29
Ab initio Alloy Thermodynamics: Recent Progress and Future Directions This work was supported by: NSF under program DMR-0080766 and DMR- 0076097. DOE under contract no. DE-F502-96ER 45571. AFOSR-MEANS under grant no. F49620-01-1- Axel van de Walle Mark Asta Materials Science and Engineering Department, Northwestern University Gerbrand Ceder Materials Science and Engineering Department, MIT Chris Woodward Air Force Research Laboratory, Wright-Patterson AFB

Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

  • Upload
    ember

  • View
    41

  • Download
    0

Embed Size (px)

DESCRIPTION

Ab initio Alloy Thermodynamics: Recent Progress and Future Directions. Axel van de Walle Mark Asta Materials Science and Engineering Department, Northwestern University Gerbrand Ceder Materials Science and Engineering Department, MIT Chris Woodward - PowerPoint PPT Presentation

Citation preview

Page 1: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Ab initio Alloy Thermodynamics:Recent Progress and Future Directions

This work was supported by:NSF under program DMR-0080766 and DMR-0076097.DOE under contract no. DE-F502-96ER 45571.AFOSR-MEANS under grant no. F49620-01-1-0529

Axel van de WalleMark Asta

Materials Science and Engineering Department, Northwestern University

Gerbrand CederMaterials Science and Engineering Department, MIT

Chris WoodwardAir Force Research Laboratory, Wright-Patterson AFB

Page 2: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

• Describe the current capabilities of ab initio thermodynamic calculations

• Illustrate how the Alloy Theoretic Automated Toolkit (ATAT) can help perform such calculations

Goals

ATAT homepage: http://cms.northwestern.edu/atat/

Page 3: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

What can first-principles thermodynamic calculations do for you?

Ducastelle (1991), Fontaine (1994), Zunger (1994,1997), Ozolins et al. (1998),Wolverton et al. (2000), Ceder et al. (2000), Asta et al. (2000,2001)

Composition-temperaturephase diagrams

Thermodynamics of stable

and metastable phases,

Short-range orderin solid solutions

Thermodynamic properties

of planar defectsPrecipitate morphology and

Microstructures

Page 4: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

First-principles thermodynamic data

Quantum Mechanical Calculations

Lattice model &Monte Carlo Simulations

Electronic entropyVibrational entropyEnthalpy

•Large number of atoms•Many configurations

•Small number of atoms•Few configurations

Ab initio thermodynamic calculations

ATAT

Page 5: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Outline

• Methodology– Modeling configurational disorder– Modeling lattice vibrations

• Applications (Ti-Al and Al-Mo-Ni)– Sample input files– Sample outputs

• Recent innovations

Page 6: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

The Cluster Expansion Formalism

Page 7: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Coupled SublatticesMulticomponent Cluster Expansion

Example: binary fcc sublattice withternary octahedral sites sublattice

Occupation variables:

1 2

1 1

“Decorated” clusters:

i 0, ,ni 1

1 , , n i 0, ,ni 1

E 1 , , n J

2,,

i

1 1

1 1 i

3,,

i

1 1 1

1 12

12

03

2 3

2

i

i ni, i, i

Same basic form:

“Not in cluster”

Sanchez, Ducastelle and Gratias (1984)Tepesch, Garbulski and Ceder (1995)

Page 8: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Cluster expansion fit

Which structures andwhich clustersto include in the fit?

Page 9: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Cross-validation

Example of polynomial fit:

Page 10: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

First-principles lattice dynamics

Least-squares fit toSpring model

First-principles data

ThermodynamicProperties

Phonon density of states

Computationallyintensive!

Direct force constant method(Wei and Chou (1992), Garbuski and Ceder (1994), among many others)

Page 11: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Effect of lattice vibrations onphase stability

Ozolins and Asta (2001) (Wolverton and Ozolins (2001))

Stable without vibrations(incorrect)

Stable with vibrations(correct)

How to handle alloy phase diagrams?

Page 12: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Coupling vibrational and configurational disorder

Need to calculate vibrational free energy for many configurations

Page 13: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Efficient modeling of lattice vibrations

• Infer the vibrational entropies from bulk moduli(Moruzzi, Janak, and Schwarz, (1988))(Turchi et al. (1991), Sanchez et al. (1991), Asta et al. (1993), Colinet et al. (1994))

• Calculate full lattice dynamics using tractable energy models(Ackland (1994), Althoff et al., (1997), Ravello et al (1998), Marquez et al. (2003))

• Calculate lattice dynamics from first principles in a small set of structures (Tepesch et al. (1996), Ozolins et al. (1998))

• Transferable force constants (Sluiter et al. (1999))

Page 14: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Bond length vs. Bond stiffness

van de Walle and Ceder (2000,2002)

Relationship holds across different structures

Chemical bond type andbond length: Good predictor of nearest-neighbor force constants (stretching and bending terms)

Page 15: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Length-Dependent Transferable Force Constants (LDTFC)

van de Walle and Ceder (2000,2002)

Page 16: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

A matter of time…T

ime

Human

Computer

1980 2003

Time needed to complete a given first-principles calculation

The procedure needs to be automated

Page 17: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Lattice geometry Ab initio code parameters

Effective cluster interactions Ground states

Thermodynamic properties Phase diagrams

MAPS (MIT Ab initioPhase Stability Code)

Cluster expansion construction

Ab initio code(e.g. VASP, Abinit)

Emc2 (Easy Monte Carlo Code)

The Alloy Theoretic Automated Toolkit

Page 18: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Application to Ti-Al AlloysSimple lattice input file

Simple ab initio code input file

Page 19: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Effective Cluster Interactions

Page 20: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Ground States Search

Page 22: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Monte Carlo output:Free energies

Can be used as input to CALPHAD approach

Page 23: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Short-range order calculations

Calculated diffuse X-ray scattering in Ti-Al hcp solid-solution

Energy cost of creating a diffuse anti-phase boundary in a Ti-Al short-range ordered alloy by sliding k dislocations

Page 24: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Calculated Ti-Al Phase Diagram

Assessed Phase Diagram:I. Ohnuma et al., Acta Mater.

48, 3113 (2000)

1st-Principles Calculations:van de Walle and Asta

Temperature Scale off by ~150 K

Page 25: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Ti-Al Thermodynamic Properties1st-Principles Calculations vs.

Measurements

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 0.1 0.2 0.3 0.4 0.5Al Concentration

DH

(kJ

/mo

le)

Calorimetry(Kubaschewski and Dench, 1955)

FLMTO-LDA

VASP-GGA

-30

-25

-20

-15

-10

-5

0

0 0.1 0.2 0.3 0.4

Al Concentration

DG

(kJ

/mo

le)

EMF Measurements(Samokhval et al., 1971)

Monte-CarloCalculations

Gibbs Free Energies (T=960 K)Heats of Formation

Page 26: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Recent Additions to ATAT

• Generation of multicomponent

Special Quasirandom Structures (SQS)

• General lattice dynamics calculations

• Support for GULP and Abinit

Page 27: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Multicomponent SQS GenerationSQS: Periodic structures of a given size that best approximate a random solid solution. (Zunger, Wei, Ferreira, Bernard (1990))

fcc SQS-12 ABC

bcc SQS-16 ABC2

fcc SQS-16 ABC2

hcp SQS-16 ABC2(2x2x2 supercells shown)

Page 28: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Automated lattice dynamics calculations

Thermal expansion of Nb

• Automatic determination of • supercell size• minimum number of perturbations (symmetry)

• Implements quasi-harmonic approximation

• crystal structure• force constant range

Input:• Phonon DOS• Free energy, entropy• Thermal expansion

Output:

Phonon DOS of disordered Ti3Al (SQS-16)

Examples:

Features:

Page 29: Ab initio Alloy Thermodynamics: Recent Progress and Future Directions

Conclusion• Essential tools for ab initio alloy thermodynamics:

– The cluster expansion (configurational entropy)– Transferable length-dependent force constants (vibrational entropy)

• Automated tools are essential• Thermodynamic properties can now be calculated

with a precision comparable to calorimetric measurements

• Future directions:– Automated Monte Carlo code for general multicomponent

systems.

ATAT homepage: http://cms.northwestern.edu/atat/