15
Jakobshavn isbrae using high resolution digital camera Rignot, Friedt, Moreau Data acquisition and processing Greenland French alps Conclusion About the tide oscillations and icebergs motion recorded at Jakobshavn isbrae during summer 2007 using high resolution digital camera, Icefjord, West Greenland. Discussion about acceleration of glacier flow in Greenland, lubrication at the ice-rock interface, vertical circulation of melt water (moulins) and lubrication recorded in situ under Argentire glacier (Mt-blanc). ´ E. Rignot, J.-M Friedt, L. Moreau 5 mars 2008 1 / 15

About the tide oscillations and icebergs motion recorded at ...jmfriedt.free.fr/shf2008.pdfJakobshavn isbrae using high resolution digital camera Rignot, Friedt, Moreau Data acquisition

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    About the tide oscillations and icebergs motion recorded at Jakobshavnisbrae during summer 2007 using high resolution digital camera, Icefjord,

    West Greenland.

    Discussion about acceleration of glacier flow in Greenland, lubrication atthe ice-rock interface, vertical circulation of melt water (moulins) and

    lubrication recorded in situ under Argentire glacier (Mt-blanc).

    É. Rignot, J.-M Friedt, L. Moreau

    5 mars 2008

    1 / 15

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    Data acquisition

    Automated digital image capture using a custom circuit for triggering acommercial digital camera

    • low power consumption of control circuitry (< 200 µA) for anautonomy of several years

    • camera consumption limits the global autonomy to theoretically'1000 frames

    • date & time stored in EXIF header for quantitative processing(problem of powering the camera’s internal clock)

    Two testbeds : a 1 month long continuous sequence shot in Greenland, a6 month long webcam archive from Chamonix, France.

    2 / 15

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    Selected analysis area

    blue red green magenta black

    3 / 15

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    Measurement horizon (theory)• Fixed window : correlation technique only works as long as reference

    and anlyzed frame look similar.

    • Short term difference of successive frames provides poor accuracy(motion > 1 pixel between two frames)

    • Shift reference window and connect drift curves

    Reference frame (fixed)

    + illumination artifact : apparent “Y motion” with 24 hour period dueto sun motion

    4 / 15

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    Measurement horizon (theory)• Fixed window : correlation technique only works as long as reference

    and anlyzed frame look similar.

    • Short term difference of successive frames provides poor accuracy(motion > 1 pixel between two frames)

    • Shift reference window and connect drift curves

    Reference frame (fixed)

    Frame 1

    + illumination artifact : apparent “Y motion” with 24 hour period dueto sun motion

    5 / 15

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    Measurement horizon (theory)• Fixed window : correlation technique only works as long as reference

    and anlyzed frame look similar.

    • Short term difference of successive frames provides poor accuracy(motion > 1 pixel between two frames)

    • Shift reference window and connect drift curves

    Frame 2

    Reference frame (fixed)

    Frame 1

    + illumination artifact : apparent “Y motion” with 24 hour period dueto sun motion

    6 / 15

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    Measurement horizon (theory)

    • Fixed window : correlation technique only works as long as referenceand anlyzed frame look similar.

    • Short term difference of successive frames provides poor accuracy(motion > 1 pixel between two frames)

    • Shift reference window and connect drift curves

    Frame 2

    Reference frame (fixed)

    Frame 1Frame 3

    + illumination artifact : apparent “Y motion” with 24 hour period dueto sun motion

    7 / 15

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    Motion detection (application)• Basic but robust technique : intercorrelation looks for translation

    vector for best match of a reference picture and a measurementpicture (xcorr2() with Matlab)

    • We will use an Eulerian descritpion of fluid motion (fixed window,monitor the mass entering and leaving this frame)

    image(t)

    50 100 150 200

    20

    40

    60

    80

    100

    120

    140

    image(t+24)

    50 100 150 200

    20

    40

    60

    80

    100

    120

    140

    image(t+24)

    50 100 150 200

    20

    40

    60

    80

    100

    120

    140

    xcorr2

    100 200 300 400 475

    50

    100

    150

    200

    250

    295

    8 / 15

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    Measurement horizon (results)

    4000 6000 8000 10000 12000 14000−50

    0

    50

    100

    150

    time (min)

    disp

    lace

    men

    t (pi

    xel)

    4000 6000 8000 10000 12000 14000−20

    −10

    0

    10

    20

    30

    time (min)

    disp

    lace

    men

    t (pi

    xel)

    0.0326 pixel/min

    0.0215 pixel/min

    24 h

    referenceframe 9

    4000 6000 8000 10000 12000 14000

    −100

    −50

    0

    50

    100

    time (min)

    disp

    lace

    men

    t (pi

    xel)

    4000 6000 8000 10000 12000 14000

    −20

    0

    20

    40

    time (min)

    disp

    lace

    men

    t (pi

    xel)

    0.0323 pixel/min

    0.0193 pixel/min

    referenceframe 40

    24 h

    X

    Y 24 h

    4000 6000 8000 10000 12000 14000−100

    −50

    0

    50

    100

    time (min)

    disp

    lace

    men

    t (pi

    xel)

    4000 6000 8000 10000 12000 14000−10

    0

    10

    20

    30

    40

    time (min)

    disp

    lace

    men

    t (pi

    xel)

    referenceframe 70

    0.0321 pixel/min

    0.023pixel/min

    9 / 15

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    Influence of tideVisually, obvious influence of tide on “vertical” motion of ice

    1.4 1.6 1.8 2 2.2 2.4 2.6

    x 104

    −30

    −20

    −10

    0

    10

    20

    30

    40

    time (min)

    disp

    lace

    men

    t (pi

    xel)

    Y motionX motion

    referenceframe (130)

    low tide

    high tide

    0.0033pixel/min

    3 3.2 3.4 3.6 3.8 4

    x 104

    −20

    −10

    0

    10

    20

    30

    40

    time (min)

    disp

    lace

    men

    t (pi

    xel)

    Y motionX motion

    referenceframe 230

    0.0055pixels/min

    3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2

    x 105

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    date (minutes since 01/01/2007)

    tide

    ampl

    itude

    (m

    )

    22/08frame 330

    29/07frame 100

    01/08frame 130

    21/07frame 10

    27/07frame 70

    13/08frame 260

    4.2 4.4 4.6 4.8 5 5.2

    x 104

    −15

    −10

    −5

    0

    5

    10

    15

    time (min)

    disp

    lace

    men

    t (pi

    xel)

    Y motionX motion

    Y motionX motion

    referenceframe (330)

    0.0024 pixel/min

    high tide

    low tide

    • Two tide amplitude maxima over 1 month record : visible signalsynchronous with predicted tide max/min.

    • No obvious signal synchronous with tide during amplitude minimum(bot. right)

    10 / 15

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    Influence of windNo visible influence of wind1 : the local influence on a given iceberg isnot tracked : would require a Lagrangian description of fluid motion(object tracking)

    0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    x 104

    −800

    −700

    −600

    −500

    −400

    −300

    −200

    −100

    0

    time (min.)

    disp

    lace

    men

    t (pi

    xels

    )

    green

    magenta

    blue

    red

    yellow

    wind

    1 m

    onth

    0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    x 104

    −120

    −100

    −80

    −60

    −40

    −20

    0

    20

    40

    time (min)di

    spla

    cem

    ent (

    pixe

    l)

    tide amplitudex50, +30

    high tide x10, −100

    low tide x10, −100

    blue

    red (ref.)

    green

    yellow

    magenta

    Long term “vertical motions” appears related to tide2 amplitude (right)

    1Hourly METAR data collected fromhttp://english.wunderground.com/history/airport/BGJN/

    2Web interface to xtide athttp://tbone.biol.sc.edu/tide/sites othernorth.html 11 / 15

    http://english.wunderground.com/history/airport/BGJN/http://tbone.biol.sc.edu/tide/sites_othernorth.html

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    Influence of picture qualityWe have demonstrated the use of high resolution (10 Mpixels), lowcompression images on a fast moving object.What about poor quality images of a slow glacier ?

    100 200 300 400 500 600 700 800 900

    0

    20

    40

    X motion (pixel)

    red

    100 200 300 400 500 600 700 800 900

    0

    20

    40

    blue

    100 200 300 400 500 600 700 800 900

    0

    20

    40

    gree

    n

    100 200 300 400 500 600 700 800 900

    0

    20

    40

    mag

    enta

    100 200 300 400 500 600 700 800 900

    0

    20

    40

    time (frame number)

    blac

    k

    Requires

    1 interpolation of the original image to smooth JPEG compressionboundaries and improve resolution

    2 histogram equalization12 / 15

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    Influence of picture quality

    Strong JPEG compression ⇒ artifacts

    Matlab’s imresize() bilinear interpolation (weighted average of pixelsin the nearest 2-by-2 neighborhood)

    13 / 15

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    Results and improvements

    • Some frames3 with poor weather induce high noise level : wouldrequire pre-processing to avoid noise

    • Strong effect of shadow → histogram equalization

    ⇒ reduce influence of noise when connecting successive windows byusing linear fit of glacier motion

    3http://www.compagniedumontblanc.fr/webcam/CMM1MERDEGLACE.jpg14 / 15

    http://www.compagniedumontblanc.fr/webcam/CMM1MERDEGLACE.jpg

  • Jakobshavnisbrae using highresolution digital

    camera

    Rignot, Friedt,Moreau

    Data acquisitionand processing

    Greenland

    French alps

    Conclusion

    Results and improvements

    • The motion is an average over a given part of the picture :the larger the picture, the longer the horizon, but the worse theaverage

    • Connection of analysis periods is not always accurate• Conversion from pixel to meters requires terrain model + camera

    characteristics

    • Validation using calibrated instruments (GPS)

    Yet, digital image processing provides a means of continuous monitoringof ice flow in area where instuments cannot be positioned (icebergs,strong slopes)

    15 / 15

    Data acquisition and processingGreenlandFrench alpsConclusion