on

A prototYpe TPR hall been OOlllltructoo and ,"lIIidat.ed u!ling a vector network ani\lywr.

Re!lklual deviatioos from the expod.od behavior lUll likely due to either gain uncertainty,

b.attcnuanw in the qll&l'i.cr.wave plar.e, an in,,"fJ"OOltly accurate model for iJle palluiling

gIid , aJJd/ar m;idual trapped modes bet..aen the quarter·wave plate and the VPM. The

c.1a'&eterisl.ies of the circular polarizer will ultimately determine the 'rPR'e pt'l"formanoe as

a polarizatiOIi modulator. 'I'be demolllltl1l.ted approach is potentially Wl!!ful for astronomical

polarimetry in tbe millimet.er tilloogh far-infr&OO in that il enablee full lir>ear polariUltion

lIIOdu!at:on with a single ret1oet.ive element that uuliro; smi\lllinear mOlions.

9

Page 10: A Translational Polarization Rotator - NASAfor polarimetrie IlpplicatlOIlII in which the polarization signal is significantly smaller thlUl the unpoiariuxi background signal, Rclevt!.nt

Refcrcnc08

l. C. llroest'W, F\mdam~ntal" of Polarized Light (John Wiley &. SoJlll, 19(8).

2. J. Tinbergen, AstronomicuJ PO/llrimetlll (Cambridge Uni\U!:lity Pres6, 1996).

iI. lUI. Hildebrand, J .A. Hild&brArKl, J .L. Dotson, C.D. Dowell, G. Novak, &. J.E. Vllillall­

oourt , MA Primer Ofl Far-Illfranrl PoiarimenyM PublicatiOM of the Astronoutical Sociccy

of the Pacific 112, 12 15- 1235 (2((10).

t . G. Sayini, C . Pi5ano, &. P. A. R. Ade, "Achromatic half. wave plat.e for ~bmiLlimetcr 10-

8uurnents in C!(I6mic microWlLve background astronomy: modeling and simulation" Appl.

Op~. 45 , 8907-8915 (2006).

S. S.A. Bryan, T.E. Montroy, &. J.E. lluhl, "Modeling dielectric half-wave platf!!l for COIIlllic

miclvtJlI.ve hRckground polarimetry w;ing a Mueller matrix fonnaiism" , Applied Opticll

49, 6313-6323 (2010).

6. C . l'isano, S. Mclhuish, C . Savini , L. Piccirillo, &. B. Maffei , A Brr.>t1dband W-Balld P~ri:otWn IWtator WiUr Ver, Lo", CYo.u PolorUation, IEEE Microwave and WlteIeii& ComponentIJ Letters 21 , 127-129 (2011).

T. S. PandulratnMl, "Achromatic combinations of birefringent platc5Pm IT. An &ch1"1>

IIlll.tic qUl\Tter "'"live plate" , Proc. Indii\ll Aea.d. Sci., Sect. A 42,24- 31 (19:»).

d. D. T . ChU98, E. J. Wollack , S. H. Moeelcy, &. C. Novak, "Interferometric polariz/ltlon

oontT(lI ,~ Applied Opt ics 45 , 5107-!H17 (2006).

9. M. Krejn)" D. Chuss, C. DrOUt.'I. d 'Aubigny, D. Golish, M. Houde, H. Hui , C. Kulesa,

R. F. Loewenstein , S. H. M08eIe)', G. :"Iowk, G. Voellmer, C. Walker, '" E. Wollack, "fhe lleru/ VPM polari~: OeIIign and first light ol«:rva.~i0n8,· Applied Optics 47

44~440 (2008).

10. D. T. ChllSll, E. J . Wollack, R. Henry, II . Hui , A. J. Juaro;-z,:'1. KrcjllY, S.II. Moseley, '"

G. Nov&.k, uPTOpCrtics of '" Variablt.'-delay Polarization Modulatort Applied OptiC!! 5 1,

i97- 208 (2012).

ll. D. T . Chll8B et ai., "Tbf! Primordial lnfluion Polarization Explorer (PIPER)", Proc.

SPIE 774 L, 774I1P-l (2010) .

12. G. P. NIUIOII , ~Polarization of Lhc bLackbody radiation aL 3.2 centimeter&", The AlItro­

physical Journal 232, 341-347 (1979).

13. PAR. Ade, D.T. ChUl!8, S. Rtuli\lly, V. Rayns, B.G. Keating, A. Kogut, J.E. Rubl, C .

Pisano, G . Savini, &. E.J. Wallack, ~PolariULtion Modula.tol'!l for CMBPol~, Journal of

P hysiCII: Couft'l'CIl<'.e Series 155, 012006 (2009).

14. A.C. Gault, E."'!. Biennan, 1'.0 . Hyland, 11 G. Keating , 5.5. Maiu, & P.T . T imbic,

"Measun'l1lenUl of a Cryogenic Linou PolariMtlon l\lodulatur for Trlrn-Wa\-e~hs" ,

lEEE :'lierowave i\IId WirelM! Componenl$ Lettenl 99, 1 (2012).

10

Page 11: A Translational Polarization Rotator - NASAfor polarimetrie IlpplicatlOIlII in which the polarization signal is significantly smaller thlUl the unpoiariuxi background signal, Rclevt!.nt

15. R.. Jone6, ~New CaICUIU8 for the treatment of optic.J S)"IItemll,· J. Opt. Soc. Am. 31,

488-493 (1941). H •. G. Pi$lUlo, M. W. Ng, V. Ha.vnetl, &. B. Maffci, "A Broadband Photolithographic Polariser

for 1I1i1lirnctrc W,,"ve AppliCILtiOll11" , PIERS Proceedings, K uaItI. Lumpur, Malaysia., 1748-

1751 (2(J12).

17. B. ~Iaffei, G. Pi3ano, UiJ13 Wah Ng &. Vic HaYIle!!, ~Milljme1.re Wave Photolitho­

graphic Pola.riser Belt.m Jrnpad" , PIEHS Proceeding;!, Kuala Lwnpur , MalaYllia., L761 ~

7165 (2012).

)g. G. PiMoo, G. Savini, P. Ade, &. V. lIaynes, -A Mct.aJ..mesh Achromatic Half·Wa~ Plate

for UIJC at Submillirnetre Wa,-dengths", Applied Optica, 47, 6251·6256 (2008).

19. J .R. Eimer, C.L. Bennett, D.T. Chuss, and. E.J . WoI1adr., "Vector RctIectomelry in a

Beam Waveguide*, JWview of Scientific lnstrumenta 82, 086101 (2011 ).

II