AAE556 Lecture 12

Embed Size (px)

Citation preview

  • 7/21/2019 AAE556 Lecture 12

    1/19

    AAE 556

    Aeroelasticity

    Lecture 12

    Swept wing aeroelasticity

    The flexural axis concept

    12-1Purdue Aeroelasticity

  • 7/21/2019 AAE556 Lecture 12

    2/19

    Purdue Aeroelasticity 12-2

    Swept wing static aeroelasticity

    Reading Sections 3.1 through 3.6

    i Goals Compute changes in aeroelastic loa on swept

    wings ! lift effecti"eness

    Explain effects using the flexural axis concept

    A

    #$

    C

    %

    1

    1

    1

    %section

    1&1

    sin

    2

  • 7/21/2019 AAE556 Lecture 12

    3/19

    Notes on Homework

    handed back today

    1' (ou must raw accurate) meaningful)

    eciphera*le +ree #oy $iagrams ,+#$s-

    2' (ou must ma.e your /0 neat an

    organie

    ' (ou must clearly ientify your answers

    3' (ou must chec. for imensional

    compati*ility5' 4rering euations

    Purdue Aeroelasticity 12-3

  • 7/21/2019 AAE556 Lecture 12

    4/19

    Fridays Homework

    roblem 3.3

    Purdue Aeroelasticity 12-4

    ( ) ( ) tan0.75

    tan2 2

    K Q d e Q d ed c e

    WQb QbbK

    + + = +

  • 7/21/2019 AAE556 Lecture 12

    5/19

    7eminer & 0ing structure iealiation with

    aeroynamic loas

    82

    81

    f

    %% cos

    *

    oC

    C

    springs resist upwar

    an ownwar motion

    12-5Purdue Aeroelasticity

    tancos

    on oLift L q cba

    = = +

    2cosnq q=

  • 7/21/2019 AAE556 Lecture 12

    6/19

    Static e!uilibrium e!uations

    = tant

    ( ) ( )

    =

    +

    e

    bQ

    QeKQte

    QbQtbK o

    2cos

    22

    n lQ q Sc =

    12-6Purdue Aeroelasticity

  • 7/21/2019 AAE556 Lecture 12

    7/19

    "e#lections

    +

    =

    eK

    Kb

    QK

    Qb o

    2

    tan

    1

    cos2bending

    slope

    +

    =

    eb

    K

    KQK

    Qe o

    2

    tan

    1

    cos

    twistangle

    12-7Purdue Aeroelasticity

  • 7/21/2019 AAE556 Lecture 12

    8/19

    $i#t e##ecti%eness

    +

    == tancos

    o

    on SaqLLift

    +

    =

    2tan1

    cos

    QbKeQKSaqL oon

    Substitute for the angles and

    12-8Purdue Aeroelasticity

  • 7/21/2019 AAE556 Lecture 12

    9/19

    Fle&ible wing li#t

    intermediate result

    += eKbK

    KK

    QqSaL oo

    2

    tan1

    1

    cos

    2

    tan

    =bK

    eK

    KKQD

    n lQ q Sc =

    12-9Purdue Aeroelasticity

  • 7/21/2019 AAE556 Lecture 12

    10/19

    Final result

    cos

    1

    l o

    D

    qSc

    L QQ

    =

    Lift on rigid surface

    1

    cos 1l oD

    LqqSc

    q

    = lift effecti"eness

    efinition

    12-10Purdue Aeroelasticity

  • 7/21/2019 AAE556 Lecture 12

    11/19

    'n e&ample wing

    =

    2

    tan1cos

    2

    0

    K

    K

    e

    c

    c

    b

    qqD

    2/250 ftlbqo=

    let

    o

    30=

    6=c

    b1.0=

    c

    e3=

    K

    K

    12-11Purdue Aeroelasticity

  • 7/21/2019 AAE556 Lecture 12

    12/19

    59992592991591995999'9

    9'5

    1'9

    1'5

    2'9

    lift effecti"eness "s'ynamic pressure

    ynamic pressure ,psf-

    lifteffecti"eness unswept wing

    i"ergence

    9 egrees sweep

    15 egrees sweep

    unswept wing

    $i#t e##ecti%eness %s. !

    So what(

    )hat are the

    conse!uences(

    12-12Purdue Aeroelasticity

  • 7/21/2019 AAE556 Lecture 12

    13/19

    Purdue Aeroelasticity 12-13

    Fle&ural a&is concept

    an attempt to e&plain aeroelastic e##ects

    Definition - the line along which the streamwise (or

    chordwise) angle of attack does not change when a discrete

    load is applied there.

    xo

    yo

    0tan == E

    upwar loa

  • 7/21/2019 AAE556 Lecture 12

    14/19

    Purdue Aeroelasticity 12-14

    Fle&ural a&is de#inition

    )hy the con#using de#initions(

    )hat is the di##erence between #le&ural a&is and elastic a&is(

    flexuralaxis

    xy

    upwar

    loa

    The air is off

    0tan == E

  • 7/21/2019 AAE556 Lecture 12

    15/19

    Purdue Aeroelasticity 12-15

    Fle&ural a&is concept

    an attempt to e&plain aeroelastic e##ects

    xo

    yo

    =

    o

    o

    y

    x1tan

    0tan == E

    =

    M

    M

    K

    K

    0

    0

    =

    o

    o

    Px

    Py

    M

    M

  • 7/21/2019 AAE556 Lecture 12

    16/19

    Purdue Aeroelasticity 12-16

    Step *1

    +ompute angular displacements

    =

    o

    o

    Px

    Py

    K

    K

    0

    01

    =

    =

    K

    x

    K

    y

    PxK

    yK

    KK

    P

    o

    o

    oo

    o

  • 7/21/2019 AAE556 Lecture 12

    17/19

    Purdue Aeroelasticity 12-17

    ,se #le&ural a&is de#inition

    0tan! ==

    K

    y

    K

    xP ooE

    0tan == E

    tantan =

    =

    K

    K

    y

    x

    o

    o

    This result always gi"es us a flexural axis location forwar of

    the usual elastic axis' :ncrease wing sweep*ac. rotates the

    flexural axis further forwar an opens up the istance

    *etween aero loas an the hypothetical flexural axis

    =

    =

    K

    x

    K

    y

    PxK

    yK

    KK

    P

    o

    o

    oo

    o

  • 7/21/2019 AAE556 Lecture 12

    18/19

    Purdue Aeroelasticity 12-18

    e&ample

    2=

    K

    K

    1=

    K

    K

    3=

    K

    K

    tantan =

    =

    K

    K

    y

    x

    o

    o

    K

    K

  • 7/21/2019 AAE556 Lecture 12

    19/19

    Purdue Aeroelasticity 12-19

    Summary

    i A loa place at the flexural axis creates no

    streamwise angle of attac. at that section

    i the flexural axis position epens on the

    stiffness ratio an the sweep angle

    i the flexural axis an the elastic axis coincie

    when there is no wing sweep

    i the flexural axis is upstream for a swept *ac.wing an ownstream for a swept forwar

    wing