25
Abstract Volume 7 th Swiss Geoscience Meeting Neuchâtel, 20 th – 21 st November 2009 4. Open Cryosphere session

Abstract Volume 7 Swiss Geoscience Meetinggeoscience-meeting.scnatweb.ch/sgm2009/SGM09_Abstracts/...Following a pilot study on the Schilthorn crest, running since 1999, a network of

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Abstract Volume7th Swiss Geoscience MeetingNeuchâtel, 20th – 21st November 2009

    4. Open Cryosphere session

  • 164Sy

    mp

    osi

    um

    4:

    Op

    en

    Cry

    osp

    he

    re s

    ess

    ion 4. Open Cryosphere session

    M. Hoelzle, A. Bauder, B. Krummenacher, C. Lambiel, M. Lüthi, M. Phillips, J. Schweizer,

    M. Schwikowski

    Swiss Snow, Ice and Permafrost Society

    4.1 DalbanCanassyP.,FunkM.:FlowdynamicsofthesteeppartofTriftgletscher(Switzerland)

    4.2 DelaloyeR.,HauckC.,HilbichC.,LambielC.,MorardS.,ScapozzaC.:ElectricalResistivityTomographyMonitoringofpermafrostwithinthePERMOSnetwork

    4.3 FaillettazJ.,FunkM.,SornetteD.:Icequakesasprecursorsoficeavalanches

    4.4 FarinottiD.,HussM.,BauderA.,FunkM.:HowmuchiceisstoredbytheSwissglaciers?

    4.5 Groot Zwaaftink C., Cagnati A., Crepaz A., Fierz C., Lehning M., Valt M.: Surface snow modeling at Dome C,Antarctica

    4.6 HauckC.,HoelzleM.,HussM.,SalzmannN.,ScherlerM.,SchneiderS.:Integrativecryosphericresearch-anexampleintheSwissAlps

    4.7 HussM.,BauderA.,FunkM.:Largescatterandmultidecadalfluctuationsinthe20thcenturymasslossof30Swissglaciers

    4.8 HussM.:MassbalancemonitoringonPizolgletscher

    4.9 LeBrisR.,BerthierE.,MabileauL.,TestutL.,RémyF.:IcewastageontheKerguelenIslands(49°S,69°E)between1963and2006.

    4.10 MittererC.,MottR.,SchirmerM.,SchweizerJ.:Observationandanalysisoftwowet-snowavalanchecycles

    4.11 ReiwgerI.,ErnstR.,SchweizerJ.,DualJ.:Shearexperimentswithsnowsamples

    4.12 RiesenP.,HutterK.,FunkM.:Aviscoelasticconstitutiverelationdescribingprimaryandsecondarycreepandsolidelasticbehaviourofice

    4.13 RingsJ.,HauckC.,HilbichC.:CouplingofERTandthermalmodellingtomonitorpermafrostwithoutboreholes

    4.14 RyserC.,LüthiM.,BlindowN.,SuckroS.:ThepolythermalstructureofGrenzgletscher(SwissAlps)

    4.15 SchaefliB.,HussM.:Simulationofhighmountainousdischarge:howmuchinformationdoweneed?

    4.16 SchneiderS.,ScherlerM.:Impactofsnowmeltonzerocurtainandthawlayerdepthfordifferentsubsurfacetextures.Fieldandmodeling-basedstudiesattheMurtél-Chasteletsarea.

    4.17 SchneiderT.,Katona-SerneelsI.:UsingXPDfordeterminingphysicalrockparametersofpermafrostmaterials

    4.18 SteinkoglerW.,FierzC.,LehningM.,ObleitnerF.:AsystematicapproachtoquantifytheperformanceofSNOWPACK

    4.19 StummD.,FitzsimonsS.J.,CullenN.J.,HoelzleM.,MachguthH.,AndersonB.MackintoshA.:MassbalanceofBrewsterGlacier,NewZealand,modelledoverthreedecades

    4.20 ThevenonF.,AnselmettiF.S.,BernasconiS.M.,SchwikowskiM.:NaturalandanthropogenicprimaryaerosolsrecordfromanAlpineicecore(ColleGnifetti,SwissAlps).

    4.21 UsselmannS.,HussM.,BauderA:Impactsofclimatechangeon22south-easternSwissglaciersfrom1900until2100

    4.22 VieliA., FaezehM.N.:Understanding rapiddynamic changesofmarineGreenlandoutletglaciers fromnumericalmodeling

    4.23 WerderM.,BauderA.,KeusenH.-R.,FunkM.:HazardassessmentinvestigationsinconnectionwiththeformationofalakeonthetongueoftheUntererGrindelwaldgletscher,BerneseAlps,Switzerland

    4.24 WirzV.,SchirmerM.,LehningM.:Analysisoftemporalandspatialsnowdepthchangesinasteeprock

  • 165

    Sym

    po

    siu

    m 4

    : O

    pe

    n C

    ryo

    sph

    ere

    se

    ssio

    n4.1

    Flow dynamics of the steep part of Triftgletscher (Switzerland)

    DalbanCanassyPierre1,FunkMartin1

    1 Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, CH-8092 Zurich, Switzerland ([email protected])

    Severalstudiesonhangingglaciershavebeentriedtohighlihtpossibleprecursorsbeforebreakoffs.Ifsatisfactoryresultshavebeenobtainedoncoldglaciers,itseemsthatbreakoffmechanismsaredifferentforthosewhicharetemperate,suchastheTriftgletscher,Switzerland(Gadmertal,BerneseAlps).

    Duetothedisapearanceofahugeamountoficeinitslowerpartduringthelastdecades,thesteeppartofTriftgletscherwasdestabilized,andapro-glaciallakeappeared.Studiesshowedthatareleaseofanicemasswithmorethanonemillionm3couldcreateawavetriggeringafloodinthedownglaciervalley(Gadmertal).

    To improve our understanding about ice break offs of temperate hanging glaciers, we have monitored the ice fall ofTriftgletscherusingdifferentways:Twoautomaticcameraswithatriggertimeeverythreehours,permittoperformthecomputationofthesurfacemotions,andthreeseismicsensors,whichpermittodetectandlocateseismiceventsassociatedwithiceqakes.

    Theaimistocombineseismicandphotogrammetricresultsandcorrelatetheseismicactivitywithchangesintheobservedicesurfacemotions,inordertoforeseepossiblebreakoffs.

    Firstresultsshowedthattimeperiodscharacterizedbythehighestsurfacevelocitiesalsohavethebiggestamountofseis-micevents.Thusthereseemstobearelationshipbetweendisplacementsinthesteeppartandseismicactivity,andthatseismicitycanbeusedasaforecasttool.Wealsonoticedthatthereweremoreeventsduringnightthanduringdaytime.Thisindicatesthatbasaldrainageactivityplaysanimportantroleintheicemotions.Welocatedeventsindifferentpartsoftheseracfall:cracksduetocrevassesopeningnearthesurface,andyetunknowneventsinthelowerpartbecauseoffallingoficeblocks.Thenextstepistodetectandlocateeventsfromstickandslipmotion,whichcouldcharacterizeprecursormotionstobreakoffs,andtodoavalidationbyusingtheterrestrialphotogrammetry.

    Newsresultsaboutstickandslipmotioncharacterizationandphotogrammetricresultswillbepresented.

    4.2

    Electrical Resistivity Tomography Monitoring of permafrost within the PERMOS network

    DelaloyeReynald1,HauckChristian1,HilbichChristin2,LambielChristophe3,MorardSebastien1,ScapozzaCristian3

    1Department of Geosciences, Geography Unit, University of Fribourg, Chemin du Musée 4, 1700 Fribourg 2Glaciology, Geomorphodynamics & Geochronology, Physical Geography Division, Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, and Department of Geography, University of Jena, Germany ([email protected])3Faculté des géosciences et de l'environnement, Institut de Géographie, IGUL Quartier UNIL-Dorigny, Bâtiment Anthropole, 1015 Lausanne

    ThePERMOSnetwork(PermafrostMonitoringSwitzerland)startedin2000andaimsatalong-termobservationofmountainpermafrost.Itcurrentlycomprisesmorethan20siteswherethethermalevolutionofthegroundand/orthegroundsurfaceismonitored.Besidesthesurfaceandsubsurfacetemperaturestheicecontentofthefrozengroundisnotonlyakeyparam-etercontrollingslopestabilityinperiglacialenvironmentsbutalsoanimportantinputparameterforpermafrostmodels.

    Addressingthenecessityforamethodtomonitorthelong-termevolutionofthegroundicecontentinmountainpermafrostin the context of globalwarming, an Electrical Resistivity TomographyMonitoring (ERTM)networkwas initiated in theframeworkofPERMOSin2005.Incontrasttosinglegeophysicalsurveystheso-calledtime-lapseapproachofrepeatedmeas-urementsservestoovercomethecommonproblemoftheoftenambiguousinterpretationofabsoluteresistivityvalues.TheERTMapproachisbasedontheassumption,thattemporalchangesinthemeasuredelectricalresistivityprovideinformationonchangesinthesubsurfaceiceandwatercontent.

  • 166Sy

    mp

    osi

    um

    4:

    Op

    en

    Cry

    osp

    he

    re s

    ess

    ion

    FollowingapilotstudyontheSchilthorncrest,runningsince1999,anetworkoffourpermanentgeoelectricprofileswasestablishedin2005/2006atthreefurthersites(Murtèlrockglacier,Stockhornrockplateau,Lapirestalusslope)toevaluatethepotentialofpermafrostmonitoringbyrepeatedgeoelectricalmeasurements.BasedonthegoodresultsERTMisnowanoperationalelementofthePERMOSprogrammeandanumberofnewpermanentprofileswasinstalledduringthelastyears.Thenetworknowcomprises14permanentERTMprofilesat10 sites inSwitzerland, includingbedrock sites (Schilthorn,Stockhorn), rock glaciers (Murtèl, Gianda Grischa, Rechy), talus slopes (Lapires, Les Attelas, Dreveneuse, Creux du Van,Arolla),andanice-coredmoraine(Gentianes).

    FirstresultsofthisuniquenetworkindicateahugepotentialoftheERTMapproachtodetectandcharacteriseclimatein-ducedgroundicedegradation.Theobserved2-dimensionalresistivitychangesrevealspatiallymoredetailedinformationthan1Dboreholetemperaturesandcontributetoanincreasedunderstandingoftheresponseofdifferentpermafrostland-formstoclimatechange.

    4.3

    Icequakes as precursors of ice avalanches

    JéromeFaillettaz1,MartinFunk1&DidierSornette2,3

    1 VAW, ETH Zürich, Laboratory of Hydraulics, Hydrology and Glaciology, Switzerland ([email protected])2Department of Management, Technology and Economics, ETH Zürich3Department of Earth Sciences, ETH Zürich

    AhangingglacierattheeastfaceofWeisshornbrokeoffin2005.Wewereabletomonitorandmeasuresurfacemotionandicequakeactivityfor21daysuptothreedayspriortothebreak-off.

    Resultsarepresentedfromtheanalysisofseismicwavesgeneratedbytheglacierduringtherupturematurationprocess.Threetypesofprecursorysignalsoftheimminentcatastrophicrupturewereidentified:

    anincreasingseismicactivitywithintheglacierachangeinthesize-frequencydistributionoficequakeenergy,andalog-periodicoscillatingbehavioursuperimposedonpowerlawaccelerationoftheinverseofwaitingtimebetweentwoicequakes.

    Theanalysisoftheseismicactivitygaveindicationsoftheruptureprocessandledtotheidentificationoftworegimes:astableonewhereeventsareisolatedandnoncorrelatedwhichischaracteristicofdiffusedamage,andanunstableanddan-gerousoneinwhicheventsbecomesynchronizedandlargeicequakesaretriggered.

    4.4

    How much ice is stored by the Swiss glaciers?

    DanielFarinotti1,MatthiasHuss1,2,AndreasBauder1&MartinFunk1

    1Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH-Zurich, CH-8092 Zurich ([email protected])2 Department of Geosciences, University of Fribourg, CH-1700 Fribourg

    Glaciersarecharacteristicfeaturesofmountainenvironmentsandplayanimportantroleinvariousaspects.Theyareakeyelementofthewatercycle,beingthusimportantforhydropowerproductionoragriculturalexploitation,andepitomizethe”untouchedenvironment”,beingpreciousfortourismindustry.Withtheongoingclimatewarming,theretreatofmountainglaciersisofmajorconcernandstudiesassessingfutureglacierchangesandrelatedimpactsrecentlyreceivedincreasinginterest.Suchpredictionsnecessarilyneedthepresenticevolumeasinitialconditionandfortransientmodelling,theicethicknessdistributionhastobeknown.

    i)ii)iii)

  • 167

    Sym

    po

    siu

    m 4

    : O

    pe

    n C

    ryo

    sph

    ere

    se

    ssio

    nRecently,Farinottietal.(2009a)developedamethodbasedonmassconservationandprinciplesoftheiceflowdynamicsforinferringtheicethicknessdistributionofaglacierfromtheinversionofthesurfacetopography.Weappliedthemethodto62glaciersintheSwissAlps,includingallicemasseslargerthan3km2insurfacearea,usingdirecticethicknessmeasure-mentstoconstrainthemodelparameters.Theresultingsetoficevolumeswerereferencedtotheyear1999bymeansofatimeseriesofglaciermassbalance(Farinottietal.,2009b,Hussetal.,2008)andusedtocalibrateavolume-areascalingrela-tion(Bahretal.,1997).TheobtainedrelationwasthenappliedtotheglacierscontainedintheSwissGlacierInventory2000(Paul,2007)inordertoestimatethetotalglaciericevolumeintheSwissAlps.

    In1999,theglacierizedareaintheSwissAlpswas1063±10km2,with67%coveredbyglacierslargerthan3km2.FortheSwissAlps,weinferatotalglaciericevolumeof74±9km3(Farinottietal.,2009b).Nearlyonequarterofthisvolumeisstoredinthe hydrological basin of the Massa river, which comprises the three large glaciers Grosser Aletschgletscher,MittelaletschgletscherandOberaletschgletscher(Fig.1).Accordingtothetimeseriesofglaciermassbalance,theicevolumeintheSwissAlpsdecreasedby12%between1999and2008.Theextraordinarilywarmsummerof2003causedaicevolumelossofabout3.5%.

    Figure1.InferredicethicknessdistributioninthehydrologicalbasinoftheMassariver.Availableradio-echosoundingprofilesareshown.

    Hatchedareasareanalysedusingascalingrelation(FiguretakenfromFarinottietal.,2009b).

    REFERENCESBahr,D.B.,Meier,M.F.andPeckham,S.D.,1997.Thephysicalbasisofglaciervolume–areascaling. JournalofGeophysical

    Research102(B9),20355-20362.Farinotti,D.,Huss,M.,Bauder,A.,Funk,M.andTruffer,M.,2009a,Amethodtoestimatetheicevolumeandice-thickness

    distributionofalpineglaciers.JournalofGlaciology,55(191),422-430.Farinotti,D.,Huss,M.,Bauder,A.andFunk,M.,2009b.AnestimateoftheglaciericevolumeintheSwissAlps.Globaland

    PlanetaryChange,68,225-231.Huss,M.,Bauder,A.,Funk,M.andHock,R.,2008.DeterminationoftheseasonalmassbalanceoffourAlpineglacierssince

    1865.JournalofGeophysicalResearch,113,F01015.Paul, F., 2007.ThenewSwissGlacier Inventory2000 -ApplicationofRemoteSensingandGIS. SchriftenreihePhysische

    Geographie,Vol.52,UniversityofZurich.210pp.

  • 168Sy

    mp

    osi

    um

    4:

    Op

    en

    Cry

    osp

    he

    re s

    ess

    ion 4.5

    Surface snow modeling at Dome C, Antarctica

    GrootZwaaftinkChristine1,CagnatiAnselmo2,CrepazAndrea2,FierzCharles1,LehningMichael1,ValtMauro2

    1WSLInstituteforSnowandAvalancheResearchSLF,Davos,Switzerland2ARPAV CVA, Arabba di Livinallongo, Italy

    ModelingeffectivelysurfacesnowcompactioninAntarcticaisofgreatinterestforabetterunderstandingofexchangeproc-essesbetweenthesnowsurfaceandtheatmosphereaswellastheirrelevancetosurfacemassbalance.AtDomeC,wemeas-uredwaterequivalentofsolidprecipitationcollectedabout0.8mabovethesnowsurface.Thedensityofthiscollectedsnowvariesroughlyfrom50to300kgm-3withameanaround80kgm-3.Ontheotherhand,themeasureddensityoverthetop10cmofthesnowcoverbeingabout300kgm-3,thislayerroughlyrepresentsthemeanyearlyaccumulationatDomeC,forwhichdetailedsnowprofiles,continuousrecordsofsnowtemperatures,andatwoyearmeteorologicaldatasetareavailable.Therearesomeobservationsofdriftingsnoweffectsandweexpectwindtoplayamajorroleinthisdensificationprocess.

    Extensive qualitative descriptions of the snow deposition process exist in literature but no detailed quantitative study.AdjustingitssettingstotheextremeAntarcticclimate,weuseSNOWPACK,aflexible,modularsnowcovermodeltosimulatesnowcoverevolution.Theinfluenceofthewindonrapiddensificationisparameterizedbymeansofaneventdrivensnowdeposition.Thisresultsinamorerealisticsnowcoverwithapronouncedstratigraphy,evidentinsnowdensityandgrainsizes.

    Othermechanismswhichwetrytoincludearetheinfluenceofwatervapordepositionandsublimationatthesurface,forexample.

    Wewilldiscussimplicationsfromourresultsforfuturestudieswithrespecttobothmodelingandinsitumeasurementsrelatingtothisveryimportantprocess.

    4.6

    Integrative cryospheric research - an example in the Swiss Alps

    HauckChristian,HoelzleMartin,HussMatthias,SalzmannNadine,ScherlerMartin,SchneiderSina

    Alpine Cryosphere and Geomorphology (ACAG), Department of Geosciences, University of Fribourg, Chemin du Musée 4, CH-1700 Fribourg

    Asclimateischangingandthediscussiononimpactsandadaptationareemergingrapidlyinthescientificandpoliticaldialogue,itbecomesevenmorecriticaltoobserve,analyseandunderstandimportantcomponentsoftheclimatesysteminanintegratedmanner.Observationsaretheindispensablepreconditiontoimproveprocessunderstanding.Moreover,onlywithareliableandconsistentdatabaseline,modelscanbeverifiedandtheuncertaintyinprojectionsoffuturechangescanbeassessed.

    Thehigh-mountaincryosphereisparticularlysensitivetochangesintheatmosphericconditionswithseveralfeedbackme-chanismsonvariousspatialandtemporalscales.Atthesametime,alsothecryosphericcomponents,snow,iceandperma-frost,interrelatewhichleadstonon-linearresponsestoclimatechange.Atypicalexampleisthedifferingeffectofthesnowcoverforglaciermassbalancevariabilityandgroundisolationoverpermafrostoccurrences.Itisthereforecriticaltoadvan-ceintegratedmeasurementandanalysisconceptsforallcryosphericcomponentsofhigh-mountainenvironments.

    Therecentlyformednewresearchgroup ‘AlpineCryosphereandGeomorphology (ACAG)’attheUniversityofFribourgisaimingatactivelyadvancingintegratedinvestigationinhigh-mountainenvironments.Thearea‘Stockhorn-Findelgletscher’nearZermatt,Valais,hasbeenchosentobecomea‘posterchild’ofintegratedcryosphericresearchwherevariousmeasure-mentandmodellingapproachesareapplied.Measurementsincludeallcomponentsoftheenergybalance,spatialdistribu-tionofsnowaccumulation,glaciermassbalance,permafrostgroundtemperaturesdownto100m,geophysicalmonitoringoficeandwatercontentandgroundsurfacetemperatures(e.g.Gruberetal.2004,Machguthetal.2006,Hilbichetal.2008).Inaddition,newmodelapproachestodeterminetheresponseofglaciermassbalance(Findelgletscher),activelayerdepth(permafrostStockhorn)andevolutionofgroundicecontentareusedtoanalysetheimpactofclimatechangeonglaciersandpermafrostandtheirrespectivedifferences(e.g.Haucketal.2008).

  • 169

    Sym

    po

    siu

    m 4

    : O

    pe

    n C

    ryo

    sph

    ere

    se

    ssio

    nOurpresentationwillfocusonsomeofthemainresearchactivitiesintheStockhorn-Findelgletscherareaandgiveexamplesforintegratingthescientificactivities.

    Figure1.FindelgletscherandStockhornpermafrostmonitoringsite.Firstresultsofthedistributedsnowaccumulationmeasurementsin

    April2009areshown.Crossesindicatesnowprobings,theinferreddistributionofthesnowwaterequivalentisshowningreyscales.

    REFERENCESGruber, S., L.King,T.Kohl, T.Herz,W.Haeberli,&M.Hoelzle. 2004. Interpretationofgeothermalprofilesperturbedby

    topography:TheAlpinepermafrostboreholes at StockhornPlateau, Switzerland. PermafrostPeriglacial Processes, 15,349-357.

    Hauck,C.,Bach,M.&Hilbich,C.2008.A4-phasemodeltoquantifysubsurfaceiceandwatercontentinpermafrostregionsbasedongeophysicaldatasets.Proceedingsofthe9thInternationalConferenceonPermafrost,Fairbanks,Alaska,1,675-680.

    Hilbich,C.,Hauck,C.,Delaloye, R.&Hoelzle,M. 2008.A geoelectricmonitoringnetwork and resistivity-temperaturerelationshipsofdifferentmountainpermafrostsitesintheSwissAlps.ProceedingsNinthInternationalConferenceonPermafrost,Fairbanks,Vol.1,KaneD.L.andHinkelK.M. (eds), InstituteofNorthernEngineering,UniversityofAlaskaFairbanks,699-704.

    Machguth,H., Eisen,O., Paul, F.&Hoelzle,M., 2006. Strong spatial variability of snow accumulation observedwithhelicopter-borne GPR on two adjacent Alpine glaciers. Geophysical Research Letters, 33 (L13503): doi:10.1029/2006GL026576

    4.7

    Large scatter and multidecadal fluctuations in the 20th century mass loss of 30 Swiss glaciers

    HussMatthias1,2,BauderAndreas2&FunkMartin2

    1 Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland ([email protected])2 Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, 8092 Zürich, Switzerland

    Theongoingretreatofmountainglaciersstronglyimpactsonthehydrologicalcycle,mightcauseeconomiclossesinalpineregionsandisexpectedtodominateeustaticsealevelriseoverthenextcentury.Long-termtimeseriesofglaciermassba-lancerepresentakey toprojecting futureglacierchangesandunderstandingtheglacier-climate linkage.However,massbalanceismeasuredononlyafewglaciers,andtherecordstypicallyareonlysomedecadeslong.

  • 170Sy

    mp

    osi

    um

    4:

    Op

    en

    Cry

    osp

    he

    re s

    ess

    ion Here,wepresentthirtynewtimeseriesofglaciersurfacemassbalance,accumulationandmeltoverthepast100yearsin

    theSwissAlps.Thedatasetincludesdifferentglaciersizes,exposuresandregions,andthusconstitutesthefirstlong-termmassbalancetimeseriesbeingrepresentativeonamountainrangescale.Ourresultsarebasedonacomprehensivesetoffielddataandmodelling.Foreachglacier,upto10high-accuracydigitalelevationmodels(DEMs)wereestablishedprovidingicevolumechangesinsubdecadaltosemicentennialperiods.Inaddition,morethan8000directobservationsofannualmassbalanceandwinteraccumulationareavailable.Thisdatabasewasusedtoconstrainadistributedtemperature-indexmodel(Hock,1999;Hussetal.,2008)drivenbydailyairtemperatureandprecipitationfortheperiod1908-2008.

    Allglaciersshowconsiderablemassloss,butratesdifferstronglybetweenindividualglaciers(Fig.1).100-yearcumulativemassbalancevariesbetween–11mwaterequivalent(Allalingletscher)and–65mw.e.(Griesgletscher).Thesestrongdiffe-rencesintheresponseofglaciermassbalancetochangesinclimateforcingareattributedtoaninteractionofseveralcom-plexprocesses.Largeandflatglacierstendtohavemorenegativemassbalanceduetotheirlongreactiontime.Positiveandnegativealbedofeed-backmechanisms,aswellaschangingwinterprecipitation,variableonsmallerspatialscalesthanairtemperatures,mightalsoexplainsomeofthedifferences.

    Masslossisparticularlyrapidinthe1940sandlate1980stopresent,whileshortperiodsofmassgainoccurredinthe1910sandlate1970s(Fig.1).Thisindicatesthatglaciermasslossoverthe20thcenturywasnotlinear,butexhibitsimportantlong-termvariations.WefindoscillationsintherateofglaciermasslossintheSwissAlpswithaperiodof65years.GlaciermassbalanceissignificantlyanticorrelatedtotheAtlanticMultidecadalOscillation(AMO)indexwhichreferstoanomaliesintheseasurfacetemperatureintheNorthAtlantic.WethusproposealinkbetweenAtlanticOceancirculationandAlpineglaciermassloss.

    Figure1.Timeseriesofcumulativemeanspecificannualmassbalanceof30Swissglaciersinthe20thcentury.Blackdotsindicatethe

    datesofDEMs.Thesolidlinerepresentsthearithmetic30-glacieraverage.Glaciernamesandnumbersarearrangedaccordingtodescen-

    dingglaciersize.Thedash-dottedlineshowsthecumulativetotalvolumechangeofthe30glaciers(right-handsideaxis).Twoshortperi-

    odswithmassgainandtwoperiodswithfastmasslossaremarked.

    REFERENCESHock,R.,1999.Adistributedtemperature-indexice-andsnowmeltmodelincludingpotentialdirectsolarradiation.Journal

    ofGlaciology,45,101–111.Huss,M.,Bauder,A.,Funk,M.&Hock,R.,2008.DeterminationoftheseasonalmassbalanceoffourAlpineglacierssince

    1865.JournalofGeophysicalResearch,113,F01015.

  • 171

    Sym

    po

    siu

    m 4

    : O

    pe

    n C

    ryo

    sph

    ere

    se

    ssio

    n4.8

    Mass balance monitoring on Pizolgletscher

    HussMatthias1,2

    1 Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland ([email protected])2 Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, 8092 Zürich, Switzerland

    Verysmallglaciersarerarelysubjectofglaciologicalstudies.AlthoughtheseglaciersonlycoveralimitedfractionoftheglacierizedareaintheAlps,theirnumberisconsiderable.Accordingtoglacierinventorydata,82%oftheSwissglaciersaresmaller than 0.5 km2. So far, the mass balance of glaciers in this important size class was never investigated inSwitzerland.

    In2006anewmassbalancemonitoringprogramontheverysmallPizolgletscher,north-easternSwissAlps,wasstarted.Pizolgletscherhasanareaofcurrently0.08km2andisarelativelysteep,north-exposedcirqueglacier(Fig.1).Themonitoringprogramconsistsoftwofieldsurveys,oneinAprilandoneinSeptember,andwillbecontinuedoverthenextyears.Duringthewintersurveythespatialdistributionofsnowaccumulationisdeterminedbyupto100snowprobingsonadensenet-workandsnowdensitymeasurementsinasnowpit.Threestakesdrilledintotheiceprovideinformationabouttheannualmassbalance(Fig1a).Inaddition,thechangesinglacierareaandicevolumeareknowninsubdecadalintervalsfromsevenphotogrammetricsurveyssince1968providinghigh-accuracydigitalelevationmodels.

    Basedontheseasonalin-situmeasurementsglacier-widemassbalanceisdeterminedusinganovelmethod.Adistributedmassbalancemodelwithdailytimestepsistunedtomatchboththemeasuredsnowwaterequivalentinspringandtheannualmassbalanceatthestakes(Huss,2009).Theobservedaccumulationdistributionisusedtoconstrainthemodelinspace.Thismethodallowsanoptimalexploitationofthefielddata,thedeterminationofmassbalanceoverfixedtimepe-riodsand,thus,thecomparisonofdifferentyears.

    InthetwofirstyearsofthesurveyPizolgletscherwassubjectedtostrongmassloss.Theannualmassbalancein2006/2007was–1.60mwaterequivalent(w.e.)andin2007/2008–0.83mw.e.Thewinteraccumulationwaslowin2007withanearlyonsetofthemeltingseason.InApril2008and2009,however,averagesnowdepthsofalmost5metresweremeasured,coun-teractingthehighairtemperaturesofthefollowingsummer.ThespatialpatternofsnowdepositiononPizolgletscherishighlyvariableandimportantlydeterminedbywind(Fig.1b).Consequently,glacieradvanceisduetoanappositionoffirninfrontoftheglaciertongue,andisnotrelatedtoadynamicreactionoficeflow.Pizolgletschercan,thus,changeitsareaandlengthrapidly,whichisillustratedbythelengthchangemeasurementscarriedoutsincethelate19thcentury.

    Figure1.(a)FrontviewandmapofPizolgletscher.Thepositionofthemassbalancestakesisshown.(b)OrthophotographofPizolgletschertakeninSeptember1973.Linesindicateglacierextentin1968,1973,1997and2006.Theinhomogeneousdis-tributionofsnowiswellvisible.Theinsetshowsthechangeinglacierarea(dA)andvolume(dV)relativetotheyear1968.

  • 172Sy

    mp

    osi

    um

    4:

    Op

    en

    Cry

    osp

    he

    re s

    ess

    ion Between1968and2006Pizolgletscherhaslostmorethan60%ofitsareaandvolume,mostofthedecreasetakingplaceover

    thelasttwodecades(insetinFig.1b).Extrapolatingthislossintothefutureis,however,unreliable,astheglacierwillretre-atbydegreesintoamoreprotectedcirquewithhighaccumulationrates,seekingforanewequilibrium.Basedontheobser-vedicevolumechanges,theseasonalmassbalanceoverthelast40yearswasreconstructedaccordingtoHussetal.(2008).The cumulativemass balance is –17mw.e.,which is consistentwith othermass balance records in the SwissAlps (e.g.Silvrettagletscher).Ashortperiodofmoderatemassgains inthe late1970s is followedbystrongmass loss, inparticularsince2003.

    ThefirstresultsofthenewmassbalancemonitoringprogramonPizolgletscherarepromisingandhaverevealedinterestinginsightsintotheresponseofsmallglacierstoclimatewarming,inparticulartheirhighsensitivitytoaccumulationchangesandtheimportanceofthespatialdistributionofsnowdeposition.

    REFERENCESHuss,M.,Bauder,A.,Funk,M.&Hock,R.,2008.DeterminationoftheseasonalmassbalanceoffourAlpineglacierssince

    1865.JournalofGeophysicalResearch,113,F01015.Huss,M,2009.PastandFutureChangesinGlacierMassBalance,Chap.A.1.DissertationNo.18230,ETHZürich,218pp.

    4.9

    Ice wastage on the Kerguelen Islands (49°S, 69°E) between 1963 and 2006

    RaymondLeBris2,EtienneBerthier1,LaureMabileau1,LaurentTestut3,andFrédériqueRémy1

    1LEGOS, CNRS, Toulouse, France.2Department of Geography, University of Zurich, Zurich, Switzerland. ([email protected])3LEGOS, Université de Toulouse, Toulouse, France.

    TheglaciersandicecapslocatedaroundtheAntarcticandGreenlandicesheetscontainasignificantfractionofthelandiceonEarth(Dyurgerov&Meier.2005).Difficulttoaccess,theirresponsetoclimaticfluctuationsandtheirrecentevolutionarepoorlyknown(Gordonetal.2008).Becausethebehavioroftheseicemassesalsoconstitutesagenuineclimaticindicator,theobjectiveofthisstudyistoassessthechangesoftheextentandvolumeofglaciersandicecapsonKerguelenIslanddur-ingthelastfortyyears(Berthieretal.2009).ThisstudyisalsoacontributiontotheGLIMSinitiative(Raupetal.2007)

    Basedonarchiveddata (e.g. IGNmappublishedin1967,glaciologicalcampaignscarriedout inthe1970s)andonrecentsatellitedata(Landsat,SPOT,SRTM,ICESat),wedefinesuccessiveoutlinesoftheprincipaloutletglacierstomeasurethepaceoftheretreatoftheCookIceCap.InordertounderstandtheresponseoftheIceCaptoclimaticforcing,wealsoanalyzedtheclimaticdatarecordedbytheMétéoFrancestationinPortauxFrançais.

    Theresultsrevealthatallglaciershaveretreatedsince1965althoughastrongvariabilityexistsfromoneoutletglaciertoanother.OnestrikingresultistheEast/Westasymmetryoftheglacierretreat:west-flowingglaciershavelost11.4%oftheirareawhileeast-flowingglacierlost28.2%.ThedramaticretreatontheeasternsideisillustratedbytheretreatofExplorer’sGlacierfrontby3150m+/-162msince1965oranaverageof75m/yr.Furthermore,theAmpèreGlacierthinnedonaverageby125m+/-16minthefrontalarea,about-4.8m/yr.(cf.alsoVallon1977).Locally,themeanthinningrateduringthelast40yearsreachedasmuchas10m/yr.

    Intotal,theicecaplost20%ofitssurfaceareaoveraperiodofthirty-eightyears(1965-2003).TheCookIceCapisinrecessionsincenearlyonecenturyandthistrendacceleratedsincetheyears1960-70(Frenotetal.1993).Theanalysisofmostrecentsatelliteimages(fromtheyears2003to2007)showsthattheretreatcontinuestodaywiththesamespeedorevenslightlyfaster.

    Theicecapisthusfarfromitsstateofbalance. If thecurrentclimaticconditionsprevail (hightemperaturesandarela-tivelylowlevelofprecipitation)oriftheyareevenamplifiedinthefuture,itmightbepossiblethattheicecapwilltotallydisappear.

  • 173

    Sym

    po

    siu

    m 4

    : O

    pe

    n C

    ryo

    sph

    ere

    se

    ssio

    n

    Figure1.TopographyoftheKerguelenIslands.Thefourmainglacierizedregionsandthebasestation(Portaux-Français)arealsoindicated.

    ThesmallglobeidentifiesthelocationoftheislandintheSouthIndianOcean.

    Figure2.East-westasymmetryoftheCookIceCapshrinkage.

    Thedarkgrayrepresentsice-coveredareasthatdisappearedbetween1963and2001.

    REFERENCESBerthier, E., Y. Arnaud,C. Vincent, and F. Remy (2006), Biases of SRTM inhigh-mountain areas: Implications for the

    monitoringofglaciervolumechanges,Geophys.Res.Lett.,33,L08502,doi:10.1029/2006GL025862.Dyurgerov,M.B.,andM.F.Meier(2005),GlaciersandtheChangingEarthSystem:A2004Snapshot,117pp.,Inst.ofArctic

    andAlp.Res.,Univ.ofColo.,Boulder.Frenot, Y., J.-C.Gloaguen,G. Picot, J. Bougère, andD. Benjamin (1993),Azorella selagoHook.used to estimate glacier

    fluctuationsandclimatichistoryintheKerguelenIslandsoverthelasttwocenturies,Oecologia,95,140–144.Gordon, J. E.,V.M.Haynes, andA.Hubbard (2008),Recentglacier changesandclimate trendsonSouthGeorgia,Global

    Planet.Change,60(1–2),72–84,doi:10.1016/j.gloplacha.2006.07.037.Raup,B.,etal.(2007),RemotesensingandGIStechnologyintheGlobalLandIceMeasurementsfromSpace(GLIMS)project,

    Comput.Geosci.,33(1),104–125,doi:10.1016/j.cageo.2006.05.015.Vallon,M. (1977a), Bilandemasse et fluctuations récentes du glacierAmpère (Iles Kerguelen, TAAF), Z.Gletscherkd.

    Glazialgeol.,13,55–85.

  • 174Sy

    mp

    osi

    um

    4:

    Op

    en

    Cry

    osp

    he

    re s

    ess

    ion 4.10

    Observation and analysis of two wet-snow avalanche cycles

    ChristophMitterer,RebeccaMott,MichaelSchirmer,JürgSchweizer

    WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, CH-7260 Davos Dorf ([email protected])

    Theformationofwet-snowavalanchesaswellasthesnowpackprocessesleadingtowet-snowinstabilitiesarepoorlyunder-stood.Forecastingwet-snowavalanchesisagreatchallengeandposesgreatdifficultiesforlocalauthorities.Betterknowl-edgeabouttheprocessesleadingtowet-snowinstabilitiesisthereforeveryimportant.Duringthewintersof2007-2008and2008-2009twodistinctwet-snowavalanchecyclesoccurredinthesurroundingsofDavos,Switzerland.Weanalyzedmete-orologicaldata,in-situsnowpackinformationandmappedavalancheextent.Inaddition,thesnowcovermodelSNOWPACKwasusedtofillthegapwheresnowpackdata,suchasvolumetricwaterorsnowtemperature,werenotavailable.Snowpackinformationfordifferentelevationbandsweremodelledbyusingaconstantlapse-rateforairtemperatureandincominglongwaveradiation.Theanalysisfocusedonthecausesofinstability:loadingand/orweakeningduetowaterinfiltration.The full energy balance was calculated usingmeteorological data and extrapolated to the investigation area using themodelALPINE3D.Bothavalanchecyclesoccurredinashortperiodoftime.The2007-2008avalanchecyclewascharacterizedbyshortperiodsofwarmingandadditionalloadingbysnowfallandinputofmeltwaterduetorain.Forthe2008-2009wet-snowavalanchecycle,ontheotherhand,distinctwarmingandsolarradiationwereprobablyresponsibleforahigherpro-ductionofmeltwater.Terrainparameterssuchasaspectandslopeanglecombinedwithliquidwaterinfiltrationpatternswerecrucialduringthesecondwet-snowavalanchecycle.Snowpackdatasuggestthatinthefirstyearsnowstratigraphyfavouredtheformationofweaklayers,whereasforthesecondyearsnowstratigraphymayhavefavouredagradualripeningofsnowpackleadingtoaweakeningofthebasallayers.

    4.11

    Shear experiments with snow samples

    IngridReiweger1,RobertErnst1,JürgSchweizer1,JürgDual2

    1 WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland ([email protected])2 Institute of Mechanical Systems, ETH Zürich, Switzerland

    Naturaldry-snowslabavalanchesstartwithafailurewithinaweaksnowlayer.Inordertounderstandthemechanicalbe-haviourandthefailuremechanism,weperformedloadingexperimentswithhomogeneousandlayeredsnowsamplesundercontrolledconditionsinacoldlaboratory.Forsimulatingloadingconditionssimilartothenaturalsnowpack,wedesignedandbuiltanapparatuswhereasnowsamplecanbetiltedbya‘slopeangle’andisloadedviathegravitationalforce.Thedeformationwithin the snow samplewasmeasuredopticallywith a pattern recognition algorithm (PIV). Shortly beforemacroscopicfailure(breakingofthewholesample)weobservedaconcentrationofdeformation(softening)withintheweaklayer.Additionally,wemeasureacousticemissionsduringtheshearexperimentstoquantifythemicroscopicfailure(brea-kingofbonds) inthesnowsamplebeforethecompletefailure.Ourresultssupporttheassumptionthatthedominatingmechanismsforsnowdeformationarethecompetingprocessesofbreakingandsinteringofbondsbetweengrains.ResultsfromPIVclearlyshowedthatwhenalayeredsnowsamplewassubjectedtoaconstantslowloadingrate,thedeformationwasconcentratedwithintheweaklayer.Thishasoftenbeenassumedbuthasnotbeendocumentedsofar.Preliminaryre-sultsoftheacousticemissionmeasurementsofthehomogeneoussamplesindicatedthattheAEmayhintonthemicrome-chanicsduringdeformation.

  • 175

    Sym

    po

    siu

    m 4

    : O

    pe

    n C

    ryo

    sph

    ere

    se

    ssio

    n4.12

    A viscoelastic constitutive relation describing primary and secondary creep and solid elastic behaviour of ice

    RiesenPatrick1,HutterKolumban1,FunkMartin1

    1Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH Zürich, CH-8092 Zürich

    Theflowofglaciericeiswidelytreatedbyastress-strainrelationcommonlyreferredtoasGlen'sflowlaw.TheGlenflowlawisapureviscousrelation,henceacertainamountofstressimmediatelycorrespondstodeformation(i.e.strainrate),inde-pendentoftimeandpossiblerelaxation.Thisbehaviourisappropriateforstationary(secondary)creepofice.However,re-centdetailediceflowmeasurementsonGornergletscher,Switzerland,performedduringthedrainageofaglacierdammedlake,haveidentifiedparticularunexplainedflowchangeswheresignificantvariationsoccurwithinafewhourstoseveraldays.Itwassuggestedthatelasticeffectsmayplayaroleinsucharapidresponseofglacierice.Fromanengineeringpointofview,theloadsrequiredtoproducedisplacementsoftheicesimilartothoseobserved,isontheorderofseveral105Pa.Inthisrange,linearviscoelasticbehaviouroficemaybeinappropriateandonemustconsidernon-linearviscoelasticresponseoftheice.However,manyexperimentsandcreeptestsconductedinthepasthaveshownnon-stationary(primary)creeptobeeffectiveforapproximatedurationsofafewhourstoafewdays.Wethereforeconjecturethatprimarycreepplaysaroleinshort-timeglacierflowvariations.Totestourhypothesisandelucidatetheinfluenceofpossibleviscoelasticeffects,weconstructedaconstitutiverelationwhichisabletoreproduceprimaryandsecondarycreepaswellaselasticeffects.Amo-difiedRivlin-Eriksenfluidmodel,wherethestressisrelatedtobothstrainrateandstrainaccelerationsisusedtodescribeprimaryandsecondarycreepoftheice.Wecoupletheviscousfluidmodelwithanon-linearelasticKelvin-typestress-strainrelationtoenablethematerialtoexhibitelasticbehaviourofasolid.Theconstitutiverelationobeysthermodynamicrequire-ments.Thetransientresponseiniceflowisthusassignedtotheeffectsofviscoelasticrelaxationandprimarycreep.Thedecoupledformulationallowstostudythoseeffectsseparatelyorincombination.Somefirstnumericalresultsusingthefiniteelementmethodhavebeenobtainedfortwoglaciologicalbenchmarkproblemsof(i)flowinachanneland(ii)flowoveraninclinedslab.

    4.13

    Coupling of ERT and thermal modelling to monitor permafrost without boreholes

    RingsJörg1,HauckChristian2,HilbichChristin3

    1 ICG 4 Agrosphere, Forschungszentrum Jülich, Germany2 Alpine Cryosphere and Geomorphology (ACAG), Department of Geosciences, University of Fribourg, Chemin du Musée 4, CH-1700 Fribourg3 Glaciology, Geomorphodynamics & Geochronology, Department of Geography, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich

    Geophysicalmethods,andespeciallytheElectricalResistivityTomography(ERT)method,arebeingrecognisedasstandardtoolsforthedetectionandmonitoringofpermafrost,sincerecentadvancesindataacquisitionandprocessinghavemadetheirapplicationworthwhileeventhoughsomeefforthastobemadetoensuregooddataqualityandreliableinversionresults(Hilbichetal.2009).Inmanyscientificstudiesboreholetemperaturedataserveasgroundtruthforthegeophysicalresults,enablingathoroughandrigorousassessmentofthequalityoftheapproach.Furthermore,ERTyields2-and3-di-mensionaldataofthesubsurfaceandissensitivetotheunfrozenwaterandicecontent,whichiscomplementarytothe1-dimensionaltemperaturemeasurementsinboreholes.

    Ontheotherhand,thenon-invasivenessofthegeophysicalsurveysandthecorrespondinglowcostsandminimaldistur-banceofthesystemtobemonitoredisusuallyseenasthemajoradvantageofgeophysicsasopposedtoboreholes.Forfutu-reautonomousandwidespreadmonitoringsystemsforpermafrost(similartothesnowandmeteostationnetworks),apu-relygeophysicalapproachisenvisaged.However,ERTmeasurestheelectricalresistivityofthesubsurface,whichhastoberelatedtoicecontentortemperature.Commonapproachesusepetrophysicalrelationships(suchasthewell-knownArchie'sLaw)torelatethemeasuredresistivitychangestosaturationandicecontentchangesortemperature(Haucketal.2008).Butwithoutgroundtruthdatafromboreholesorextensivelaboratorycalibrationusingsubsurfacematerial,theexactnatureofthesite-specificpetrophysicalrelationshipcannotbedetermined.

  • 176Sy

    mp

    osi

    um

    4:

    Op

    en

    Cry

    osp

    he

    re s

    ess

    ion Inthiscontribution,weintroduceafilteringapproachcombinedwithcoupledmodellingofthermalconductionandERT

    topredictsubsurfacetemperaturesbasedonERTmonitoringdatawithouttheneedforboreholeorlaboratorydata.WeusesequentialBayesianfilteringorparticlefiltering(seee.g.Arulampalametal.2002),whichhastheadvantageofcontinuous-lyprovidingprobabilitydistributionsofstate(temperature)andparameters(e.g.thermalconductivity)whenevermeasure-mentsbecomeavailable.Aparticlefilterapproximatesthesedistributionsbyasetofdiscrete,weightedparticles.Initialstateandparameteraredrawnfrompriordistributionsandthermalconductionismodelledindependentlyforeachparticle.Themodelledchangeintemperatureistransferredtochangeinresistivitybyalinearrelation,andanERTforwardmodelisusedtosimulatethesystemresponse.Then,theparticlesareweightedaccordingtotheagreementbetweenmeasuredandmo-delledERTresponse.Are-samplingroutineisusedtoensurethat,overtime,theparticlesgravitatetowardstheposteriordistributionsofstateandparameter.

    Totesttheapproach,modelledandobservedgroundtemperatureswerecomparedatthehigh-altitudepermafroststationonSchilthorn,BernerOberland/SwissAlps.FirstresultsusingautomatedERTmonitoringdatafromthePERMOS(PermafrostMonitoring Switzerland) network show a good performance during a 3-month period in spring and summer 2009.Improvementscanbeachievedbyusingmoresophisticatedthermalmodelsandbyiterativeprocedurestodeterminethe(verticallyvariable)materialpropertiesofthesubsurface,suchasporosityandthermalconductivity.

    REFERENCESArulampalam,M.S.,Maskell,S.,Gordon,N.&Clappt,T.2002.Atutorialonparticlefiltersforonlinenonlinear/non-Gaussian

    Bayesiantracking,IEEETransactionsonSignalProcessing,50,174-188.Hilbich,C.,Marescot,L.,Hauck,C.,Loke,M.H.&Mäusbacher,R.2009.ApplicabilityofERTmonitoringtocoarseblockyand

    ice-richpermafrostlandforms.PermafrostandPeriglacialProcesses20(3),269-284.Hauck,C.,Bach,M.&Hilbich,C.2008.A4-phasemodeltoquantifysubsurfaceiceandwatercontentinpermafrostregionsbased

    ongeophysicaldatasets.Proceedingsofthe9thInternationalConferenceonPermafrost,Fairbanks,Alaska,1,675-680.

    4.14

    The polythermal structure of Grenzgletscher (Swiss Alps)

    ClaudiaRyser1,MartinLüthi1,NorbertBlindow2,SonjaSuckro2

    1 Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH-Zürich, 8092 Zürich, Switzerland ([email protected])2 Institut für Geophysik der Westfälischen Wilhelms- Universität Münster, 48149 Münster, Germany

    Withacombinationofboreholemeasurementsandhelicopter-borneiceradar,thetemperaturedistributioninthelowerpartofthepolythermalGrenzgletscher(SwissAlps)wasinvestigated.Verticaltemperatureprofilesweremeasuredin12deepboreholes.ColdicewasfoundinacentralflowbandintheGrenzgletscherbranch,wherethecoldestice(-2.6°C)wasfoundin60-75mdepth.Thecoldiceoccupies80-90%oftheicethicknessof200-320m,andislaterallyconnedtoabandof+/-200mfromthecentralflowline.Theiceistemperateclosetothebedandtowardsthemargins.ComparisonoficeradarsoundingsacquiredwiththeUMAIRgeoradarwithboreholetemperaturesshowsthatlow-backscatterzonescoincidewithiceattem-peraturesmore than0.5Kbelow thepressuremelting temperature. The low-backscatter zonesare thusused tomap thedistributionofcoldiceonthewholelowerglacier.Thecoldiceadvectedfromtheaccumulationcausesazoneofpersistentsuperficialmeltwaterstreamsandlakes.

  • 177

    Sym

    po

    siu

    m 4

    : O

    pe

    n C

    ryo

    sph

    ere

    se

    ssio

    n4.15

    Simulation of high mountainous discharge: how much information do we need?

    Schaefli,Bettina1andHuss,Matthias2

    1 Water Resources Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2600GA Delft, The Netherlands ([email protected])2 Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, 8092 Zurich. Now at: Alpine Cryosphere and Geomorphology, Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland

    Forthemanagementofwaterresources,thehydrologiccycleofhighmountainouscatchmentsisfrequentlysimulatedwithverysimpleprecipitation-dischargemodelsrepresentingthesnowaccumulationandablationbehaviorofaverycomplexenvironmentwith a set of lumped equations accounting only for altitudinal temperature andprecipitationdifferences.Thesemodelsaregenerallycalibratedsothatthemodelreproducesascloselyaspossibleaseriesofobserveddischargemea-surements.Thequestioninevitablyariseswhetherlongtermpredictionsofsuchacalibratedmodelareactuallyreliable,sinceknowingthatamodelperformswellforhistoricsituationsdoesbynomeansimplythatitwillperformwellforfuture,considerablymodifiedcatchmentconditions.Afirst,althoughnotsufficientsteptoanswerthisquestion,isinvestigatingwhetherwithsuchamodel,weare“gettingtherightanswersfortherightreasons”.Inglacierizedcatchments,thiswouldforexampleimplythataprecipitation-runoffmodelshouldnotjustmimicobserveddischargebutalsoreproducetheglaciermassbalance.

    Inthisstudy,weshowhowmuchobservedinformationweneedtoreliablycalibrateahydrologicalmodelforahighmoun-tainous catchment. Based on glacio-hydrological data from theRhone glacier catchment,we analyzehowwell a simpleconceptualprecipitation-runoffmodel(GSM-SOCONT,Schaeflietal.,2005)canreproduceseasonalglaciermassbalancedataandinasecondstep,howmuchinformationisrequiredtoachieveareliablemodelcalibration.Here,wefocusontheques-tionwhetherobserveddischargeissufficientorwhetherweneedannualorevenseasonalglaciermassbalancedata.

    Forthisparticularcatchment,adetailedreproductionofobservedseasonalbalancesrequiresamodificationoftheaccumu-lation and ablationmodule of GSM-SOCONT. Themodel only accounts for altitudinal differences of themeteorologicalconditionsande.g.notforwinddriftorexposition.Asourresultsshow,introducingseasonalaccumulationandablationparametersissufficienttoenablethissimplemodeltoreproduceobservedseasonalbalances (Fig.1)andannualnetbal-ances(Fig.2).Furthermore,ourresultssuggestthatcalibratingthehydrologicalmodelexclusivelyondischargecanleadtowrongrepresentationsof the intra-annualaccumulationandablationprocessesand, thus, toabias in longtermglaciermass balance simulations (Fig. 2). Adding only a few annual net balance observations considerably reduces this bias.Calibrating exclusively on annual net balance data can, in turn, lead towrong seasonalmass balance simulations (notshown).

    Eveniftheseresultsarecasestudyspecific,ourconclusionsgivevaluablenewinsightsintothebenefitofdifferenttypesofobservationsforcalibratinghydrologicalmodelsinhighalpinecatchments.

    Figure1:Wintermassbalancefor5elevationbands(winter1979/1980);greybars:10%and90%percentilesofallobservedpointmassba-

    lances(Funk,1985),redbars:simulatedmeanmassbalance(modifiedGSM-SOCONTwithseasonalaccumulationandablationparame-

    ters).

  • 178Sy

    mp

    osi

    um

    4:

    Op

    en

    Cry

    osp

    he

    re s

    ess

    ion

    Figure2.Comparisonofannualnetbalancesimulationsobtainedwiththedetailedglaciologicalmodelpresentedin(Hussetal.,2008)

    andwiththesimplehydrologicalmodelGSM-SOCONT(withseasonalaccumulationandablationparameters),calibratedonseasonaldata,

    onnetbalancedata(Funk,1985)orondischarge.

    REFERENCESFunk,M.: RäumlicheVerteilungderMassenbilanz auf demRhonegletscherund ihre Beziehung zuKlimaelementen,

    EidgenössischeTechnischeHochschuleZürich,Zürich,183pp.,1985.Huss,M.,Bauder,A.,Funk,M.,andHock,R.:DeterminationoftheseasonalmassbalanceoffourAlpineglacierssince1865,

    JournalofGeophysicalResearch,113,F01015,10.1029/2007JF000803,2008.Schaefli,B.,Hingray,B.,Niggli,M.,andMusy,A.:Aconceptualglacio-hydrologicalmodelforhighmountainouscatchments,

    HydrologyandEarthSystemSciences,9,95-109,2005.

    4.16

    Impact of snowmelt on zero curtain and thaw layer depth for different subsurface textures. Field and modeling- based studies at the Murtél- Chastelets area.

    SchneiderSina,ScherlerMartin

    Alpine Cryosphere and Geomorphology (ACAG), Department of Geosciences, University of Fribourg, Chemin du Musée 4, CH-1700 Fribourg

    Thesummerzerocurtainphase,atimeperiodcharacterizedbyconsumptionoflatentheatinanisothermalsoilregionattemperaturesnearthemeltingpoint,isofhighimportanceforthethermalregimeofpermafrost.Itisassumedthatthemaincausefortheinitialisationofthesummerzerocurtainisthethawingofthesnowpackandthustheinfiltrationofmeltwaterintothefrozenactivelayer.Furthermoreweassumethattheevolutionofthezerocurtaindependsonthetextureofsubsurface.

    BoreholetemperaturemeasurementsfromourfieldsiteMurtél-Chasteletsshowthatonfinegrainedmaterialtheisother-malregionismuchthickerthanincoarseblockymaterial.Inadditionweuseanumericalheatandmasstransfermodeltofurtherinvestigatetheinfiltrationprocessesonthesedifferentsubstrates.

  • 179

    Sym

    po

    siu

    m 4

    : O

    pe

    n C

    ryo

    sph

    ere

    se

    ssio

    n

    B33 (28.04.2008 - 30.06.2008)

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    28.04.

    08

    05.05.

    08

    12.05.

    08

    19.05.

    08

    26.05.

    08

    02.06.

    08

    09.06.

    08

    16.06.

    08

    23.06.

    08

    30.06.

    08

    Date

    Tem

    per

    atu

    re (

    °C)

    0_m

    0.1_m

    0.2_m

    0.3_m

    0.4_m

    0.5_m

    0.6_m

    0.8_m

    1.0_m

    1.5_m

    2.0_m

    2.5_m

    3.0_m

    3.5_m

    4.0_m

    4.5_m

    5.0_m

    5.95_m

    Figure1.:ZerocurtainofboreholeB33(coarseblockymaterial)duringspring2008

    B34 (28.04.2008 - 30.06.2008)

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    28.04.

    08

    05.05.

    08

    12.05.

    08

    19.05.

    08

    26.05.

    08

    02.06.

    08

    09.06.

    08

    16.06.

    08

    23.06.

    08

    30.06.

    08

    Date

    Tem

    per

    atu

    re (

    °C)

    0.0_m

    0.1_m

    0.2_m

    0.3_m

    0.4_m

    0.5_m

    0.6_m

    0.8_m

    1.0_m

    1.5_m

    2.0_m

    2.5_m

    3.0_m

    3.5_m

    4.0_m

    4.5_m

    5.0_m

    6.0_m

    Figure2.:ZerocurtainofboreholeB34(finegrainedmaterial)duringspring2008

    REFERENCES:Outcalt, S., F. E.Nelson, andK.M.Hinkel (1990). TheZero-CurtainEffect:Heat andMassTransferAcross an Isothermal

    RegioninFreezingSoil.WaterResourcesResearch26(7),1509-1516.Kane,D.L.andJ.Stein(1983).WaterMovementIntoSeasonallyFrozenSoils.WaterResourcesResearch19(6),1547-1557.

  • 180Sy

    mp

    osi

    um

    4:

    Op

    en

    Cry

    osp

    he

    re s

    ess

    ion 4.17

    Using XPD for determining physical rock parameters of permafrost materials

    TiloSchneider1,IldikoKatona-Serneels2

    1 Institut für Geowissenschaften, Burgweg 11, 07749 Jena, Germany2 Department of Geoscience, Chemin du Musée 6, CH - 1700 Fribourg, Switzerland

    Permafrostoccursindifferentsubstrates.Variabilityinrocktype,porosity,blocksizedistributionandweatheringattitudedeterminesmorphology,dynamicandicecontentofrockglaciersandtalusslopes.Toanalyzetheseconditionsgeophysicaltechniquessuchasgeoelectricsandseismicsareadequatemethodstodeterminepropertiesoftheshallowsurfaceinpermafrostregions.Eventhoughvaluesforthephysicalcharacteristicsoftheprevailingrockscanusuallybefoundinliterature,theymayvaryoverawiderange.Inordertocalculatemoredetailedmodelsofthesubsurface the physical rock parameters like electrical resistivity and acoustic impedance have to be known very well.Determiningthephysicalcharacteristicsofsinglemineralsmaythereforelimittheuncertaintiesofthewholegeophysicalrockanalysis.

    Attypicalpermafrostmonitoringsites,suchastheMurtèl/ChasteletsareaintheEasternSwissAlps,severaldrillcoresandrocksampleswerecollectedandanalyzedusingX-RayPowderDiffractometry.Bythis,itispossibletodeterminethemineralcompositionoftherocksintheinvestigationarea.Inaddition,aReed-Fieldanalysiswasusedtocalculatethequantityoftherespectivemineralcontent.Thisenablestodeterminemeanphysicalrockpropertiesinthesubsurfacewhichthencanbeusedtoimprovegeophysicalmodeling.TheXPDanalysisisafastandexactmethodtodeterminethemineralcontentinrocksamplesqualitativelyandquantitatively.InthisstudyrocksamplesfromthreedifferentpermafrostareasintheSwissAlpshavebeenanalyzed.Allthreesites(Murtèl/Chastelets(GR),Schilthorn(BE),Stockhorn(VS))areincludedintheSwisspermafrostmonitoringnetworkPERMOS,whereboreholetemperatures,meteorologicaldataandgeophysicaldataarebeingcollectedextensively.Inourcontributionwewillpresentresultsfromthemineralanalysisandcomparethemtogeophysicalparametersobservedatthethreesites.

    4.18

    A systematic approach to quantify the performance of SNOWPACK

    SteinkoglerWalter1,2,FierzCharles1,LehningMichael1,ObleitnerFriedrich2

    1WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, CH-7260 Davos Dorf ([email protected])2Institute of Meteorology and Geophysics, Innsbruck University, Innrain 52, A-6020 Innsbruck

    Newsnowsettlementintheveryfirsthoursanddaysafterasnowfallhasnotyetbeenfullyunderstood.Modellingerrorsatthisinitialstagepropagatethroughawholewinterseason,thusaffectingacorrectmodellingofcrucialsnowcoverproper-tiessuchasdensity,temperaturedistributionandsnowdepth.

    Uptonow,parametertuningforsettlinginSNOWPACK(Lehning&Fierz,2008)hasmainlybeendonebyvisualcomparisonofmodelledwithmeasuredsettlingcurves.Thiscanbeaccomplishedbytrackingmodellayersthatcorrespondtopositionsofcombinedsettlementandtemperaturesensors(snowharps).Asaresult,verificationofmodelperformancewithinsitumeasurementsispossible.Herecomprehensivedatasetsobtainedduringanumberofsnowfallperiodsareused.Basedontheseobservationswepresentasystematicapproachtoassesstheperformanceofthemodel.Sensitivitystudiesallowtolocatethemostimportantmodelparameterswhichinfluencethesettlementofdepositedsnow.Ourapproachoffersthepossibilitytovisualiseandquantifytheperformanceofdifferentmodelruns.Inparticular,wewillpresentsuchananalysisbothduringandafewdaysaftersnowfalls.

    REFERENCESLehning,M.,&FierzC.,2008:Assessmentofsnowtransportinavalancheterrain.ColdReg.Sci.Technol.,51(2-3),240–252.

  • 181

    Sym

    po

    siu

    m 4

    : O

    pe

    n C

    ryo

    sph

    ere

    se

    ssio

    n4.19

    Mass balance of Brewster Glacier, New Zealand, modelled over three decades

    DorotheaStumm1,FitzsimonsSeanJ1,CullenNicolasJ1,HoelzleMartin2,MachguthHorst3,AndersonBrian4&MackintoshAndrew5

    1Department of Geography University of Otago, PO Box 56, Dunedin, New Zealand ([email protected])2Department of Geosciences, University of Fribourg, Chemin de musée 4, 1700 Fribourg3Department of Geography, University of Zurich, Winterthurerstr. 190, 8057 Zurich4 Antarctic Research Centre, Victoria University of Wellington, PO Box 600 Wellington, New Zealand 5 School of Geography, Environment and Earth Science, Victoria University of Wellington, PO Box 600 Wellington, New Zealand

    TheaimofthisstudywastomodelthemassbalanceandsnowlinesonBrewsterGlacierforthepastthreedecades,byusingadistributedmassbalancemodel(Oerlemans,2001;Machguthetal.,2006).

    Themassbalancemodelisbasedontheenergybalance,andrunswithmeteorologicalinputdata.Inputdataareaninter-polatedclimatedatasetfromtheNationalInstituteofWaterandAtmosphericResearch(NIWA),andtheERA-40re-analysisdataset from the European Centre for Medium-RangeWeather Forecasts (ECMWF). Directmass balancemeasurements,whichwereinitiatedin2004,provideddatatocalibratethemodel.Thesemeasurementswerecollectedwiththeglaciologi-calmethodthatincludesstakeandsnowpitmeasurements.Formodelvalidation,weusedtheannualend-of-summersnow-line(EOSS)recordsfromtheGlacierSnowlineSurvey(Chinn,1995;Willsmanetal.,2008),whichdocumenttheevolutionoftheBrewsterGlacierexcellentlysince1978.Aftercalibratingthemassbalancemodel,themassbalanceandsnowlinesweresimulatedforthepastthreedecades.ThemodellingresultswerethencomparedtotheyearlyEOSSrecords.

    ThemassbalancemodelperformedwellwiththeinterpolatedNIWAdatasetforthecalibrationperiod.Butfortheprevious30years,themodelcalculationsdidnotcorrespondwelltotheEOSSrecords.Therefore,themodelinputdatasetwasex-changedwiththeERA-40re-analysisdata.TheresultscomparedmuchbettertotheEOSSrecords,andfitbetterwithmassbalanceestimatesfromaparameterisationscheme(Haeberli&Hoelzle1995)andaGPSmassbalancesurvey(Willisetal.,2008).Furthermore,massbalancetrendsweremodelledwell.However,spatialresolutionoftheERA-40datasetisverycoar-se,andwesuggesttestinginfuturestudieswhethertheperformanceofmassbalancemodellingcanbeimprovedbyapply-ingfinerresolutionRegionalClimateModeldatadrivenfromre-analysis.

    REFERENCESChinn,T. J.1995:GlacierFluctuationsintheSouthernAlpsofNewZealanddeterminedfromSnowlineElevations.Arctic

    andAlpineResearch,27(2),187-198.Haeberli,W.&Hoelzle,M.1995:Applicationofinventorydataforestimatingcharacteristicsofandregionalclimatechange

    effectsonmountainglaciers-apilotstudywiththeEuropeanAlps.AnnalsofGlaciology,21,206-212.Machguth,H., Paul, F.,Hoelzle,M.&Haeberli,W. 2006:Distributed glaciermass balancemodelling as an important

    componentofmodernmulti-levelglaciermonitoring.AnnalsofGlaciology,335-343.Oerlemans,J.2001:GlaciersandClimateChange.A.A.BalkemaPublishers,Lisse/Abingdon/Exton(PA)/Tokyo.Willis, I., Lawson,W.,Owens, I., Jacobel,B.&Autridge, J. 2008: Subglacialdrainage systemstructureandmorphologyof

    BrewsterGlacier,NewZealand.HydrologicalProcesses,DOI:10.1002/hyp.7146.Willsman,A.,Salinger,M.J.&Chinn,T.J.2008:GlacierSnowlineSurvey2008.Technicalreport,NationalInstituteofWater

    andAtmosphericResearchLtd.

  • 182Sy

    mp

    osi

    um

    4:

    Op

    en

    Cry

    osp

    he

    re s

    ess

    ion 4.20

    Natural and anthropogenic primary aerosols record from an Alpine ice core (Colle Gnifetti, Swiss Alps).

    FlorianThevenon1,FlavioS.Anselmetti2,StefanoM.Bernasconi3&MargitSchwikowski4

    1Institut F.-A. Forel, Université de Genève, CH-1290 Versoix ([email protected])2 Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf3 Geological Institute, ETH Zurich, CH-8092 Zurich4 Paul Scherrer Institut, CH-5232 Villigen

    TheColleGnifettiglacier,locatedintheMonteRosamassif (Swiss-Italianborder,4455ma.s.l.),satisfactoryconservestheaccumulationhistoryofsummerprecipitationchemistryandclimaticconditionsoverrelativelylongtime-period(i.e.afewhundredyears).Infact,theColleGnifettiglacierischaracterizedbyahighice-thickness(about60to130m)andalownetsnowaccumulationofabout30cmwaterequivalentperyear (weq.), resultingfromthepreferentialwinderosionofdrywintersnow.

    Consideringthat1)theanthropogenicaerosolsaremostlydepositedinsummer,whenpollutedairistransporteduptohighaltitudesbyconvection,andthat2)duetoitsorographicalpositionintheSouthernAlpinechain,theColleGnifettiglacierisstronglyinfluencedbyairmassesadvectedfromsoutherlydirections,theColleGnifettisummerarchivesthereforeofferauniquepossibility for reconstructing i) regional (pre-)industrial carbonaceousaerosolemissions,and ii) changes in thedynamicofthesouthwesterlydust-ladenwindsfromtheSahara.

    TheColleGnifettiicecoreanalysisdemonstratesthattheelementalblackcarbon(BC)aerosolrecordisindependentofthelarge-scaleclimaticcontrolaffectingthetransportofmineraldusttotheSouthernAlps,butprimarilyreflectsregional-scaleanthropogenicactivity(Thevenonetal.,2009).Moreprecisely,theδ13CcompositionofBCsuggeststhatwoodcombustionwasthemainsourceofpreindustrialatmosphericBCemissions.Moreover,biomassburningactivityandespeciallyC

    4grassland

    burningabruptlydroppedbetween1560and1750 (Figure1), suggestingthatagriculturalpracticesstronglydecreased inEuropeduringthiscoldperiodofthe‘LittleIceAge’.UnliketheBCdeposition,themineraldusttransporttothesummitsoftheSouthernAlpsisprimarilycontrolledbylarge-scaleclimaticpatterns(i.e.drierwinterinNorthAfricaandstrongerNorthAtlanticsouthwesterlies),leadingtotransportofmassivedustplumesfromtheSaharaaround1560-1685,1775-1785,andafter1860.Incontrast,theperiodsoflowSaharandustdepositionaround1515-1560,1690-1770and1790-1850mayindi-cateweakermeridionalatmosphericcirculationatthattimes,leadingtocolderanddrierspring/summerconditionsoverWesternandCentralEurope.

    REFERENCEThevenon, F., F. S.Anselmetti, S.M. Bernasconi, andM. Schwikowski (2009).Mineral dust and elemental black carbon

    records from anAlpine ice core (ColleGnifetti glacier) over the lastmillennium. J. Geophys. Res., 114,D17102,doi:10.1029/2008JD011490.

  • 183

    Sym

    po

    siu

    m 4

    : O

    pe

    n C

    ryo

    sph

    ere

    se

    ssio

    n

    Figure1.Thelastmillenniumrecordofblackcarbon(BC)concentrationandtheassociated δ13CBCcomposition,asafunctionofage(year

    A.D.;leftaxis)anddepth(meterwaterequivalent,mweq;rightaxis).Thedigitalimagesofthefilters,thetotalandmineralaerosolre-

    cords,andthemeandiameterofthemineralfraction.Thethreelastmajorsolaranomalousperiods,theSpörer,the(Late)Maunder,and

    theDaltonMinima,arereportedforcomparison(Thevenonetal.,2009).(NextPage)

    4.21

    Impacts of climate change on 22 south-eastern Swiss glaciers from 1900 until 2100

    UsselmannStephanie1,HussMatthias1,2&BauderAndreas1

    1 Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, CH-8092 Zürich ([email protected])2 Department of Geosciences, University of Fribourg, CH-1700 Fribourg

    Sincethe1850s,theendoftheLittleIceAge,Alpineglaciershavesufferedmajorlossesoficevolume.Theimpactofclimatechangeonglaciersisreflectedmostclearlyintheirsurfacemassbalance.Therefore,areconstructionofmassbalancetimeseriesofdifferentglaciersduringthelastcenturyisimportantforabetterunderstandingoftheresponseofAlpineglacierstocurrentglobalwarming.

    Inthisstudy,thetemporalandspatialchangesof22glaciersinthesouth-easternSwissAlpsareanalyzedbetween1900and2008usingdifferenttypesoffielddataanddistributedmodelling.Theinvestigatedglacierscoverawiderangeofglacierareaandicevolume,aswellasexposureandslope.Thisallowsinvestigationofdifferencesintheresponseofindividualglacierstoclimatechangeinarelativelysmallregion.

    Seasonalmassbalancetimeseriesofglaciershavebeencalculatedfortheperiod1900–2008usingadistributedaccumula-tionandtemperature-indexmeltmodel(Hussetal.,2008).Themodeliscalibratedusingobservedicevolumechangesinmultidecadalperiods.Inordertocalculatethevolumechange,twosuccessivedigitalelevationmodels(DEMs)arecompared

  • 184Sy

    mp

    osi

    um

    4:

    Op

    en

    Cry

    osp

    he

    re s

    ess

    ion toeachother.ThebasisfortheseDEMsare(i)terrestrialtopographicsurveys,(ii)photogrammetricanalysisofaerialphoto-

    graphs,and (iii)alreadyexistingdatasets,asDHM25(swisstopo)andSRTM(NASA). In-situpointmeasurementsofannualmassbalanceandwinteraccumulation,available for someglaciers, aswell as long-termdischarge records for the threemajorcatchmentsinthestudyregionareusedformodelvalidation.

    Since1900thechangesinglacierareaandvolumeareconsistentlynegative.Betweenthe1930sandtheendofthelastcen-turytheareaofthe22investigatedglaciersdecreasedbyabout24%.Overthelastcentury(1900–1999)theregionalicevo-lumehasdecreasedby30%,withstrongdifferencesbetweenindividualglaciers(20–60%).Therateof100-yearmasslossstronglydiffersbetweenadjacentglaciers.Whereaslargevalleyglaciers(e.g.VadrecdelForno)showcumulativemassbalan-cesofupto-70mw.e.,smallerandsteeperglaciers(e.g.VadretdaPalü)exhibitlessnegativemassbalancesofaround-15mw.e.(Fig.1).Usingregionalclimatescenarios(Frei,2007),futureglacierretreatissimulatedtransientlyforallglaciersoverthe21stcen-tury.Weprojectglacierareachangesbetween-80%and-100%andvolumechangesbetween-70%and-100%withstrongim-pactsonthewatercycle(Fig.2).

    Figure1.Cumulativeseriesofmeanspecificmassbalanceofthe22investigatedglaciersfrom1900to2008.Timeseriesfortheindividual

    glaciersaredisplayedingrey;trianglesindicatethedatesofDEMs.Thesolidvioletlinerepresentsthearithmeticaveragefortheinvesti-

    gatedglaciers.Glaciernamesaregivenattheright-handsideandcoloursindicateglaciersize(Usselmann,2009).

    Figure2.SimulatedfutureevolutionofVadretdaMorteratschuntil2100.Glacierextentisshownfortheyears2020,2060and2100forthe

    mostlikelyclimatescenario.Glacierextentintheyear2008isshown(Usselmann,2009).

    REFERENCESFrei,C.,2008.DieKlimazukunftderSchweiz.In:KlimaänderungunddieSchweiz2050–ErwarteteAuswirkungenaufUmwelt,

    GesellschaftundWirtschaft.BeratendesOrganfürFragenderKlimaänderung(OcCC):12–16,http://www.occc.ch.Huss,M.,Bauder,A.,Funk,M.&Hock,R.,2008.DeterminationoftheseasonalmassbalanceoffourAlpineglacierssince

    1865.JournalofGeophysicalResearch,113,F01015.Usselmann, S., 2009. SchweizerGletscher imWandel vonKlimaundZeit.Diplomarbeit, Friedrich-Alexander-Universität

    Erlangen-Nürnberg,pp.179.

  • 185

    Sym

    po

    siu

    m 4

    : O

    pe

    n C

    ryo

    sph

    ere

    se

    ssio

    n4.22

    Understanding rapid dynamic changes of marine Greenland outlet gla-ciers from numerical modeling

    AndreasVieli12,FaezehM.Nick3

    1 VAW, Glaziologie, ETH Zuerich, Gloriastr 37/39, CH-8092 Zuerich 2 Department of Geography, Durham University, South Road, Durham DH1 3LE, UK ([email protected])3GEUS, Ostervolgade 10, DK-1350, Copenhagen, DK

    RecentrapiddynamicchangesofGreenland'soutletglaciersraisedconcernsoverthecontributiontofuturesealevelrise.ThesedynamicchangesseemtobelinkedtothewarmingtrendinGreenland,butthemechanismsthatlinkclimateandicedynamicsarepoorlyunderstood,andcurrentnumericalmodelsoficesheetsarenotabletosimulatethesechangesrealis-tically.ThesedynamicchangesthereforeprovidemajoruncertaintiesinthepredictionsofmasslossfromtheGreenlandicesheet. Wedevelopedanumerical ice-flowmodelthatreproducestheobservedrapidchanges inHelheimGlacier,oneofGreenland'slargestoutletglaciers.Oursimulationsshowthattheiceacceleration,thinningandretreatbeginattheoceanterminatingcalvingfrontandthenpropagaterapidlyupstreamthroughdynamiccouplingalongtheglacier.Wefindthatthesechangesareunlikelytobecausedbybasallubricationthroughenhancedsurfacemeltfromtherecentatmosphericwarmingandthatmasslossisamplifiedbyadeepbasaloverdeepeningatthebed.Importantly,themodellingfurthershowsthatsuchtidewateroutletglaciersareextremelysensitivetochangingboundaryconditionsatthecalvingterminusanddynamicallyadjustextremelyrapidly.ThisimpliesthattherecentrapidmasslossofGreenland'soutletglaciersmayreflectshort-termvariationsinclimateoroceanconditionsandshouldnotbeextrapolatedintothefuture.

    4.23

    Hazard assessment investigations in connection with the formation of a lake on the tongue of the Unterer Grindelwaldgletscher, Bernese Alps, Switzerland

    MauroA.Werder1,AndreasBauder1,Hans-RudolfKeusen2,MartinFunk1

    1VAW, ETH Zurich, CH-8092 Zurich, Switzerland ([email protected])2GEOTEST AG, Birkenstrasse 15, CH-3052 Zollikofen, Switzerland

    ThesurfaceleveloftheUntererGrindelwaldgletscherglaciertonguehassubsidedbymorethan200\,moverthelast150years.Thesurfaceloweringisnotuniformovertheglaciertonguebutdependsonthethicknessoftheunevendebriscover,whichledtotheformationofadepressiononthetongue.Alakehasformedinthisbasin,forthefirsttimein2005,whichcandrainrapidlyleadingtoaso-calledglacierlakeoutburstflood.Thelakebasinhasbeenincreasinginsizeatanalarmingrateand,in2008itreachedavolumewhichposesasignificantfloodingthreattothecommunitiesdownstream,aswasexemplifiedbyanoutburstofthelakeinMay2008.Weextrapolatedthefutureevolutionofthelakebasinbasedonsurfaceloweringratesin2004--2008.Wetunedamodelwiththemeasuredhydrographfrom2008andranitwiththeextrapolatedlakevolumestosimulatesuchalakeoutburstandestimatedpossiblefuturefloodhydrographs.Wediscusstherapidlyin-creasingriskforGrindelwaldandothercommunities,thereasonswhyin2009norapidlakedrainageoccurred,aswellastheinstallationofanearlywarningsystemandtheconstructionofa2.1kmlongdrainagetunnel.

  • 186Sy

    mp

    osi

    um

    4:

    Op

    en

    Cry

    osp

    he

    re s

    ess

    ion 4.24

    Analysis of temporal and spatial snow depth changes in a steep rock face

    VanessaWirz,MichaelSchirmer,MichaelLehning

    WSL-Institut für Schnee- und Lawinenforschung SLF, Flüelastrasse 11, CH-7260 Davos Dorf ([email protected])

    Thepresenceofsnowinsteepalpineterrainaffectsmanyphenomena,e.g.watermanagement,snowavalanchesorperma-frostdistribution.Hencegoodknowledgeonspatialandtemporaldistributionof snowinsteepalpine terrain isofhighimportance.Inaccessibilityandalpinedangersinverysteepterrainarethemainreasonsforlackofstudiesonsnowdepthinthoseareas.Themaingoalofthisstudyistogetmoredetailedinformationabouttheamountanddistributionofsnowinverysteepterrainandtobetterunderstandtherelevantprocessesandfactors,whichaffectsnowaccumulation,redistri-bution,erosionandablationinsteeprockfaces.Forthispurpose,ahighresolutionterrestrialLaserScanner(TLS)wasusedproducingprecisesnowheightdigitalsurfacemodels.Wecollectedsurfacedatawithoutsnow,beforeandaftersignificantsnowfallorwinddrifteventsandduringtheablationperiod.Wethengenerateddigitalsurfacemodels(DSM)foreachob-servationperiod.Thesummerscanunderthetotalabsenceofsnowallowedustoprovideadigitalelevationmodel(DEM)andtocalculateabsolutesnowdepth.Relativesnowdepthchangescanbeextractedbythecomparisonofdifferentwinterscans.Inadditiontothelaserscans,orthophotosweretakenwithadigitalcamera.

    InafirststepwecouldshowthatwithTLSreliableinformationonsurfacedataofasteeprockysurfacecanbeachieved.Incomparisontoaflatfieldpointmeasurementthemeansnowdepthintherockfacewassmallerduringtheentirewinter,buttrendsofsnowdepthchangesweresimilar.Weobservedrepeatingaccumulationandablationpatternsintherockface,whilemaximumsnowdepthlossoccurredalwaysatthoseplaceswithmaximumsnowdepthgain.Furthermore,increasingsnowdepthresultedinadecreaseofhighslopeangles.Furtheranalysesshouldinvolvethestatisticalrelationofspatialandtemporaldistributionofsnowdepthto(i)terrainfeaturese.g.slopeangle,aspectorcurvatureand(ii)resultingsurfacepro-cessesderivedfromspatialdistributedmodeloutputse.g.radiation,windfieldsorblowinganddriftingsnow.

  • 187

    Sym

    po

    siu

    m 4

    : O

    pe

    n C

    ryo

    sph

    ere

    se

    ssio

    n

    4. Open Cryosphere session4.1 Dalban4.2 Delaloye4.3 Failletaz4.4 Farinotti4.5 Zwaaftink4.6 Hauck4.7 Huss, Bauder4.8 Huss4.9 Le Bris4.10 Mitterer4.11 Reiweger4.12 Riesen4.13 Rings4.14 Ryser4.15 Schaefli4.16 Schneider, S.4.17 Schneider, T.4.18 Steinkogler4.19 Stumm4.20 Thevenon4.21 Usselmann4.22 Vieli4.23 Werder4.24 Wirz