30
About OMICS Group Conferences OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit. OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

About OMICS Group Conferences

OMICS Group International is a pioneer and leadingscience event organizer, which publishes around 400 openaccess journals and conducts over 300 Medical, Clinical,Engineering, Life Sciences, Pharma scientificconferences all over the globe annually with the support ofmore than 1000 scientific associations and 30,000 editorialboard members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshopsand national symposiums across the major cities includingSan Francisco, Las Vegas, San Antonio, Omaha, Orlando,Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore,United Kingdom, Valencia, Dubai, Beijing, Hyderabad,Bengaluru and Mumbai.

Page 2: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

About OMICS Group Conferences

OMICS Group International is a pioneer and leadingscience event organizer, which publishes around400 open access journals and conducts over 300 Medical,Clinical, Engineering, Life Sciences, Phrama scientificconferences all over the globe annually with the supportof more than 1000 scientific associations and 30,000editorial board members and 3.5 million followers to its

credit.

OMICS Group has organized 500 conferences, workshopsand national symposiums across the major citiesincluding San Francisco, Las Vegas, San Antonio, Omaha,Orlando, Raleigh, Santa Clara, Chicago, Philadelphia,Baltimore, United Kingdom, Valencia, Dubai, Beijing,Hyderabad, Bengaluru and Mumbai.

Page 3: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Mathematical model of β1-adrenergic

signaling in mouse ventricular myocytes

as an in silico tool for the cardiovascular

drug test

24 March 2014

Vladimir E. Bondarenko

Department of Mathematics and Statistics,

Georgia State University,

Atlanta, GA 30303

E-mail: [email protected]

Page 4: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Can we actually use mathematical models

to predict physiological phenomena?

Example 1: prediction of proline hinge in Kv1.4

Page 5: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Example 1: prediction of proline hinge in Kv1.4

From:

http://www.ks.uiuc.edu/

Research/smd_imd/

Doyle et al. Science 280:

69-77, 1998.

Homology model based

on KcsA from:

Li et al. Am J Physiol

284: H71-H80, 2003.

From PDB file:

Long et al. Science

309: 897-903, 2005.

KcsA Kv1.4 Kv1.2

hingeno hinge

Page 6: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Example 2: mouse action potential shape

and activation time constant for IKto,f

Page 7: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Example 2: mouse action potential shape

and activation time constant for IKto,f

-90

-70

-50

-30

-10

10

30

10 20 30 40 50 60

V,

mV

Time, ms

Apex

AExperiment from:

Wang et al. Circ Res

79: 79-85, 1996.

Simulation from:

Bondarenko et al.

Am J Physiol

287: H1378-H1403, 2004.

Simulations with

experimental activation

time constant from

Xu et al. J Gen Physiol

113: 661-677, 1999

Experiment from:

Brouillette et al. J Physiol

559: 777-798, 2004.

Page 8: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Model cell

Bondarenko et al., Am J Physiol Heart

Circ Physiol 287: H1378-H1403, 2004.

dV/dt = -1/Cm(INa + INab

+ ICaL + Ip(Ca) + ICab + INaCa + INaK

+ IKto,f + IKto,s + IKur + IKss

+ IK1 + IKr + IKs + ICl,Ca + Istim)

Model cell is described by 44

ordinary differential

equations.

Page 9: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

The mouse

action potentials

Simulated action potentials

and underlying currents

using the mouse ventricular

myocyte model.

PANEL A: The apex action

potential.

PANELS B,C: Currents

underlying the apex action

potential.

PANEL D: The septum

action potential.

PANEL E,F: Currents

underlying the septum

action potential.

Bondarenko et al., Am J

Physiol 287: H1378-H1403,

2004.

Page 10: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Non-compartmentalized models

Saucerman JJ, Brunton LL, Michailova AP, McCulloch AD. Modeling β-adrenergic

control of cardiac myocyte contractility in silico. J Biol Chem 278: 47997-48003, 2003.

Saucerman JJ, Healy SN, Belik ME, Puglisi JL, McCulloch AD. Proarrhythmic

consequences of a KCNQ1 AKAP-binding domain mutation: computational models of

whole cells and heterogeneous tissue. Circ Res 95: 1216-1224, 2004.

Yang JH, Saucerman JJ. Phospholemman is a negative feed-forward regulator of Ca2+

in β-adrenergic signaling, accelerating β-adrenergic inotropy. J Mol Cell Cardiol 52:

1048-1055, 2012.

A compartmentalized model

Heijman J, Volders PGA, Westra RL, Rudy Y. Local control of β-adrenergic

stimulation: effects on ventricular myocyte electrophysiology and Ca2+ transient. J Mol

Cell Cardiol 50: 863-871, 2011.

Next Generation Mathematical Models of Protein Signaling

Systems in Cardiac Cells

Page 11: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko
Page 12: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

From Bondarenko, PLoS ONE 9:

e89113, 2014.

β1-AR β1-AR

β1-AR

Gβγ

Gβγ

Gsα

Gsα

GRK2GRK2

GRK2

AC4/7

AC4/7

AC5/6

cAMP cAMP

cAMP

PDE2

PDE3

PDE4

PDE2

PDE4

PDE2

PDE3

PDE4

PKI

PKI

PKIC

C

R

R

C

C

R

R

C

C

R

R

TnI

PP1/2A

PP1/2AJSR NSR

INa ICaL,ecavINaK IKur IK1 IKss

RyRs

ICab

IKto,f

IKr

JupPLB

AC5/6

PP1

Caveolae Extracaveola

eCytosol

INab

Ip(Ca)

INaCa

I-1

Vss

Jrel

Iso Iso

Iso

ICl,Ca

PLM

Gβγ Gsα

ICaL,cav

Page 13: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

This is a virtual cell model, which allows for testing at least the following

drugs:

Isoproterenol Cilostamide Tetrodotoxin

Epinephrine Milrione Dofetilide

Norepinephrine Rolipram Quinidine

H-89 Ro 20-1724 Verapamil

Forskolin Propranolol Lidocaine

IBMX Esmolol Flecainide

Nifedipine Bretylium Sotalol

Calyculin A Amiodarone E-4031

β1-adrenergic Signaling System in Mouse Ventricular

Myocytes

Page 14: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Reproducing the experimental data

Stimulus

1-A

R P

ho

sp

ho

ryla

tio

n

(% a

bo

ve b

asal)

0

25

50

75

100

125

150

Freedman et al., 1995

Model

10 M Iso 10 M Iso + H-89

β1-adrenoceptors phosphorylation above basal level upon application of 10 µM

isoproterenol or 10 µM isoproterenol + PKA inhibitor H-89. Experimental data

from Freedman et al. (1995) are shown with black bars with errors, simulation

data are shown with gray bars. Effect of H-89 was simulated by setting [PKA]tot

= 0 µM.

From Bondarenko, PLoS

ONE 9: e89113, 2014.

Page 15: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Gs(M)

0.001 0.01 0.1 1 10

AC

Acti

vit

y (

no

rmalized

)

0.0

0.2

0.4

0.6

0.8

1.0 AC5 Chen-Goodspeed, 2005

AC6 Chen-Goodspeed, 2005

AC5/6 Model

Gs(M)

0.001 0.01 0.1 1 10

AC

Acti

vit

y (

no

rmalized

)

0.0

0.2

0.4

0.6

0.8

1.0AC4 Zimmermann & Taussig, 1996

AC4 Gao & Gilman, 1991

AC4/7 Model

A

B

Normalized activity of adenylyl cyclases as

functions of Gsα.

Panel A: Experimental normalized activity

of AC5 (filled circles) and AC6 (unfilled

circles) [Chen-Goodspeed et al., 2005].

Simulated data for normalized activity of

AC5/6 is shown by a solid line.

Panel B: Experimental normalized activity

of AC4 (filled circles from [Zimmermann

and Taussig, 1996] and unfilled circles

from [Gao and Gilman, 1991]). Simulated

data for normalized activity of AC4/7 is

shown by a solid line.

From Bondarenko, PLoS

ONE 9: e89113, 2014.

Reproducing the experimental data

Page 16: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Isoproterenol (M)

0.0001 0.001 0.01 0.1 1 10 100

No

rmalized

AC

acti

vit

y (

%)

-20

0

20

40

60

80

100

120

Model (max)

Model (5 min)

Model (30 min)

Freedman et al., 1995 (max)

Freedman et al., 1995 (5 min)

Freedman et al., 1995 (30 min)

Isoproterenol (M)

0.0001 0.001 0.01 0.1 1 10

AC

acti

vit

y (

pm

ol/m

g/m

in)

0

20

40

60

80

Tepe & Liggett, 1999

Lemire et al., 1998

Model

A

B

Panel A: Adenylyl cyclase activity as a function of

isoproterenol. Experimental data on AC activity

(in pmol/mg/min) in mouse hearts and ventricular

myocytes obtained after 10-minutes exposure to

isoproterenol are shown by unfilled circles

[Tepe and Liggett, 1999] and filled circles [Lemire et al.,

1998]. The solid line shows corresponding simulated

AC activities at different concentrations of isoproterenol.

Panel B: Desensitization of β1-ARs. Increase in adenylyl

cyclase activities above basal level (in %) are measured

at maximum (control, filled circles) and at two time

moments (5 min and 30 min, unfilled circles and unfilled

squares, respectively) after exposure to different

concentrations of isoproterenol [Freedman et al., 1995].

Corresponding simulated data for the maximum,

5-minute, and 30-minute delays are shown by solid,

dashed, and dash-dotted lines, respectively.

From Bondarenko, PLoS

ONE 9: e89113, 2014.

Reproducing the experimental data

Page 17: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Basal Iso IBMX IBMX+Iso

cA

MP

le

ve

l(p

mo

l/m

g p

rote

in)

0

20

40

60

80

100

120

140Rochais et al., 2006 (rat)

Hohl & Li, 1991 (dog)

Model

Total PDE2 PDE3 PDE4

PD

E a

cti

vit

y(p

mo

l/m

in/m

g p

rote

in)

0

20

40

60

80

100

Georget et al., 2003

Richter et al., 2011 (mouse)

Richter et al., 2011 (rat)

Model

Total PDE2 PDE3 PDE4

PD

E a

cti

vit

y t

ota

l (%

)

0

20

40

60

80

100

120

Georget et al., 2003

Richter et al., 2011 (mouse)

Richter et al., 2011 (rat)

Model

Total PDE2 PDE3 PDE4

PD

E a

cti

vit

y (

%)

Pa

rtic

ula

te f

rac

tio

n

0

20

40

60

80

100

120

Mongillo et al., 2006

Model

A

B

C

D

Absolute (A) and relative (B) PDE activity in mouse

ventricular myocytes. (C) PDE activity in particulate

fraction. (D) Effect of Iso and IBMX on cAMP level.

From Bondarenko, PLoS

ONE 9: e89113, 2014.

Reproducing the experimental data

Page 18: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

PK

A a

cti

vit

y r

ati

o(-

cA

MP

/+c

AM

P)

0.0

0.2

0.4

0.6

0.8

1.0

Buxton & Brunton, 1983

Model

Iso 1 MControl

cAMP (M)

0.001 0.01 0.1 1 10 100

PK

A a

cti

vit

y(%

of

maxim

um

)

0

20

40

60

80

100

120Dao et al., 2006 (PKA I)

Dao et al., 2006 (PKA I)

Beavo et al., 1974 (PKA II)

Model (PKA I)

Model (PKA II)

A

B

Protein kinase A activation.

Panel A: PKA I and PKA II activities as

functions of cAMP. Experimental data for

PKA I obtained by two methods are shown

by filled and unfilled circles [Dao et al.,

2006]; data for PKA II obtained by Beavo et

al. [1974]. Corresponding simulated data

are shown by a solid (PKA I) and a dashed

(PKA II) line.

Panel B: PKA activity ratio. Experimental

data were obtained without (−cAMP) and

with (+cAMP) externally applied 3 µM

cAMP, both without and with 1 µM

isoproterenol (black bars [Buxton and

Brunton, 1983]). We also performed four

simulations: no isoproterenol/basic level

cAMP (−cAMP), no isoproterenol/3 µM

cAMP (+cAMP), 1 µM isoproterenol/no

externally applied cAMP (−cAMP), and 1

µM isoproterenol/3 µM cAMP (+cAMP).

Then, the corresponding PKA ratios were

calculated.From Bondarenko, PLoS

ONE 9: e89113, 2014.

Reproducing the experimental data

Page 19: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Time (s)

0 200 400 600 800 1000

cA

MP

(n

orm

alized

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Model

O'Connell et al., 2003 (mouse)

Buxton & Brunton, 1983 (rabbit)

Time (s)

0 200 400 600 800 1000

PK

A a

cti

vit

y (

no

rmalized

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Model

Buxton & Brunton, 1983 (rabbit)

A

B

Panel A: cAMP dynamics in ventricular

myocytes. Experimental data of normalized

cAMP in mouse [O’Connell et al., 2003] and

rabbit [Buxton & Brunton, 1983] ventricular

myocytes are shown by unfilled and filled

circles, respectively; simulation data is

shown by a solid line.

Panel B: PKA dynamics in ventricular

myocytes. Experimental data of normalized

PKA activity in rabbit [Buxton & Brunton,

1983] ventricular myocytes are shown by

unfilled circles; simulation data is shown

by a solid line.

Data in Panels A and B were obtained upon

application of 1 µM isoproterenol.

From Bondarenko, PLoS

ONE 9: e89113, 2014.

Reproducing the experimental data

Page 20: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

A

B

The effects of Iso and

Calyculin A on the L-type

Ca2+ current. (A) and (B)

Experimental data by

Bracken et al., 2006.

(C) and (D) simulated

data. (A) and (C) Current

traces. (B) and (D) I-V

relationships.

Time (ms)

0 50 100 150 200I C

aL (

pA

/pF

)-14

-12

-10

-8

-6

-4

-2

0

Model (control)

Model (Calyculin A 1 M)

Model (Iso 1 M)

Time (ms)

20 25 30 35 40 45 50

I Ca

L (

pA

/pF

)

-12

-10

-8

-6

-4

-2

0

Voltage (mV)

-80 -60 -40 -20 0 20 40 60

I Ca

L (

pA

/pF

)

-14

-12

-10

-8

-6

-4

-2

0

Model (Control)

Model (Calyculin A 1 M)

Model (Iso 1 M)

D

C

From Bondarenko, PLoS

ONE 9: e89113, 2014.

Reproducing the experimental data

Page 21: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Simulation results

Time (s)

0 200 400 600 800

Cata

lyti

c s

ub

un

it o

f P

KA

(

M)

0.0

0.2

0.4

0.6

0.8

1.0

1.2Caveolae

Extracaveolae

Cytosol

Cell

Time (s)

0 200 400 600 800

cA

MP

(

M)

0

1

2

3

4Caveolae

Extracaveolae

Cytosol

Cell

A B

Panel A: Simulated time courses of cAMP concentrations in caveolae (thin

solid line), extracaveolae (dashed line), and cytosolic compartments (dotted

line), and in the whole cell volume (bold solid line) after application of 1 M

isoproterenol.

Panel B: Simulated time courses of PKA catalytic subunit concentrations in

caveolae (thin solid line), extracaveolae (dashed line), and cytosolic

compartments (dotted line), and in the whole cell volume (bold solid line) after

application of 1 M isoproterenol.

Panel C: Simulated cellular activities of ACs and PDEs after application of 1 M

isoproterenol.

Time (s)

0 200 400 600 800

cA

MP

pro

du

cti

on

/

deg

rad

ati

on

(

M/s

)

0.00

0.05

0.10

0.15

0.20

0.25

AC activity

PDE activity

C

From Bondarenko, PLoS

ONE 9: e89113, 2014.

Page 22: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Simulation results

Time (s)

0 100 200 300 400

cA

MP

(

M)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Control

PDE3 inhibition

PDE4 inhibition

Iso pulse

Time (s)

0 200 400 600 800

cA

MP

(

M)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Control

PDE3 inhibition

PDE4 inhibition

A

B

Panel A: Simulated time courses of cellular

cAMP concentrations for control conditions

(solid line), upon inhibition of PDE3 (dashed

line), and upon inhibition of PDE4 (dotted line)

after sustained application of 0.1 M

isoproterenol at time moment t = 0 s. Activities

of PDE3 or PDE4 are inhibited by 90% to

simulate the effects of corresponding selective

inhibitors, cilostamide or milrione for PDE3, or

rolipam or Ro 20-1724 for PDE4.

Panel B: Simulated time courses of cellular

cAMP concentrations for control conditions

(solid line), upon inhibition of PDE3 (dashed

line), and upon inhibition of PDE4 (dotted line)

after pulsed application of 0.1 M isoproterenol

at time moment t = 200 s for 30 s (thick solid

line). The degrees of inhibition of PDE3 and

PDE4 are the same as in Panel A.

From Bondarenko, PLoS

ONE 9: e89113, 2014.

Page 23: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Time (ms)

20 30 40 50 60 70

Vo

lta

ge

(m

V)

-100

-50

0

50

Control

Iso

Simulation results

20 30 40 50 60 70

-160

-80

0

80

160

240

INa

Time (ms)

20 30 40 50 60 70

Cu

rre

nt

(pA

/pF

)

-20

-10

0

10

20

30ICaL

IKto,f

IKur

IKss

I Na (

pA

/pF

)Iso (1 M)

20 30 40 50 60 70

-160

-80

0

80

160

240

INa

Time (ms)

20 30 40 50 60 70

Cu

rre

nt

(pA

/pF

)

-20

-10

0

10

20

30ICaL

IKto,f

IKur

IKss

I Na (

pA

/pF

)Control

A

B C

1 Hz

Simulated action potentials (Panel A) and

underlying ionic currents of the isolated

ventricular cell model for control

conditions (Panel B) and after application

of 1 M isoproterenol (Panel C).

From Bondarenko, PLoS

ONE 9: e89113, 2014.

Page 24: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Simulation results

Frequency (Hz)

0 1 2 3 4 5 6

[Ca

2+] i

(

M)

0.0

0.5

1.0

1.5

2.0

2.5

Diastolic (Control)

Systolic (Control)

Diastolic (Iso 1 M)

Systolic (Iso 1 M)

Frequency (Hz)

0 1 2 3 4 5

[Ca

2+] i

decay

(m

s)

0

50

100

150

200

Model (Control)

Model (Iso 1 M)

Benkunsky et al., 2007 (Control)

Benkunsky et al., 2007 (Iso 1 M)

Knollmann et al., 2003 (Control)

Knollmann et al., 2003 (Iso 1 M)

Time (ms)

0 50 100 150 200

[Ca

2+] i (

M)

0.0

0.5

1.0

1.5

2.0

2.5

Control

Iso

Time (ms)

0 200 400 600 800 1000

[Ca

2+] i (

M)

0.0

0.5

1.0

1.5

2.0

Control

Iso

A

C

B

D

From Bondarenko,

PLoS ONE 9: e89113,

2014.

Page 25: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Time (ms)

0 200 400 600 800 1000

Ca

2+ in

flu

x (

M)

-80

-40

0

40

80

Jrel

JCaL

Jup - Jleak

JNaCa

JpCa

Iso (1 M)

Time (ms)

0 200 400 600 800 1000

Ca

2+ in

flu

x (

M)

-80

-40

0

40

80

Jrel

JCaL

Jup - Jleak

JNaCa

JpCa

Control

A B

Simulation results

Simulated major integral Ca2+ fluxes during one cardiac cycle in the

isolated ventricular cell model for control conditions (Panel A) and

after application of 1 M isoproterenol (Panel B). Pacing frequency is 1

Hz. Major integral Ca2+ fluxes are shown after 300 s of stimulation. In

Panel B 1 M isoproterenol is applied at time t = 0 s.

From Bondarenko, PLoS

ONE 9: e89113, 2014.

Page 26: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Time (ms)

0 200 400 600 800 1000

Na

+ i

nfl

ux

(

M)

-80

-60

-40

-20

0

20

40

60

JNav

JNab

JNaCa

JNaK

Iso (1 M)

Time (ms)

0 200 400 600 800 1000

Na

+ i

nfl

ux

(

M)

-80

-60

-40

-20

0

20

40

60

JNav

JNab

JNaCa

JNaK

Control

A B

Simulated major integral Na+ fluxes during one cardiac cycle in the

isolated ventricular cell model for control conditions (Panel A) and

after application of 1 M isoproterenol (Panel B). Pacing frequency is 1

Hz. Major integral Na+ fluxes are shown after 300 s of stimulation. In

Panel B 1 M isoproterenol is applied at time t = 0 s.

Simulation results

From Bondarenko, PLoS

ONE 9: e89113, 2014.

Page 27: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Simulation results

S1 - S2 interval (ms)

0 100 200 300 400

No

rmalized

AP

D

0.8

0.9

1.0

1.1

1.2

1.3

APD50

APD90

BA

Experimental (Panel A) and simulated (Panel B) normalized APD as functions of

S1-S2 interval obtained for control conditions. Experimental data [Knollmann et

al., 2007] are shown for APD30 and APD90, simulation data - for APD50 and

APD90. APDs are normalized to the corresponding values for S1-S2 interval of

200 ms.From Bondarenko, PLoS

ONE 9: e89113, 2014.

Page 28: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Time (ms)

0 200 400 600 800 1000

[Ca

2+] i (

M)

0.0

0.5

1.0

1.5

2.0

2.5

Iso 1 M

Iso 1 M ICaL,ecav block

Iso 1 M ICaL,cav block

Time (ms)

0 200 400 600 800 1000

[Ca

2+] i (

M)

0.0

0.5

1.0

1.5

2.0

2.5

Control

ICaL,ecav block

ICaL,cav block

Time (ms)

20 30 40 50 60 70

Vo

lta

ge

(m

V)

-100

-50

0

50

Iso 1 M

Iso 1 M ICaL,ecav block

Iso 1 M ICaL,cav block

Time (ms)

20 30 40 50 60 70

Vo

lta

ge

(m

V)

-100

-50

0

50

Control

ICaL,ecav block

ICaL,cav block

A

B

C

D

Control Iso

Simulation results

The effects of caveolae and extracaveolae ICaL block on action

potential and Ca2+ transients. Control conditions (Panel A, B) and after

application of 1 M isoproterenol (Panels C, D). From Bondarenko, PLoS

ONE 9: e89113, 2014.

Page 29: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

University at Buffalo, SUNYGlenna C. L. Bett

Michael J. Morales

Randall L. Rasmusson

Harold C. Strauss

Acknowledgments

Georgia State UniversityIgor V. Belykh

Gennady S. Cymbalyuk

Andrey L. Shilnikov

Wuhan UniversityXuejun Jiang

Xiaoyan Li

University of DebrecenGyula P. Szigeti

Graduate StudentsIsidore Dinga Madou

Christopher V. DeSimone

Chang Xie

Vladislav V. Zarayskiy

Brent Wooldridge

Paula Mullins

Kelvin Rozier

Konstantin Kapustin

Rachid Marsli

Financial support: B&B and RIG (GSU) and AHA

Page 30: About OMICS Group Conferences · 2017-02-02 · -50-30-10 10 30 10 20 30 40 50 60 V Time, ms Apex A Experiment from: Wang et al. Circ Res 79: 79-85, 1996. Simulation from: Bondarenko

Let Us Meet Again

We welcome you all to our future conferences of OMICS Group International

Please Visit:

www.omicsgroup.com

www.conferenceseries.com

www.metabolomicsconference.com