8
AAE450 Spring 2009 Lunar Lander Propulsion System 100 g, 10 kg and Arbitrary payload cases Thaddaeus Halsmer Thursday, March 12, 2009 1. Propulsion System Sizes, Performance and Power requirements 2. Propulsion system cost estimate 3. Designed 10 kg payload hopper engines 4. Worked jointly with Saad Tanvir to complete propulsion system sizing codes for all three payload cases Thaddaeus Halsmer, Propulsion

AAE450 Spring 2009 Lunar Lander Propulsion System 100 g, 10 kg and Arbitrary payload cases Thaddaeus Halsmer Thursday, March 12, 2009 1.Propulsion System

Embed Size (px)

Citation preview

Page 1: AAE450 Spring 2009 Lunar Lander Propulsion System 100 g, 10 kg and Arbitrary payload cases Thaddaeus Halsmer Thursday, March 12, 2009 1.Propulsion System

AAE450 Spring 2009

Lunar Lander Propulsion System 100 g, 10 kg and Arbitrary payload cases

Thaddaeus Halsmer

Thursday, March 12, 2009

1. Propulsion System Sizes, Performance and Power requirements

2. Propulsion system cost estimate3. Designed 10 kg payload hopper engines

4. Worked jointly with Saad Tanvir to complete propulsion system sizing codes for all three payload cases

Thaddaeus Halsmer, Propulsion

Page 2: AAE450 Spring 2009 Lunar Lander Propulsion System 100 g, 10 kg and Arbitrary payload cases Thaddaeus Halsmer Thursday, March 12, 2009 1.Propulsion System

AAE450 Spring 2009 Thaddaeus Halsmer, Propulsion2

(2)

(3)

(4)

(1)

Table 1 Engine performance parametersEngine No. Payload case/Description F_max/min [N] tb [s]

1 10 kg/hop engine 2x 192 (avg.) 134.52 100 g/main engine 1100/110 198.63 10 kg/main engine 1650/165 190.44 Arbitrary/main engine 27000/2700 250.2

Table 2 Engine dimensionsEngine No. Height [m] D_chamber [m] D_nozzle [m]

1 0.27 0.07 0.112 0.61 0.27 0.203 0.80 0.32 0.234 2.16 0.92 0.94

Stick is 6.5 feet high, same as a standard

doorway

** numbers on this page are a result of engine sizing scripts written by Saad Tanvir & myself. Credit must also be given to John Aitchison for its integration into the Ops trajectory code and many iterations to produce final sizing

Page 3: AAE450 Spring 2009 Lunar Lander Propulsion System 100 g, 10 kg and Arbitrary payload cases Thaddaeus Halsmer Thursday, March 12, 2009 1.Propulsion System

AAE450 Spring 2009 Thaddaeus Halsmer, Propulsion3

1) Propulsion system costs• Not including R&D/Testing to meet reliability requirements• Assumed $10000/kg Integration/manufacturing cost

Table 3 Cost estimate w/o additional R&D/Testing to meet reliablility reqs.Payload case: 100 g 10 kg Arbitrary

Design/Development 250 350 1412.5Integration 302 383 1706.3

Purchased Components 100 125 565R&D/Testing 0 0 0

Totals: 652 858 3683.8* dollar amounts in thousands

Table 4 Power requirement from OTV/Lander stage separation through lunar landingpayload case Power required not to exceed [watts]

100 g 12410 kg 148

Arbitrary 275

2) Propulsion System Power Requirements• Power for fluid control systems

Page 4: AAE450 Spring 2009 Lunar Lander Propulsion System 100 g, 10 kg and Arbitrary payload cases Thaddaeus Halsmer Thursday, March 12, 2009 1.Propulsion System

AAE450 Spring 2009 Thaddaeus Halsmer, Propulsion4

Table A1 Thrust chamber and nozzle key dimensionsSymbol Description 100 g 10 kg Arbitrary

D_ox spherical oxidizer tank diameter, [m] 0.47 0.54 0.67D_He spherical Helium tank diameter, [m] 0.37 0.42 0.52D_ch main engine chamber diameter, [m] 0.27 0.32 0.92L_ch main engine chamber length, [m] 0.32 0.47 0.82

L_noz main engine nozzle length, [m] 0.29 0.33 1.34D_noz main engine nozzle exit diameter, [m] 0.20 0.23 0.94

D_ch, hop hopper engine chamber diameter, [m] -- 0.07 --L_ch, hop hopper engine chamber length, [m] -- 0.47 --

L_noz, hop hopper engine nozzle length, [m] -- 0.16 --D_noz, hop hopper engine nozzle exit diameter, [m] -- 0.11 --

Table A2 Engine performance parametersSymbol Description 100 g 10 kg ArbitraryF_me max/min main engine thrust [N] 1100/110 1650/165 27000/2700

F_hopper Average hopper engine thrust [N] -- 192 --Isp_me Average main engine Isp [s] 320 320 320

Isp_hopper Average hopper engine Isp [s] -- 333 --P_ch max/min chamber pressure [psi] 300/30 300/30 300/30Ae/At nozzle area ratio 100 100 100

Additional prop system size and performance info

Page 5: AAE450 Spring 2009 Lunar Lander Propulsion System 100 g, 10 kg and Arbitrary payload cases Thaddaeus Halsmer Thursday, March 12, 2009 1.Propulsion System

AAE450 Spring 2009

Main Engine Dimensions

Dch

Dnoz

Lnoz

Lch

Dch,h

Dnoz,h

Lnoz,h

Lch,h

Hopper Engine Dimensions

Thaddaeus Halsmer, Propulsion5

Engine Dimension diagrams for previous slide

Page 6: AAE450 Spring 2009 Lunar Lander Propulsion System 100 g, 10 kg and Arbitrary payload cases Thaddaeus Halsmer Thursday, March 12, 2009 1.Propulsion System

AAE450 Spring 2009 Thaddaeus Halsmer, Propulsion6

SV01

SV02

High PressureHelium Tank

HV01

REG

CK01

CK02

MOV

F01

H2O2

Tank

HV02

RV01

SV04SV03 SV05

Item Description Mass, kg Power, W CostSV01 Ullage Solenoid Valve 0.36 24 2500SV02 Purge Solenoid Valve 0.36 24 2500SV03 Hop engine ISO Valve 0.36 24 2500SV04 Main Engine ISO Valve 0.36 24 2500SV05 Hop engine ISO Valve 0.36 24 2500MOV Oxidizer flow control valve 2 <100 <10,000 ?CK01 Check valve 0.008 0 <50CK02 Check valve 0.008 0 <50HV01 manual vent/fill valve 0.3 0 <500HV02 manual drain/fill valve 0.3 0 <500REG Ullage pressure regulator 1 0 <2500 ?F01 Oxidizer filter/screen 0.05 0 <50

RV01 Relief valve 0.3 0 <50

Bottom Line =====>>> 5.8 <150 <$21200

10 kg payload Fluid System Diagram

Page 7: AAE450 Spring 2009 Lunar Lander Propulsion System 100 g, 10 kg and Arbitrary payload cases Thaddaeus Halsmer Thursday, March 12, 2009 1.Propulsion System

AAE450 Spring 2009

Item Description Mass, kg Power, W CostSV01 Ullage Solenoid Valve 0.36 24 2500SV02 Purge Solenoid Valve 0.36 24 2500MOV Oxidizer flow control valve 2 <100 <10,000 ?CK01 Check valve 0.008 0 <50CK02 Check valve 0.008 0 <50HV01 manual vent/fill valve 0.3 0 <500HV02 manual drain/fill valve 0.3 0 <500REG Ullage pressure regulator 1 0 <2500 ?F01 Oxidizer filter/screen 0.05 0 <50

RV01 Relief valve 0.3 0 <50

Bottom Line =====>>> 4.7 <124 <$18700

SV01

SV02

High PressureHelium Tank

HV01

REG

CK01

CK02

MOV

F01

H2O2

Tank

HV02

RV01

100 g, & Arbitrary payload Fluid System Diagram

Thaddaeus Halsmer, Propulsion7

Page 8: AAE450 Spring 2009 Lunar Lander Propulsion System 100 g, 10 kg and Arbitrary payload cases Thaddaeus Halsmer Thursday, March 12, 2009 1.Propulsion System

AAE450 Spring 2009 Thaddaeus Halsmer, Propulsion

References:

Fluid control component price source:

[1] Reid, Bryan, (personal communication, February 2009), Sr. Director, Aerospace Business Development, Marotta Controls Inc., Montville, New Jersey

Hybrid Rocket Engine Design:

[2] Heister, S. D., (Personal communication, January 2009), Professor of Propulsion, Purdue University School of Aeronautics and Astronautics, Armstrong Hall Rm. 3331, West Lafayette, IN

[3] Humble, R.W., Henry, G. N., Larson, W. J., “Space Propulsion Analysis And Design,” 1 st ed., McGaw Hill, 1995

[4] Sutton, G. P., Biblarz, O., “Rocket Propulsion Elements,” 7 th ed., Wiley-Interscience Publication, 2001

[5] Caravella Jr., J. R., Heister, S. D., Wernimont, E. J., “Characerization of Fuel Regression in a Radial Flow Hybrid Rocket,” JOURNAL OF PROPULSION AND POWER, Vol. 14, No. 1, January-February 1998

[6] Casalino, L., Pastrone, D., “Optimal Design of Hybrid Rocket Motors for Launchers Upper Stages,” 44 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 21-23 July 2008, Hartford, CT

8