18
Introduction In the Northern Offshore of the Netherlands territorial waters the distribution of the Upper Jurassic – Early Cretaceous strata, more specifically of the Schieland and Scruff Groups, is limited to the Dutch Central Graben and Terschelling Basin (Figure 1). Outsid e the Dutch Central Grabe n and the Tersch elling Basin, only thin veneers of these strata occur on fringing highs such as the Schill Grund High and the Step Graben. Late Jurassic – Early Cretaceous strata are a target for oil and gas exploration. In the early days of the Dutch offshore exploration history various oil fields and some gas fields were discovered. Only the F3-FB field proved to be economic. Other oil fields, such as F14-A an F17-FA for example, have been, until now, not economic due to complex reservoir architecture predicting a low recovery. Interest in the exploration of the Late Jurassic – Early Cretaceous play ceased in the 1980’s. Renewed interest in this play came in the 7th round (1989) New stratigraphic insights in the ‘Late Jurassic’ of the Southern Central North Sea Graben and Terschelling Basin (Dutch Offshore) and related exploration potential O.A. Abbink*, H.F. Mijnlieff, D.K. Munsterman & R.M.C.H. Verreussel TNO B&O, Geological Survey of the Netherlands, P.O. Box 80015, NL-3508 TA Utrecht, the Netherlands * Corr espond ing aut hor. Email: oscar.abbink@tno.nl Manuscript received: December 2005; accepted: September 2006 Abstract Middle Jurassic – Early Cretaceous strata are a target for oil and gas exploration in the Dutch offshore . During the initial stages of the ‘Late Jurassic’ offshore exploration, various oil fields and a few gas fields were discovered of which only one, the F3-FB field, proved to be economically viable. In the Northern Offshore of the Netherlands, latest Middle Jurassic (Callovian) – earliest Cretaceous (Ryazanian) strata are mostly limited to the Dutch Central Graben and Terschelling basins. Outside the Dutch Central Grabe n and the Terschelling Basin only thin veneers of these strata occur on the fringing highs such as the Schill Grund High and the Step Graben. The geology of this non-marine to shallow marine succession is complex. The combination of lateral facies changes, repetitive log and facies characteristics in time, sea-level and climate changes, salt tectonics and structural compartmentalisation hamper straightforward seismic interpretation and log correlation. The large number of lithostratigraphic units defined in the Stratigraphic Nomenclature of the Netherlands illustrates the complexity of this time-interval. In recent years, new biostratigraphic techniques and newly acquired stratigraphic data led to the identification of a series of events which can be related to the tectonic, climatic, environmental and stratigraphic development of the ‘Late Jurassic’ in the Dutch Central Graben and Terschelling basins. Based on these data, three stratigraphic sequences can be recognized. Sequence 1 (Callovian – earliest Kimmeridgian) record s the initiation of the Dutch Central Graben, Sequence 2 (early Kimmeridgian – early Portlandian) that of the initiation of the Terschelling Basin. During sequence 3 (late Portlandian – Ryazanian) the Dutch offshore was draped by a regional transgression. These insights have directly impact on the exploration potential, which is discussed in two play concepts. The first is a strat-trap play in the fluvial/paralic sediments of Sequence 1 in the lows between the graben boundary and salt domes. The second example is the Spiculite play, which comprises a bioclastic sandstone reservoir at the top of a dome with a 4-way dip closure. These two examples highl ight the necessity of understanding the paleoenvironment and geography for assessing the future exploration potential.  Keywords: Dutch offshore , Late Jurassic, stratigraphy , paralic & shallow marine deposits, stratigraphic trap, spiculite, hydr ocarbons, exploration 221 Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006 Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 221 - 238 | 2006

Abbink 2006 New

Embed Size (px)

Citation preview

Page 1: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 1/18

Introduction

In the Northern Offshore of the Netherlands territorial waters

the distribution of the Upper Jurassic – Early Cretaceous strata,

more specifically of the Schieland and Scruff Groups, is limited

to the Dutch Central Graben and Terschelling Basin (Figure 1).

Outside the Dutch Central Graben and the Terschelling Basin,

only thin veneers of these strata occur on fringing highs such

as the Schill Grund High and the Step Graben.

Late Jurassic – Early Cretaceous strata are a target for oil

and gas exploration. In the early days of the Dutch offshore

exploration history various oil fields and some gas fields were

discovered. Only the F3-FB field proved to be economic. Other

oil fields, such as F14-A an F17-FA for example, have been,

until now, not economic due to complex reservoir architecture

predicting a low recovery. Interest in the exploration of the

Late Jurassic – Early Cretaceous play ceased in the 1980’s.

Renewed interest in this play came in the 7th round (1989)

New stratigraphic insights in the ‘Late Jurassic’ of the SouthernCentral North Sea Graben and Terschelling Basin (Dutch Offshore)and related exploration potential

O.A. Abbink*, H.F. Mijnlieff, D.K. Munsterman & R.M.C.H. Verreussel

TNO B&O, Geological Survey of the Netherlands, P.O. Box 80015, NL-3508 TA Utrecht, the Netherlands

* Corresponding author. Email: [email protected]

Manuscript received: December 2005; accepted: September 2006

Abstract

Middle Jurassic – Early Cretaceous strata are a target for oil and gas exploration in the Dutch offshore. During the initial stages of the ‘Late Jurassic’

offshore exploration, various oil fields and a few gas fields were discovered of which only one, the F3-FB field, proved to be economically viable.

In the Northern Offshore of the Netherlands, latest Middle Jurassic (Callovian) – earliest Cretaceous (Ryazanian) strata are mostly limited to the

Dutch Central Graben and Terschelling basins. Outside the Dutch Central Graben and the Terschelling Basin only thin veneers of these strata occur

on the fringing highs such as the Schill Grund High and the Step Graben. The geology of this non-marine to shallow marine succession is complex.

The combination of lateral facies changes, repetitive log and facies characteristics in time, sea-level and climate changes, salt tectonics and

structural compartmentalisation hamper straightforward seismic interpretation and log correlation. The large number of lithostratigraphic units

defined in the Stratigraphic Nomenclature of the Netherlands illustrates the complexity of this time-interval.

In recent years, new biostratigraphic techniques and newly acquired stratigraphic data led to the identification of a series of events which can

be related to the tectonic, climatic, environmental and stratigraphic development of the ‘Late Jurassic’ in the Dutch Central Graben and Terschelling

basins. Based on these data, three stratigraphic sequences can be recognized. Sequence 1 (Callovian – earliest Kimmeridgian) records the initiation

of the Dutch Central Graben, Sequence 2 (early Kimmeridgian – early Portlandian) that of the initiation of the Terschelling Basin. During

sequence 3 (late Portlandian – Ryazanian) the Dutch offshore was draped by a regional transgression. These insights have directly impact on the

exploration potential, which is discussed in two play concepts. The first is a strat-trap play in the fluvial/paralic sediments of Sequence 1 in the

lows between the graben boundary and salt domes. The second example is the Spiculite play, which comprises a bioclastic sandstone reservoir

at the top of a dome with a 4-way dip closure. These two examples highlight the necessity of understanding the paleoenvironment and geography

for assessing the future exploration potential.

 Keywords: Dutch offshore, Late Jurassic, stratigraphy, paralic & shallow marine deposits, stratigraphic trap, spiculite, hydrocarbons, exploration

221Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006

Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 221 - 238 | 2006

Page 2: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 2/18

when the ‘Friese Front restricted area’ was opened for explo-

ration. Numerous wells were drilled with the Late Jurassic –Early Cretaceous as target but few proved to be successful. The

discovery wells L06-02 and G16-01 found gas accumulations in

the Jurassic-Cretaceous strata but were at that time too small

for development.

The estimated total Stock Tank Oil Initially In Place (STOIIP)

in stranded fields amounts to 55 MMm3. The reserves, however,

remain low. A rough estimate is in the order of 5 - 7 MMm3.

The public domain data of the ‘Late Jurassic’ discoveries is

summarized in Table 1.

However, recently due to better understanding of the com-

plex geology of the Late Jurassic – Early Cretaceous, interest

in this play was renewed. This paper aims (1) to summarize

and reference the Late Jurassic – Early Cretaceous stratigraphic

information in the public domain, (2) to compile a compre-

hensive and integrated stratigraphic framework and (3) topresent two examples of potential plays in the Late Jurassic.

The first example of the latter aim is a speculative paralic/

fluvial Callovian-Oxfordian strat-trap play in the centre of the

rim synclines. The second example is the Spiculite Play.

Database and methodology

There are about 150 released wells in the study area. In the

past, TNO has studied most of these wells biostratigraphically.

This dataset forms the basis for the present study. In addition,

sedimentological, lithological and (limited) seismic information

contributed to the used dataset.

Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006222

Schill Grund High

Dutch Central Graben

Step Graben

Terschelling Basin

Horn Graben

Central Offshore Platform

Ameland Block

Lauwerszee Trough

Friesland Platform

Ringkobing-Fyn High

Vlieland Basin

Cleaver Bank High

L03-01

G13-01

L09-02 

L06-02 L05-04 

L05-03 

F18-02 

F18-01

F17-04 

F15-02 

F11-02 

F11-01

F05-01

F03-03 

F03-01

F15-A-01

F14-06-S1

588507

588507

613507

613507

638507

638507

663507

663507

     5     9     3     6     8     9     1

     5     9     3     6     8     9     1

     5     9     6     1     8     9     1

     5     9     6     1     8     9     1

     5     9     8     6     8     9     1

     5     9     8     6     8     9     1

     6     0     1     1     8     9     1

     6     0     1     1     8     9     1

     6     0     3     6     8     9     1

     6     0     3     6     8     9     1

     6     0     6     1     8     9     1

     6     0     6     1     8     9     1

     6     0     8     6     8     9     1

     6     0     8     6     8     9     1

Legend

Oil & gas wells

Correlation panel F17-4 - L5-4, Figure 7

Correlation panel F18-1 - L3-1, Figure 10

Seismic line F18-1 - L3-1, Figure 12

Seismic line L5, Figure 8

Basin with Lower Jurassic strata

Basin without Lower Jurassic strata

Platform

Gas field

Oil field

Key wells

SR

QP

O

NMLKJ

H

G

FE

D

B

 A

5

87

654

321

9

6

32

87

54

21

987

654

321

87

5

4

1

987

654

321

987

654

321

987

654

321

9

6

3

7

987

654

321

987

654

321

9

6

9

8

7

5

10

16

1413

1110

181716

151413

121110

18

1110

181716

151413

121110

181716

151413

121110

181716

151413

11

10

181716

151413

121110

181716

151413

121110

18

15

12

181716

1413

10

181716

151413

121110

0 2010Kilometers

Fig. 1. Location map and general overview 

of the tectonic elements of the northern Dutch

offshore including the Central Graben, Step

Graben and the Terschelling Basin, and the

location of the correlation lines (Figs 7 and 10)

and the location of the seismic lines (Figs 8

and 11).

Page 3: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 3/18

 Age interpretation

The age interpretations are based on palynology. Due to the

dominance of clastic sediments and the shallow to non-marine

character of the sediments, other fossil groups are of limited

use. The palynostratigraphy is according to Riding & Thomas

(1992), Duxbury et al. (1999) and Herngreen et al. (2000) for

the dinoflagellate cysts, and according to Abbink (1998) and

Herngreen et al. (2000) for the sporomorphs.

Paleoenvironmental and paleoclimatic interpretations

The majority of the paleoenvironmental interpretations are

based on palynological data. Based on a paleoecological model,

several Sporomorph EcoGroups (SEGs) can be recognized (for

further explanation see Abbink, 1998; Abbink 2004a, b). The

SEG model allows the recognition of sea-level fluctuations and

climate, based on palynology, in the very shallow to non-

marine environments of the Late Jurassic (Abbink, 1998;

Abbink et al., 2004a and b). Support for the age interpreta-

tions is based on the detailed climate reconstruction by Abbink

et al. (2001). This reconstruction recognizes a number of 

relatively distinct climate shifts expressed by the quantitativesporomorph data. These shifts form the boundaries of specific

climate intervals and are considered isochronous for the Dutch

territory.

In addition, core descriptions and, if present, ichnofossil

descriptions were used (Werver, 1996, 1997).

 Sea-level fluctuations

The common acceptance of sequence stratigraphic concepts

has led to a major role for sea-level changes in describing and

explaining basin development. After the publication by Haq et

al. (1988) several studies were conducted concerning the sea-

level fluctuations of the Callovian – Ryazanian in Northwest

Europe. Partington et al. (1993) defined and calibrated maxi-

mum flooding surfaces across the North Sea basin. Rioult et al.

(1991), DeGraciansky et al. (1999) and Jacquin et al. (1999)

revised the Haq et al. (1988) curve.

In our study, we have followed the concepts of Vail (e.g.

Vail et al., 1991) complemented with the MFS scheme by

Partington et al. (1993). The SEG model (Abbink et al., 2004a,

b) allows the correlation of MFS into terrestrial settings.

Together with the high resolution climate shifts, the MFS form

a reliable and consistent correlation tool. An overview of the

followed stratigraphy is given in Figure 2.

‘Late Jurassic’ stratigraphic sequences

The presence of three well recognizable unconformities or

their correlatable conformities has led to the recognition of 

three major stratigraphic sequences in the ‘Late Jurassic’

interval and one in the overlying Early Cretaceous interval.

These sequences, if preserved, are identifiable throughout the

study area. A schematic diagram of the four sequences with

their key lithostratigraphic units is given in Figure 3. The

lithostratigraphy (Van Adrichem Boogaert & Kouwe, 1993),

with matching colours, is given in Table 2. Sequence 4(Valanginian and younger) is not discussed in detail, as it falls

outside the ‘Late Jurassic’ interval.

Late Jurassic – earliest Cretaceous tectonic activity 

Large scale continental movements occurred throughout the

Middle and Late Jurassic. These movements were related to the

break-up of Pangea. For the North Sea region, several, so

called Cimmerian, tectonic phases, are described (e.g. Ziegler,

1990), which significantly affected the Northern Dutch Offshore

(Herngreen & Wong, 1989). During the Middle Jurassic, a doming

event in the North Sea occurred (Mid Cimmerian phase). The

southern extension of this Central North Sea Dome reached

223Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006

Table 1. Summary of Upper Jurassic – Lower Cretaceous oil and gas fields in the study area.

Field Discovery well Discovery date Stratigraphy Sequence Fluid Remark

B18-FA B18-03 1982 Lower Graben Fm. Seq. 1 Oil stranded

F03-FA F03-01 (type well) (F03-08) 1971 (1982) Lower Graben Fm. &. Scruff Greensand Seq. 1&3 Gas stranded

F03-FB F03-03 (F3-FB-101) (type well) 1974 (1992) Lower, Middle and Upper Graben Fm. Seq. 1 Oil & gas producing

F03-FC F03-07 1981 Scruff Greensand Seq. 1 Oil stranded

F14-A F14-05 1986 Lower Graben Fm. Seq. 1 Oil stranded

F17-FA F17-03 1982 Schieland Group Seq. 1 Oil & gas stranded

F17-FB F17-04 (type well) 1982 Schieland Group Seq. 1 Oil stranded

F18-FA F18-01 (type well) 1970 Schieland Group Seq. 2 Oil stranded

G16-FA G16-01 1985 Scruff/Zechstein Seq. 3&1 Gas Production planned

L01-FB L01-03 1985 Schieland Group Seq. 1 Oil stranded

L05-FA L05-05 1988 Terschelling Sandstone Mb. Seq. 1 Oil stranded

L06-FA L06-02 1990 Terschelling Sandstone Mb. Seq. 2 Gas Production planned

Page 4: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 4/18

the Dutch offshore, resulting in erosion and non-deposition

during the Middle Jurassic (Underhill & Partington, 1993). This

doming event caused the hiatus between the ‘Late Jurassic’,

and underlying Early Jurassic or older strata in the Northern

Dutch Offshore.

After deflation of the Mid North Sea Dome, a whole series

of basins came into existence, collectively referred to as the

Central Graben ranging from Norway in the north to the

Netherlands in the south. Subsidence of the Dutch Central

Graben led to an overall, stepwise, transgression coming from

the North throughout the ‘Late Jurassic’. The tectonic activity

in the ‘Late Jurassic’ (Late Cimmerian phase) affected

sedimentation patterns in the Central Graben (Ziegler, 1991;

Partington et al., 1993, this paper). The presence of a Late

Cimmerian Unconformity is frequently suggested, and it is

linked with the base of the Cretaceous (‘base Cretaceous

unconformity’). However, several tectonic pulses can be

recognized in the Dutch Central Graben, often indicated by

unconformities or hiatuses. Based on our results, three major

tectonic pulses are present which caused the boundaries

between the recognized sequences. These pulses are suggested

to be related to the rift process in the North Atlantic area

(Ziegler, 1991).

 Sequence 1: Middle Callovian – earliest Kimmeridgian

(Fig. 4)

The base corresponds to the inception of the Dutch Central

Graben and varies from Middle Callovian in the north (F3 area)

to earliest Oxfordian in the southernmost part (L05 area).Shallow marine deposits occur in the northern part of the

DCG, while in the southern part (L05 area) non-marine

deposits prevail. Apart from the Dutch Central Graben, most

Dutch basins such as the Terschelling Basin, the Vlieland

Basin, and the Broad Fourteens, West, and Central Netherlands

Basins in the south experienced no sedimentation at this

time. The top of this sequence is marked by an unconformity

in the early Kimmeridgian (Mutabilis Ammonite Chronozone),

caused by local uplift, at least in the south-western part of 

the Dutch Central Graben.

Within this Sequence, the Callovian/Oxfordian boundary is

present. This boundary is expressed by the continent-wide J46

MFS which coincides with the base of the Middle Graben Fm.

A characteristic coal doublet or triplet is present in this interval.

Another MFS, the Late Oxfordian J54 MFS forms the base

Kimmeridge Clay Fm. in F9/F6/F3 blocks. The Early Oxfordian

Densiplicatum climate shift is present (Middle Graben Fm.). The

palynological data of the depicted type well F03-03, unfortu-

nately, is not suitable for applying the SEG model (Fig. 4).

However, the climate shift is inferred from many other wells

such as F17-04, L05-03, L05-04 (Abbink et al., 2001), as well

as many un-published wells (TNO in-house information). For

detailed climate information of this time interval, we refer toAbbink et al., 2001.

 Sequence 2: Early Kimmeridgian – Early Portlandian

(Fig. 5)

The base of Sequence 2 is dated as Early Kimmeridgian

(Mutabilis Ammonite Chronozone) and the top as early Early

Portlandian (Anguiformis Ammonite Chronozone). The start of 

this sequence involved decreased sedimentation rates in the

northern part of the Dutch Central Graben while at the same

time, in the southeast, the Terschelling Basin came into

existence (Figs 3, 5).

Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006224

Stage  AmmoniteChronozones

2nd order 

Late

VALAN

G

IN

IA

N

      K      I      M      M      E      R      I      D      G       I      A      N

Late

runctoni

Late

      M      i      d 

      d       l    e 

            E        a         r            l        y    calloviense

macrocephalus

 jasoncoronatum

athleta

cordatumOXFORDIAN

Early

KIM

M

ER

ID

G

IAN

PORTLANDIAN

Late

Early

V

O

L

G

I

A

NLate

Middle

Early

Late

Early

RYAZANIAN

Early

robustumheteropleurum

involutumpavlowi

multicostatusclarkei

sphaeroidalishollwedensis

polytomus

crassustryptychoides

bidichotomoides

ivanovi

albidumstenomphalus

icenii

primitivusoppressus

anguiformiskerberusokusensis

glaucolithusalbanifittoni

rotunda

pallasioidespectinatus

hudlestoni

scitulus

elegans

eudoxusmutabilis

cymodoce

kochi

lamplughipreplicomphalus

wheatleyensis

autissiodorensis

baylei

tuberculata

            E        a         r            l        y   

      E    a     r      l    y  

CALL

OVIAN

      M      i      d 

      d       l    e 

rosenkrantziregulareserratum

glosense

tenuiserratumdensiplicatum

lambertimariae

            L        a 

            t         e 

      L    a 

      t     e 

DeGraciansky 1999and others (see refs)

et al.

3rd order 

2nd order 

3rd order 

mfs

sb

falling 136.4

140.2

143.6

148.0

164.7

161.2

155.7

150.8

145.5

141.4

 Ages(Ma)

Partington1993et al.

?

??

K10

J76

J74

J73

J72

J71

J66B

J66A

J64J63

J62

J56

J54B

J54A

J52

J46

J44

J42

paucodinium

149.0

L

a

te

J

U

R

A

S

S

IC

E

a

rly

C

R

E

T

A

C

E

O

U

S

Middle

Jura

ssic

Period

Fig. 2. Callovian – Valanginian stratigraphy including the absolute ages,

 stages and ammonite chronozones after Gradstein et al. (2005), sea-

level curve (DeGraciansky et al. 1999) and MFS and maximum extent of 

corresponding condensed horizon (red triangles) of the J-sequences of 

Partington et al. (1993). See text for further explanation.

Page 5: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 5/18

225Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006

   C  a  p  r  o  c   k

     V     A     L

     P     O      R

     T

     K     I     M

     C      A     L

     O      X

  m   f  s

   S  o  u

   t   h  e  r  n

   C  e  n

   t  r  a   l   G  r  a

   b  e  n

   T  e  r  s  c

   h  e

   l   l   i  n  g

   B  a  s

   i  n

   S  c

   h   i   l   l   G  r  u  n

   d

   N  o  r   t   h  e  r  n

   C  e  n

   t  r  a   l   G  r  a

   b  e  n

   S   t  e  p

   G  r  a

   b  e  n

   E

   F  r   i  e  s  e   F  r  o  n   t   F  m

   R   i   f  g  r  o  n   d  e  n   M   b

   L  o  w  e  r   G  r  a   b  e  n   F  m

   M   i   d   d   l  e   G  r  a   b  e  n   F  m

   U  p  p  e  r   G  r  a   b  e  n   F  m

   P  u  z  z   l  e

   H  o   l  e   F  m

   M   G   S  a  n   d  s   t  o  n  e   M   b

   U  n  n  a  m  e   d

   K   i  m  m  e  r   i   d  g  e   C   l  a  y   F  m

   C

   l  a  y   D  e  e  p   M   b

   S  c   h   i   l   l   G  r  u

  n   d   M   b

     R     Y     A

   L   L    E    L    E E   L    M   L L    E   M   E

   S

  c  r  u   f   f   G  r  e  e  n  s  a  n   d   F  m

   T  e  r  s  c   h  e   l   l   i  n  g

   S  a  n   d  s   t  o  n  e   M   b

   O  y  s   t  e  r   G  r  o  u  n   d   M   b

   S  c  r  u   f   f   A  r  g   i   l   l  a  c  e  o  u  s   M   b

   S  c  r  u   f   f   B  a  s  a   l

   S  a  n   d  s   t  o  n  e   M   b

   S  c  r  u   f   f   S  p   i  c  u   l   i   t  e   M   b

   S   t  o  r   t  e  m  e   l   k   M   b

   C  a  p  r  o  c   k

   C  a  p  r  o  c   k

   K   i  m  m  e  r   i   d  g  e

   C   l  a  y   F  m

   V

   l   i  e   l  a  n   d   C   l  a  y  s   t  o  n  e   F  m

   V   l   i  e   l  a  n   d   C   l  a  y  s   t  o  n  e   F  m

   V   l   i  e   l  a  n   d

   S  a  n   d  s   t  o  n  e   F  m  -   F  r   i  e  s   l  a  n   d   M   b

   1   2   3   4

   J   4   6

   J   5   4

     d    e    n    s     i  -

    p     l     i    c    a     t   u    m

     k    o    c     h     i

    s    c     i     t   u     l   u    s

   J   7   6

   M   F   S

   C   l   i  m  a   t  e

   J   6   3

   J   6   6

   W  a  r  m

  e  r

   D  r   i  e  r

   C  o  o   l  e  r

   M  o  r  e   h  u  m   i   d

   K   1   0

   J   7   2

   J   6   6   B

   J   6   4

   J   6   2

   J   5   4   A

   J   5   2

   J   4   4

   J   5   4   B

   J   4   6

   J   4   2

   J   6   3

   J   5   6

   J   6   6   A

   J   7   1

   J   7   3

   J   7   4

   J   7   6

   K   1   0

   J   7   3

   h  e  r  v  e  y

   i

  c  a

   l   l  o  v

   i  e  n  s  e

   k  o  e  n

   i  g   i

   j  a  s  o  n

  c  o  r  o  n  a

   t  u  m

  a   t   h   l  e   t  a

  c  o  r   d  a

   t  u  m

  r  o   b  u  s

   t  u  m

   H  e

   t  e  r  o  p

   l  e  u  r

   i  n  v  o

   l  u   t  u  m

  p  a  v

   l  o  w

   i

  m  u

   l   t   i  c  o  s

   t  a   t  u  s

  c   l  a  r   k  e

   i

  s  p

   h  a  e  r  o

   i   d  a

   l   i  s

   h  o

   l   l  w  e

   d  e  n  s

   i  s

  p  o

   l  y   t  o  m  u  s

  c  r  a  s  s  u  s

   t  r  y  p

   t  y  c

   h  o

   b   i   d   i  c   h  o

   t  o

   i  v  a  n  o  v

   i

  a   l   b   i   d  u  m

  s   t  e  n  o  m  p

   h

   i  c  e  n

   i   i

  p  r   i  m

   i   t   i  v  u  s

   k  e  r   b  e  r  u  s

  o   k  u  s  e  n  s

   i  s

  g   l  a  u  c  o

   l   i   t   h  u  s

  a   l   b  a  n

   i

   f   i   t   t  o  n

   i

  r  o   t  u  n

   d  a

  p  a

   l   l  a  s

   i  o   i   d  e  s

  p  e  c

   t   i  n  a

   t  u  s

   h  u

   d   l  e  s

   t  o  n

   i

  s  c

   i   t  u   l  u  s

  e   l  e  g  a  n  s

  e  u

   d  o  x  u  s

  m  u

   t  a   b   i   l   i  s

  c  y  m  o

   d  o  c  e

  p  r  e  p

   l   i  c  o  m  p

   h

  w   h  e  a

   t   l  e  y  e  n  s

  a  u

   t   i  s  s

   i  o   d  o  r

   b  a  y

   l  e   i

   t  u   b  e  r  c  u

   l  a   t  a

  r  o  s  e  n

   k  r  a  n

   t  z   i

  r  e  g  u

   l  a  r  e

  s  e  r  r  a

   t  u  m

  g   l  o  s  e  n  s  e

   t  e  n  u

   i  s  e  r  r  a

   t  u  m

   d  e  n  s

   i  p   l   i  c  a

   t  u  m

   l  a  m

   b  e  r   t   i

  m  a  r   i  a  e

  o  p  p  r  e  s  s  u  s

  a  n  g  u

   i   f  o  r  m

   i  s

  r  u  n  c

   t  o  n

   i

   k  o  c

   h   i

   l  a  m  p

   l  u  g

   h   i

   F   i  g .

   3 .

   S  c   h  e  m  a   t   i  c   d   i  a  g  r  a  m   o

   f   t   h  e   f  o  u  r  s  e  q  u  e  n  c  e  s  w   i   t   h   k  e  y   l   i   t   h  o  s   t  r  a   t   i  g  r  a  p   h   i  c  u  n   i   t  s  o   f   t   h  e  n  o  r   t   h  e  r  n

   D  u   t  c   h  o   f   f  s   h  o  r  e .

Page 6: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 6/18

This sequence contains two major MFS, the Early Kimmerid-

gian J63 MFS which shows the first marine ingressions in the

Terschelling Basin and the Late Kimmeridgian J66 MFS which

coincides with the top of the Terschelling Sandstone Mb. (Fig. 5).

The beginning of the Late Jurassic arid phase, marked by the

Late Kimmeridgian Scitulus climate shift, correlates to the base

Oyster Ground Claystone Mb. Sequences 2 and 3 are relatively

thick in the Terschelling Basin as compared to the Central

Graben. Moreover, a hiatus occurs in the Central Graben, but

deposition was continuous in the depocentre of the TerschellingBasin. The SEG data from well L06-02 clearly show a strong

increase in ‘Coastal Warm’ elements (Fig. 5). This EcoGroup is

normally present along the marine coast. However, their

dominance suggests invasion of the lowland area. This is

indicative of (very) arid conditions (Abbink et al., 2001).

 Sequence 3: late Early Portlandian – Ryazanian (Fig. 6)

The base of Sequence 3 is dated as late Early Portlandian

(Anguiformis Ammonite Chronozone) and the top as basal

Valanginian (‘base Cretaceous’). Within this sequence all other

‘Late Jurassic’ basins also came into existence and all previous

deposits were overstepped. The Early Portlandian J73 MFS is

represented in a large part of the Dutch offshore (Spiculite

Mb. and correlative equivalents). The Early Ryazanian J76 MFS

forms the base Clay Deep and Schill Grund Mbs. Within this

sequence the Early Ryazanian Kochi climate shift (± base

Stortemelk Mb.) is a significant marker. Within Sequence 3,

the arid phase ended, and the climate returned to wet, tropical

conditions (‘Wealden’ facies) as indicated by the SEGs (Fig. 6;

see also Abbink et al., 2001).

Younger sequences

Although not further discussed here, the base of the overlying

sequence (4) is formed by a regional, overall Cretaceous

transgression. All intermediate highs and non-marine areas

show marine depositions from this time onward. Locally, the

base of this sequence may be formed by a hiatus (Fig. 11).

Potential oil and gas play prospects inthe Dutch ‘Late Jurassic’

A play, in petroleum geological terms, consists of three essential

elements: the source rock, the reservoir, and the seal. These

elements can be mapped on their presence or absence but they

Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006226

Rijnland Group KN Vlieland Oost-1 1522 m - 2246 m

Vlieland Claystone Fm KNNC Vlieland Oost-1 1650 m - 220 m

Vlieland Sandstone Fm KNNS Vlieland Oost-1 2200 m - 2246 m

Friesland Mb KNNSF Vlieland Oost-1 2200 m - 2246 m

Scruff Group SG F03-3 1682 m - 2547 m

Scruff Greensand Fm SGGS F15-2 3021 m - 3276 m

Stortemelk Mb SGGSS F18-2 2079 m - 2105 m

Scruff Spiculite Mb SGGSP F18-1 2193 m - 2230 m

Scruff Argillaceous Mb SGGSA F15-2 3065 m - 3246 m

Scruff Basal Sandstone Mb SGGSB F15-2 3246 m - 3267 m

Kimmeridge Clay Fm SGKI F03-3 1780 m - 2547 m

Schill Grund Mb SGKIS F18-2 2042 m - 2079 m

Clay Deep Mb SGKIC B18-2 2225 m - 2357 m

Schieland Group SL Nieuwerkerk-1 1052 m - 1942 m

Delfland Subgroup SLD F03-3 2547 m - 3652 mCentral Graben Subgroup SLC F03-3 2547 m - 3652 m

Friese Front Fm SLCF F18-2 2440 m - 2734 m

Terschelling Sandstone Mb SLCFT L09-2 3028 m - 3054 m

Oyster Ground Claystone Mb SLCFO F18-2 2440 m - 2512 m

‘Main Friese Front Mb’ SLCFM

Rifgronden Mb SLCFR F17-4 2497 m - 2572 m

Puzzle Hole Fm SLCP F11-2 2175 m - 2397 m

Upper Graben Fm SLCU F03-3 2547 m - 2670 m

Middle Graben Fm SLCM F03-3 2670 m - 3090 m

Middle Graben Sandstone Mb SLCMS F05-1 2628 m - 2648 m

Lower Graben F m SLCL F03-3 3090 m - 3652 m

Table 2. ‘Late Jurassic’ lithostratigraphic subdivision, including abbreviations and type sections. Colours correspond to the formation colours in Figure 3.

Page 7: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 7/18

may also be mapped in more detail. For example, the source

rock maturity, or the reservoir thickness or quality can be

mapped. Play mapping is a prerequisite for the understanding

of the petroleum system in which the play-maps are integrated

with timing of the various events such as structuration,

maturation and migration.

In our study area the ‘Late Jurassic’ play is a proven play

concept. Various fields (Table 1) are found with oil or gas

accumulations in ‘Late Jurassic’ reservoirs. Hydrocarbon typing

indicates that the oil is predominantly sourced from the Jurassic

Posidonia Shale and the gas from the Carboniferous. All fields

listed in table 1 are structural closures such as four way dip

closure on the top of a salt dome (F18-FA or L6-A) or a turtle

back structure like F3-FB, although the structure of the latter

field is considered to include a strat-trap component. In the

following section, two different ‘Late Jurassic’ play types are

described.

227Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006

3

1

J46

J54

J76

densiplicatum

?

?

HIATUS

F03-03GR DT

J73

K10

2   E .

   P  o  r   t   l  a  n   d  -

   K   i  m  m  e  r   d  g   i  a  n

   E  a  r

   l  y   K   i  m  m  e  r   i   d  g   i  a  n

   O  x   f  o  r   d   i  a  n

L. PortlRyazan

   C  a   l   l  o  v   i  a  n

J63

   E  a  r   l  y

   J  u  r  a  s  s   i  c

   S   L   C   L

   S   L   C   M

   S   L   C   U

   S   G   K   I

   S   G   K   I

SGKIC

SGGS

  1600 m

  1650 m

  1700 m

  1750 m

  1800 m

  1850 m

  1900 m

  1950 m

  2000 m

  2050 m

  2100 m

  2150 m

  2200 m

  2250 m

  2300 m

  2350 m

  2400 m

  2450 m

  2500 m

  2550 m

  2600 m

  2650 m

  2700 m

  2750 m

  2800 m

  2850 m

  2900 m

  2950 m

  3000 m

  3050 m

  3100 m

  3150 m

  3200 m

  3250 m

  3300 m

  3350 m

  3400 m

  3450 m

  3500 m

  3550 m

  3600 m

  3650 m

  3700 m Fig. 4. Example of Sequence 1 in wellF03-03 with major MFS (J numbers)

and climate shifts.

Page 8: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 8/18

Paralic/fluvial Sequence 1 strat-trap play

 Source rock 

The source rock for this play in case of oil is the Early Jurassic

Posidonia Shale. Claystone intervals in the Kimmeridgian or

the Ryazanian Clay Deep Formation may also contain source

rock quality beds (from Lokhorst et al., 1998). The main

source rocks for the gas accumulations in this play are the

Carboniferous coals and bituminous shales. The migration

route may be tortuous and long but is proven to be present

because Carboniferous sourced gas is found above the regional

Zechstein seal in the Jurassic-Cretaceous L6-A & G16-A gas

fields.

Seal

Seals for the Sequence 1 reservoirs in the oilfields in the study

area (Table 1) are the Vlieland Claystone in a truncation trap

configuration. In addition, clay intervals in Sequence 1

deposited under higher base-level or sea-level conditions may

prove to be laterally extensive and may act as an intra-

formational seals (stratigraphic traps) for the intercalated

channel sandstones. In general, the terrestrial and paralic clays

within the Sequence 1 do not appear to possess a seal capacity

for gas. Moreover, locally the sealing capacity may be low due

to the nature of the claystones, possibly due to soil formation

processes. This may have created a fine network of minor seal

breaches which is presumed to act as the migration route for

gas but, in general, not for oil. Oil seals may, therefore, be

Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006228

K10

J63

J76

scitulus

?

L06-02  2100m

J66

J73

GR DT

3  kochi 

2

Lowland ‘cooler’Coastal ‘cooler’Lowland ‘warmer’Coastal ‘warmer’

   L  a   t  e

   R  y  a  z  a  n   i  a  n

   P  o  r   t   l  a  n   d   i  a  n

   L  a   t  e   K   i  m  m  e  r   i   d  g   i  a  n

   E  a  r   l  y   K   i  m  m  e  r   i   d  g   i  a  n

EarlyRyazan

Permian

   S   L   C   F   M

   S   L   C   F   O

SLCFT

   S   G   K   I

   S   G   G   S

SGGSS

  2125 m

  2150 m

  2175 m

  2200 m

  2225 m

  2250 m

  2275 m

  2325 m

  2350 m

  2375 m

  2400 m

  2425 m

  2450 m

  2475 m

  2500 m

  2525 m

  2550 m

  2575 m

  2600 m

  2625 m

  2650 m

  2675 m

  2700 m

  2725 m

  2300 m

Fig. 5. Example of Sequence 2

in well L06-02 with major MFS 

(J numbers) and climate shifts.

Page 9: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 9/18

formed by above mentioned clay prone intervals in the succes-

sion. The presence of stacked oil-water contacts in, for example,

the L05-FA field indicates that claystones have a sealing

capacity, and that stratigraphic traps occur in Sequence 1.

Reservoir 

Sequence 1 comprises interbedded claystones and sandstones

of non-marine to very shallow marine (lagoonal) origin.

Correlation of the various sequences between wells based on

well logs is rather difficult. An example of the classic log

correlation between wells one based on the thick sandy inter-

vals is shown in Figure 7 (correlation highlighted in yellow).

However, integration of the biostratigraphical information and

facies interpretation from cores provides a different picture. In

particular, the SEG information provides a number of discrete,

isochronous events. The Densiplicatum climate shift (after

Abbink et al. 2001) is given in red (Fig. 7). The MFS are based

on the Coastal/Lowland ratio (Fig. 7; green curve; see Abbink

et al., 2004a, b). Sand bodies, stacked channel sandstones and

tidal channels, appear discontinuous and are enclosed in

floodplain and lagoonal clays with common soil horizons. The

seismic facies of Sequence 1 is characterized by discontinuous

reflectors (Fig. 8) which can be explained by the discontinuous

nature of the Sequence 1 sandstones.In Figure 9, a seismic time thickness map for the Dutch

Central Graben is given. This relative thickness map approxi-

mates the thickness of Sequence 1 in the Dutch Central Graben.

In the Terschelling Basin (Fig. 1), this map mainly reflects the

thickness of Sequence 2 (Fig. 9). From the seismic time thick-

ness map of Sequence 1 in the Dutch Central Graben (Fig. 9),

it may be deduced that these highs were in late Jurassic times

also highs, incipient highs or basin fringes. It may be concluded

that the major fluviatile axes were situated in the lows

between these highs and that the most sand prone interval of 

the paralic/fluvial Early and Middle Graben Formation will also

be situated in the lows (Fig. 10). Almost all wells in the study

area that penetrate Sequence 1 are situated on present day

229Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006

G13-01

GR DT

K10

J733

4

kochi J76

Lowland ‘cooler’

Coastal ‘cooler’Lowland ‘warmer’Coastal ‘warmer’

   V  a   l  a  n  g   i  n   i  a  n

  -   H  a  u   t  e  r   i  v   i  a  n

   L   R  y  a  z

   P  o  r   t  -

   E

   R  y  a  z

Humidity

Temperature

Permian

SGGS

SGKIS

   K   N

   N   C

  2350 m

  2355 m

  2360 m

  2365 m

  2370 m

  2375 m

  2380 m

  2385 m

  2390 m

  2395 m

  2400 m

  2405 m

  2410 m

  2415 m

  2420 m

  2425 m

  2430 m

  2435 m

  2440 m

  2445 m

  2450 m

  2455 m

  2460 m

  2465 m

  2470 m

  2475 m

  2480 m

Fig. 6. Example of Sequence 3 in well G13-01 with major MFS (J numbers) and climate shifts. The SEG curves indicate the change from ‘Late Jurassic 

arid phase’ to the Early Cretaceous wet ‘Wealden’ conditions (yellow line).

Page 10: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 10/18

Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006230

   ?

      M

   2   7   5   0

   2   5   7   5

     L     0     5   -     0     3

        2        5        3        0

        2        6        0        0

        2        7        0        0

        2        7        7        0

   2   5   5   0

   2   7   4   5

   2   6   5   0

   0

   A  g  e

   D  e  p   t   h

   G  a  m  m  a  -   R  a  y

   S  a  m  p   l  e  s

   L   i   t   h  o   l  o  g  y

   1   5   0

   A   P   I

   R  y  a  z  a  n   i  a  n

   E  a  r   l  y

   J  u  r  a  s  s   i  c

   L   a  t   e M i   d   d l   e  m  u   t  a

   b  a  y   l

  r  o  s  e

       ?     r     e     g     u

  s  e  r  r

     g       l     o     s

       t     e     n     u

   d  e  n  s

     O     X    F     O     R     D  I     A     N

   ?     c     o     r       d

   C

   /   L

   0

   1 .   0

   C   l   i  m  a   t  e  s   h   i   f   t

   P  a   l  y  n  o   l  o  g  y

   D  e  p   t   h

   C

   /   L

   0

   1 .   0

   2   7   5   0

   2   6   5   0

   2   8   2   5

   2   6   0   0

   2   7   0   0

   2   8   0   0

       L       0       5   -       0       4

   2   8   5   0

   0

    O    X    F    O    R    D  I    A    N   A  g  e

   G  a  m  m  a  -   R  a  y

   S  a  m  p   l  e  s

   L   i   t   h  o   l  o  g  y

   1   5   0

   A   P   I

   R  y  a  z  a  n   i  a  n

   E  a  r   l  y

   J  u  r  a  s  s   i  c

   L   a  t   e   M i   d   d l   e      c     o     r       d

    E   a  r l   y    b  a  y   l

    E   a  r l   y   C   A

  r  o  s  e

       ?     r     e     g     u

  s  e  r  r  a

     g       l     o     s

       t     e     n     u

   d  e  n  s

   l  a  m   b

  m  a  r   i

 

   C   l   i  m  a   t  e  s   h   i   f   t

   P  a   l  y  n  o   l  o  g  y

     N

     S

     J     4     6

     J     5     4

     d    e    n    s     i    p     l     i    c    a    t   u    m

     C     l     i    m    a     t    e     S     h     i     f     t

   C

   /   L

   0

   1 .   0

   2   5   9   0

   2   3   7   0

   0

    p  .    p   C     A    L    L     O     V  I     A     N

    E   a  r l   y L   a  t   e     M i   d   d l   e

     O     X    F     O     R     D  I     A     N

    p  .    p   A  g  e

   2   4   5   0

   2   5   5   0

   2   4   0   0

   2   4   1   1

   2   5   0   0

   2   5   7   2

   D  e  p   t   h   (  m   )

   G  a  m  m  a   R  a  y

   S  a  m  p   l  e  s

   L   i   t   h  o   l  o  g  y

   1   5   0

   A   P   I

   U

   R  y  a  z  a  n   i  a  n

   l  a   t  e    E

  a  r   l  y

   J  u  r  a  s  s   i  c

  c  o  r   d

   d  e  n  s

   l  a  m   b

  m  a  r   i

     F     1     7   -     0     4

   P  a   l  y  n  o   l  o  g  y

   C   l   i  m  a   t  e  s

   h   i   f   t

     2     1

     3

     3

     3

     1

     1

   2   7   k  m

   2   k  m

      K  I      M

    K  I     M     M

    E   a  r l   y

   P  o  r   t   l  a  n   d   i  a  n

    p  .    p

    p  .    p

   F   i  g   7 .

   C  o  r  r  e   l  a   t   i  o  n  p  a  n  e   l   f  r  o  m    F

   1   7 -   0

   4   t  o   L   0   5 -   0

   3   /   L   0   5 -   0

   4   (  n  o  r   t   h -  s  o  u   t   h   ) .

   T   h  e  r  e  c  o  g  n   i  z  e   d   J -  s  e  q  u  e  n  c  e   M

   F   S   (   b   l  u  e  c  o  r  r  e   l  a   t   i  o  n   l   i  n  e  s   )  a  r  e   b  a  s  e   d  o  n   t   h  e   S   E   G   C   /   L  c  u  r  v  e   (  s  e  e   t  e  x   t   f  o  r   f  u  r   t   h  e  r  e  x  p   l  a  n  a   t   i  o  n   ) .

   T   h  e   D  e  n  s   i  p   l   i  c  a   t  u  m

  c   l   i  m  a   t  e

  s   h   i   f   t  c  o  r  r  e   l  a   t   i  o  n   (  r  e   d   l   i  n  e   )   i  s  a   f   t  e  r   A   b   b   i  n   k  e   t

  a   l .   (   2   0   0   1   ) .

   N  o   t  e   t   h  a   t   t   h  e   i  s  o  c   h  r  o  n  o  u  s  c  o  r  r  e   l  a   t   i  o  n   l   i  n  e  s   (   M   F   S ,  c   l   i  m  a   t  e  s   h   i   f   t   )  a  r  e   i  n  c  o  n   f   l   i  c   t

  w   i   t   h   t   h  e   l   i   t   h  o   l  o  g   i  c  a   l  c  o  r  r  e   l  a   t   i  o  n  s   (  m  a  r   k  e   d   b  y

   t   h  e  y  e   l   l  o  w  p   l  a  n  e   ) .

   T   h   i  s   i   l   l  u

  s   t  r  a   t  e  s   t   h  e   d   i  s  c  o  n   t   i  n  u  o  u  s  n  a   t  u  r  e  o   f   t   h  e  c   h  a  n  n  e   l  s  a  n   d  s .   T   h  e   l  o  c  a   t   i  o  n   i  s  g   i  v  e  n   i  n   F   i  g  u  r  e   1 .

Page 11: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 11/18

structural highs (Figs 1, 9) except for the wells F03 field.

Although on a present day high (turtle back structure), the

F03 oil field is situated in the basin axis in which an increased

sand content is present (i.e. in the basin centre of Figure 10).

This supports the concept that, during Sequence 1, more

(most) sand was deposited in the central, deeper parts of the

Dutch Central Graben along the major fluviatile axes.

Concept and model for the Sequence 1 strat-trap play

Figure 10 schematically shows the major play elements. The

Posidonia Shale is underlying the presumed Sequence 1 reservoir

interval. In the present day basin axis of the Central Graben, the

Posidonia Shale is a good quality, mature oil source rock. When

migrating upwards, the oil entered the Sequence 1 sediments

and the channel sandstones acted as a favourable fairway.

However, these sandstones are laterally discontinuous and areenclosed within claystones which may provide top and seat seal

resulting in a stratigraphic trap in which the oil accumulates.

The main play risk is the quality of the seal. The presence of 

oil accumulations up dip from the basin centre (e.g. L05-FA)

with stacked oil-water contacts is considered support for the

sealing quality of the claystones. However, it may be concluded

that the oil passed the strat-trap. This may suggest the stat-

trap play lacks seal integrity in some cases. Alternatively, it

may be concluded that the strat-trap is filled to spill point

and excess oil bypassed the oil filled stacked channel sands.

Shallow marine Sequence 3, Spiculite play

 Source rock 

The Spiculite play is thought to be primarily a gas play but it

could also be an oil play under the right conditions. The source

rocks are the same as described in the section on the strat-trap play.

231Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006

2

1

3

L05-03/04

W

L05-03/04   L03-01W   E23 km

Fig. 8. Seismic profile of the L05-03/04 area towards L03-01 (W-E) showing the overall view (right hand corner) and the details image (flattened on

the base of Sequence 3; green line). The base of Sequence 1 is indicated with light green, and the base of Sequence 2 with pink. Sequence 1 thickens

 from the sides towards the centre of the sync line. Note the discontinuous (channel?) nature of the ref lections compared to those of Sequence 2. The

location is given in Figure 1.

Page 12: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 12/18

 Spiculite reservoir 

The main focus of this section is to present ideas on the

distribution of the Spiculite reservoir. This is done by proposing

a conceptual model based on wells F18-01 and L03-01 (Fig. 11).

The reservoir of this play comprises the sandstones of the

Spiculite Member of the Late Jurassic Scruff Greensand

Formation (Sequence 3). The name Spiculite Member is given

to the unit because of the abundance of sponge spicules in the

sediment; in some cases spicules make up the bulk of the

framework forming a bioclastic sandstone. Spicules are the

skeletal elements of sponges. The spicules in the sediments of 

Spiculite Member are determined to be mona-, tri- and possibly

tetraxons of amorphous silica and are interpreted to be the

remnants of the siliceous sponges (Demospongia).

Regional correlation of the Spiculite Member shows

remarkable thickness variations (Figs 11, 12). The Spiculite

Member in the F18-01 well is about 40m whereas in well L03-01

it is about three times thicker. Biostratigraphical data proves

that in both locations the time span represented by the

sediments is the same. In both wells no erosion of the top of 

the formation occurred nor is the basal part missing due to

onlap. The thickening observed in the wells is also visible on

seismic (Fig. 12). From F18-01 situated on the top of a salt

dome, the Spiculite Member thickens towards L03-01. Hence, the

section in F18-01 is considered condensed relative to L03-01.

Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006232

L03-01

L09-02

L06-02L05-04

L05-03

F18-01F18-02F17-04

F15-A-01

F15-02

F14-06-S1

F11-02

F11-01

F05-01

F03-03

F03-01

B18-02

0 10 20 km

Fig. 9. Seismic time thickness map approximating the relative thickness of Sequence 1 in the Central Graben and the relative thickness of Sequence 2 in

the Terschelling Basin (red is thickest; dark blue is thinnest). Note that this map based on a relatively low dataset, and it is for explanatory purposes only.

Page 13: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 13/18

Cores from the Spiculite Member of the two wells were

described in detail (Werver, 1996). The sediments comprise

intensely bioturbated, fine grained, glauconitic sandstones

and clayey sandstones with no sedimentary structures except

for ichnofossils traces (Fig. 13). The intense bioturbation and

the presence of a fair amount of glauconite in the sediment

are the result of low sedimentation rates in a shallow marine

environment (Odin et al., 1981). Remarkable is the difference

in clay content (observed macroscopically in cores as well as in

thin sections (Figs 13, 14). In F18-01, it is relatively low com-

pared to L03-01. A detailed depositional environment inter-

pretation was made using ichnofossil associations (Fig. 13).

This indicates that the depositional environment of F18-01 is

predominantly offshore to shoreface whereas an open marine

shelf environment is interpreted in L03-01. This interpretation

is in line with the difference in clay content. Note the change

in amplitude on the seismic section (Fig. 11) of the top

Spiculite which hints on laterally varying impedance contrast.

This may be due to lithology effects or be an indication of a

porosity trend.

Qualitative petrographical evaluation of a series of thin

sections from the cores of both wells confirmed the macroscopicobservations above and revealed additional differences (Fig. 14):

– The content of sponge spicules in F18-01 is visibly higher

than in L03-01.

– The amount of glauconite grains in L03-01 appears to be

higher than in F18-01.

– Visible porosity in F18-01 is high whereas in L03-01 visible

porosity is almost non-existent.

– In F18-01 a fair amount of the sponge spicules were dissolved

resulting in a high percentage of mouldic pores. On the other

hand primary porosity is reduced due to plugging with micro-

crystalline quartz cement, thus creating an inverse frame-

work. In the thin sections of L03-01 visible porosity is low

and sponge spicules can be recognized as framework grains.

The resulting reservoir properties of the two facies are

remarkably different (Figs 14, 15). F18-01 shows excellent

reservoir quality both in porosity and permeability whereas in

L03-01 the permeability is very low (Fig. 15).

Concept and model for the Spiculite reservoir location

and quality 

The abundance of siliceous sponge reefs occurring in the Late

Jurassic which appears to be quite unique phenomena (Kiessling

et al., 1999). Siliceous demosponges rarely are preserved as

they disintegrate when deceased, leaving only their skeletal

elements, the spicules, behind. Demosponges are active filter

feeding organisms consuming predominantly nannoplankton,

mainly bacteria. As the abundance of bacteria decrease with

depth this class of sponges can be found in shallow marine

(30 - 90 m) depositional environments. Demosponges are sensi-

tive to sediment input because sediment particles clog up their

inhalant pores (Leinfelder et al., 1996). The Spiculite of F18

and L3 can be interpreted bearing this information in mind.

The high concentration of spicules can be explained by a

sponge bloom. The Late Eocene biosiliceous, sponge rich sedi-ments of South-western Australia are thought to be an analogue

(Gammon et al., 2000). The sediments seen in F18-01 are similar

to the pure spiculite, Sp2, facies and the sediments of L03-01

fit better in the muddy spiculite (Sp1) facies of Gammon et al.

(2000). Gammon et al. (2000) explained the extraordinary

bloom of siliceous sponges by proposing an semi enclosed

marine environment where influx of nutrient rich (including

silica) waters entered this environment from the hinterland.

The semi-enclosed nature of the depositional area prevented

the silica from being diluted or buffered directly by ‘open

marine’ or oceanic waters.

During ‘Sequence 3’ the southern part of the Central Graben

had an elongated nature. Local seafloor topography was created

233Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006

Base Sequence 2

EarlyJurassicdeposits

EarlyJurassicsource rocks

Salt diapirs

Base Sequence 1

Reservoir bodies

MFS

Migrationpathways

Overlying Sequence 2

and younger strata

EarlyJurassic-Triassic deposits

Fig. 10. Schematic diagram of the Sequence 1 strat-trap play. The diagram runs across the main fluviatile graben axis. Schematically, the wells located 

on the left may represent the L05-03/04 wells.

Page 14: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 14/18

by incipient doming of the Zechstein salt. This basin

configuration can be regarded as a semi enclosed marine

depositional area where mixing with open marine waters was

retarded (Fig. 16). A relative sea-level high encroached the

landmass. This reduced the gradient and the drainage area of 

the fluvial system resulting in a low sediment input of predomi-

nantly fine grained sediments. The warm climate with occasional

rainfall favoured chemical weathering, releasing many nutrients

including silica. Additionally the existence of a volcano in this

area (Mijnlieff, 2001), active in Late Jurassic times, may have

added extra nutrients to the system, favouring growth of 

sponges or the bacteria on which sponges feed (Fig. 16).

In this shallow sea, seafloor highs, (incipient doming or

alternatively by tilted fault blocks) were sites were the hydro-

dynamic energy was relatively high compared to neighbouring

lows. At these sites clear water was predominant because clay

bypassed and was trapped in relatively low energy sites.

Submarine ‘highs’ were therefore favourable sites for sponge

growth. As they bloomed, died and disintegrated their frame-

work elements, the sponge spicules, were released into the

environment and were deposited nearby. The concentration of 

spicules is thus highest close to the high and becomes diluted

away from these localities. During the time of deposition of the

Spiculite, these paleo-highs remained shallow marine because

Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006234

Fig. 11. Correlation panel from well

F18-01 to L03-01 illustrating the

thickness change of the Spiculite and 

Sequence 3. Sequence 3 sits between

the ‘3’ marker and the blue KNNC 

marker (the 3a and 3b markers are

intra sequence markers). The Spiculite

 sits between correlation lines SGGSP 

(Scruff Group Greensand Spiculite

Member) and SGGSS (Scruff Group

Greensand Stortemelk Member) and is

highlighted in blue.

Page 15: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 15/18

235Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006

F18-01   F18-02   Towards L03-01

Near base Spiculite

Thinning and possibletruncation of Spiculite

Near base Rijnland

2

3

4

3 km

Fig. 12. Seismic section from well F18-01 towards L03-01. Yellow dotted line approximates the base of the Spiculite and is equivalents, the green line

is the base of Sequence 3, the dotted light blue line is the base of Sequence 4. Note the dimming of the amplitudes from the left to the right side of 

well F18-02.

Zoophycus

Paleophycus   Phoebichnus

Fig. 13. Core photographs from well F18-01 (2208.80 m and 2208.90 m) showing the typical, thoroughly bioturbated fine-

 grained sandstones of the Spiculite. (Photo’s courtesy of O. Werver).

Page 16: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 16/18

of continuous salt movement while the surrounding areas

subsided creating extra accommodation space. This resulted in

a sediment pile reduced in thickness (but sandy because of 

the winnowing) on the highs compared to off-high positions.

Further salt doming in combination with a relative sea-level

low resulted in the sub-aerial exposure and erosion of, especially,

the basin highs at the base of Sequence 4 (base Rijnland Group;

Fig. 12). The sub-aerial exposure is evidenced by a hard ground,

a hematite cemented zone with mouldic pores, as seen in e.g.

the well L09-02 (Van Adrichem Boogaert & Kouwe, 1993). In well

F18-01, meteoric waters caused leaching of fragile frameworkduring sub-aerial exposure resulting in the inverse framework

(Fig. 14).

Seal and structure

The seal of the Spiculite play can be the overlying claystones

of the Kimmeridge Claystone Formation (either the from Clay

Deep or the Schill Grund Member). The sealing capacity of 

these claystones is limited because of the occasional presence

of sand stringers. The ultimate seal for both oil and gas is the

Vlieland Claystone. At the base of the Vlieland Claystone an

unconformity is present which may, locally, cut as deep in the

underlying strata as the reservoir sandstones of the Spiculite

play, removing the overlying non-reservoir horizons or waste

zones (Fig. 12). Possible trap configurations of this play include:

– a four way dip closure with the reservoir truncated and

sealed by the Vlieland Claystone on top of a salt dome;

– a truncation trap configuration on the flank of a dome with

the reservoir sealed by the Vlieland Claystone.

Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006236

F18-01 L03-01

Sponge Spicules

Mouldic pores

after spicules

Framework

(Quartz)grains

Glauconite grains

Fig. 14. Photomicrographs of thin sections of core samples from F18-01 (left) and L03-01 (right). The F18-01 sample indicates shallow marine and 

relative high energy conditions. The L03-01 sample indicates slightly less shallow marine and relatively low energy conditions.

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25 30 35 40

Porosity (%)

   P  e  r  m  e  a

   b   i   l   i   t  y   (  m   D   )

F18-1 L3 -1

Fig. 15. Porosity-permeability cross-plot of wells F18-01 and L03-01.

Page 17: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 17/18

All elements for the play in the F18-01 location are

present: good reservoir, gas in the system and a seal present.

Only the structure at top reservoir is lacking. The seal, near

base Rijnland, shown in Figure 12 is not in a trap configuration.

Prospects may be defined using the reservoir distribution

concept together with a top reservoir map and a base Cretaceous

structure map. When drilled this possibly may result in a field

as, for example, the F3-FA field.

Conclusions

During the ‘Late Jurassic’ a complex geological setting

developed in the Dutch Northern Offshore. Within this setting

three distinct stratigraphic sequences can be recognized. These

sequences are punctuated by, at least, two significant MFSper sequence. Each sequence has its own, relatively unique,

geological history. These sequences can be correlated with

major changes in sea level and climate and are bounded by

well defined dis- and unconformities.

Within sequence 1 a possible target for exploration may be

channel sandstones deposited in the basin axis. They are

presently concentrated in the structural lows and, therefore,

this play relies on a stratigraphic trap configuration.

Within Sequence 3, the Spiculite sandstone is the play. The

reservoir sands were deposited in a semi-enclosed marine

environment where subtle seafloor topography, low sediment

input and, in particular, nutrient conditions were favourable

factors for preferential growth of siliceous sponge reefs. The

accumulation of the spicules on the site of the reef produces

an excellent bioclastic sandstone reservoir. Later dissolution

of the spicules due to percolating (meteoric) water at the time

of the Sequence 4 sequence boundary further enhanced the

reservoir quality.

The integrated approach with the use of high resolution

biostratigraphic, sedimentological, lithological, paleoenviron-

mental and paleoclimatic data enables the reconstruction of 

the geological history. In particular, the integration of all

tools to reconstruct the ‘Late Jurassic’ earth has significant

impact on the exploration models.

Acknowledgements

This article is based on a study carried out for Energie BeheerNederland B.V. which we acknowledge for their financial

support and permission for publication. TNO is thanked for

additional financial and material support. Onno Werver is

thanked for his kind cooperation. Susan Kerstholt, Waldemar

Herngreen and Rob Van Eijs are thanked for their support.

Theo Wong, Kees van der Zwan, Gordon Forbes and an unknown

reviewer are thanked for constructive remarks.

237Netherlands Journal of Geosciences — Geologie en Mijnbouw | 85 – 3 | 2006

Posidonia

Zechstein saltRotliegend

Carboniferous

Schieland Group

Scruff Greenland Fm.

sponge spicules

sponges

clay 

sand

coal

evaporites

channel sands

oil migration route

gas migration route

Fig. 16. Schematic diagram of the Spiculite (Sequence 3) play.

Page 18: Abbink 2006 New

8/19/2019 Abbink 2006 New

http://slidepdf.com/reader/full/abbink-2006-new 18/18

References

 Abbink, O.A., 1998. Palynological investigations in the Jurassic of the North

Sea region. LPP Contribution Series 8: 192 pp.

 Abbink, O.A., Targarona, J., Brinkhuis, H. & Visscher, H., 2001. Late Jurassic

to earliest Cretaceous palaeoclimatic evolution of the Southern North Sea.

Global and Planetary Change 30: 231-256.

 Abbink, O.A., Van Konijnenburg - Van Cittert, J.H.A. & Visscher, H., 2004a.

A Sporomorph Ecogroup Model for the Northwest European Jurassic – Lower

Cretaceous I: concepts and framework. Netherlands Journal of Geosciences

83: 17-28.

 Abbink, O.A., Van Konijnenburg-Van Cittert, J.H.A., Van der Zwan, C.J. &

Visscher, H., 2004b. A Sporomorph Ecogroup Model for the Northwest

European Jurassic – Lower Cretaceous II: application to an exploration well

from the Dutch North Sea. Netherlands Journal of Geosciences 83: 79-90.

 DeGraciansky, P.-C., Hardenbol, J., Jacquin, T., Vail, P.R. & Farley, M.B.,

1999. Jurassic sequence chronostratigraphy/biochronostratigraphy.  In: DeGraciansky et al. (eds): Mesozoic-Cenozoic Sequence Stratigraphy of European

Basins. Special Publication of the Society of Economists, Paleontologists and

Mineralists, 60: Charts 6 and 7.

 Duxbury, S., Kadolsky, D. & Johansen, S., 1999. Sequence stratigraphic

subdivision of the Humber Group in the Outer Moray Firth (UKCS, North

Sea).  In: Jones, R.W. & Simmons, M.D. (eds): Biostratigraphy in Production

and Development Geology. Geological Society London, Special Publications

152: 23-54.

Gammon, P.R. & James, N.P., 2001. Palaeogeographical influence on late

Eocene biosiliceous sponge-rich sedimentation, southern Western Australia.

Sedimentology 48: 559-584.

Gammon, P.R., James, N.P. & Pisera, A., 2000. Eocene spiculites and

spongolites in south-western Australia: Not deep, not polar, but shallow and

warm. Geology 28: 855-858.

Gradstein, F., Ogg, J. & Smith, A. , 2004. A Geologic Time Scale 2004.

Cambridge University Press (Cambridge): 589 pp.

 Haq, B.U., Hardenbol, J., & Vail, P.R., 1988. Mesozoic & Cenozoic chrono-

stratigraphy and cycles of sea level change.  In: Wilgus, C. K., Hastings, B. S.

et al. (eds): Sea Level Changes; An Integrated Approach. Special Publication

of the Society of Economists, Paleontologists and Mineralists 42: 71-108.

 Herngreen, G.F.W. & Wong, Th.E., 1989. Revision of the ‘Late Jurassic’

stratigraphy of the Dutch Central North Sea Graben. Geologie & Mijnbouw

68: 73-105.

 Herngreen, G.F.W., Kerstholt, S.J. & Munsterman, D.K., 2000. Callovian-

Ryazanian (‘Upper Jurassic’) palynostratigraphy of the Central North Sea

Graben and Vlieland Basin, the Netherlands. Mededelingen Nederlands

Instituut voor Toegepaste Geowetenschappen TNO 63: 1-99.

 Jacquin, T., Dardeau, G., Durlet, C., DeGraciansky, P.-C. & Hantzpergue, P.,

1999. The North Sea cycle: an overview of 2nd order Transgressive/

Regressive facies cycles in Western Europe.  In: De Graciansky et al. (eds):

Mesozoic-Cenozoic Sequence Stratigraphy of European Basins. Special

Publication of the Society of Economists, Paleontologists and Mineralists 60:

445-466.

 Kiessling, W., Flügel, E. & Golonka, J., 1999. Paleoreef maps: evaluation of a

comprehensive database on Phanerozoic reefs. American Association of 

Petroleum Geologists Bulletin 83: 1552-1587.

 Leinfelder, R.R., Werner, W., Nose, M., Schmid, D.U. Krautter, M., Laternser,

 R. Takacs, M & Hartmann, D., 1996. Paleoecology, growth Parameters and

Dynamics of coral, Sponge and Microbilite Reefs from the Late Jurassic.  In:

Reitner, J., Neuweiler, F. & Gunkel, F. (eds): Global and Regional Controls on

Biogenic Sedimentation. I Reef Evolution. Research reports – Göttinger

Arbeiten zur Geologie und Paläontologie, Sonderband: 227-248.

 Lokhorst, A. (ed.), 1998. Northwest European Gas Atlas - composition and

isotope ratios of natural gases. Netherlands Institute of Applied Geoscience

TNO report, Haarlem, the Netherlands. ISBN 90-72869-60-5.

 Mijnlieff, H.F., 2001. Top Pre-Permian distribution map & some thematic

regional geologic maps of the Netherlands. ICCP conference August 2003,

Utrecht, the Netherlands: poster presentation.

Odin, G.S. & Matter, A., 1981. De Glauconarium Origine. Sedimentology 28:

611-641.

 Partington, M.A.P., Copestake, P., Mitchener, B.C. & Underhill, J.R., 1993.

Biostratigraphic correlation of genetic stratigraphic sequences in the

Jurassic – lowermost Cretaceous (Hettangian – Ryazanian) of the North Seaand adjacent areas.  In: Parker, J.R., (ed.): Petroleum Geology of Northwest

Europe: Proceedings of the 4th Conference: 371-386.

 Partington, M.A.P., Mitchener, B.C., Milton, N.J. & Fraser, A.J., 1993a.

Genetic sequence stratigraphy for the North Sea Late Jurassic and Early

Cretaceous of the North Sea: distribution and prediction of Kimmeridgian-

Late Ryazanian reservoirs in the North Sea and adjacent areas.  In: Parker,

J.R. (ed.): Petroleum Geology of Northwest Europe, Proceedings of the 4th

Conference: 347-370.

 Riding, J.B. & Thomas, J.E., 1992. Dinoflagellate cysts of the Jurassic System.

 In: Powell, A.J. (ed.): A Stratigraphic Index of Dinoflagellate Cysts: 7-98.

 Rioult, M, Dugué, O., Jan du Chêne, R., Ponsot, C., Fily, G., Moron, J. &

Vail, P.R., 1991. Outcrop Sequence stratigraphy of the Anglo-Paris basin

Middle to Upper Jurassic (Normandy, Maine, Dorset). Bulletin des Centres de

Recherches Exploration-Production Elf-Aquitaine 15: 101-194.

Underhill, J.R. & Partington, M.A.P., 1993. Jurassic thermal doming and

deflation in the North Sea: implications of sequence stratigraphic evidence.

 In: Parker, J.R. (ed.): Petroleum Geology of Northwest Europe: Proceedings

of the 4th Conference: 337-345.

Vail, P.R., Audemard, F., Bowman, S.A., Eisner, P.N. & Perez-Cruz, C. , 1991.

The stratigraphic signatures of tectonics eustacy and sedimentology – an

overview.  In: Einsele, G. et al. (eds): Cycles and events in stratigraphy:

250-275.

Van Adrichem Boogaert, H.A. & Kouwe, W.L.F.P., 1993. Stratigraphic nomen-

clature of the Netherlands, revision and update by RGD and NOGEPA.

Mededelingen Rijks Geologische Dienst Nieuwe Serie 50.

Werver, O., 1996. Ichnofauna in relation to the depositional environment of 

Jurassic and Cretaceous sediments in the Netherlands. Part I: Atlas of 

Ichnofauna. Stichting Educatie Centrum Ammonietenhoeve. ISBN

90-803304-1-8.

Werver, O., 1997. Ichnofauna and flora in relation to their environment of 

sediments in the Central Graben, Netherlands Offshore. Environmental inter-

pretation based on trace fossils from the Upper Jurassic – Lower Cretaceous.

Stichting Educatie Centrum Ammonietenhoeve. ISBN 90-803304-1-8

 Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe, 2nd and

completely revised edition, Shell International Exploration and Production

B.V., the Hague, Geological Society Publishing House (Bath): 239 pp.