38
ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION LARGE FORMAT DIGITAL FRAME CAMERAS Ricardo M. Passini Karsten Jacobsen David Day BAE SYTEMS-GPS Institute of Photogrammetry Keystone Aerial Surveys Leibniz University Hannover PHL, USA

ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION

LARGE FORMAT DIGITAL FRAME CAMERAS

Ricardo M. Passini Karsten Jacobsen David Day

BAE SYTEMS-GPS Institute of Photogrammetry Keystone Aerial Surveys

Leibniz University Hannover PHL, USA

Page 2: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 2

Keystone Aerial Surveys, Inc. Corporate Summary

• Acquisition based company supporting

customers in the US, Canada and Mexico

• Fully permitted for quick response in

Mexico and Canada

• ABGPS\IMU processing, AT services and

more available

• Extensive historical imagery library

• Digital Globe Precision Aerial Imagery

reseller

• 17 Survey Aircraft

• 12 Leica RC 30/20 Cameras

• 4 Microsoft UltraCam Digital Cameras

• 1 Optech Gemini LiDAR scanner

Page 3: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 3

Motivation for the Study: 1. To find out through different block configurations, treatment of information, etc. the possible

limits in terms geometrical accuracy for the two most popular and latest digital frame cameras

existing in the market, i.e. the 3 versions of the Z/I DMC II and the UltraCam Eagle.

2. Given the geometric characteristics of the Test Field Area where the UltraCam Eagle took

place and many other related parameters, it was possible to try a system calibration (i.e.,

camera inner orientation parameters and their relationship to the IMU-ABGPS of the camera

system).

3. Radiometrically speaking, the aim concentrated on finding out the real vs. theoretical/nominal

resolution of the camera and in such a way to see if there is any possible lost of information

on the acquired images.

Experimental Tests: 1. Areas chosen for the different experiments carried out with the different cameras

2. Flight parameters and number/distribution of Ground/Check control points used on each experimental test

3. Data acquisition, data reduction, without/with self-calibration approach in the adjustment phases. Analysis of the statistical results on Each case

Page 4: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 4

This was not a comparison study between the two

types of cameras. • Flights in different places and times of the year, different latitude of

the places, hence different illumination of the terrain.

• Geometric parameters of the flights, number, distribution and

characteristics of the GCPs different.

• GSD different for each camera/project.

In view of all above, the authors have summarized

the obtained results of each test only.

Page 5: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 5

Page 6: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 6

Camera

Number of

Pixels

Pixel-

Size

[µm]

Focal

length

[mm]

t

[sec]

Image Size

[mm]

b/h for

p=60%

Mega-

pixel

x y x y

DMC 7680 13824 12.0 120 2 49.15 86.02 1:6.1 106

DMCII 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135

DMCII 230 14144 15556 5.6 92 1.7 79.21 87.11 1:2.9 220

DMCII 250 14656 17216 5.6 112 2.3 82.41 96.41 1:3.4 249

UC D 7500 11500 9.0 101.4 1 67.50 105.5 1:3.8 86

UC X 9420 14430 7.2 100.5 1.4 67.82 103.9 1:3.7 136

UC Xp 11310 17310 6.0 100 2 67.86 103.9 1:3.7 196

UC Eagle 13080 20010 5.2 80 /

210 1.8 68.02 104.1 1:2.9

1:7.7

261

Red=New Generation Black=Old Generation

Page 7: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 7

UltraCam Eagle – Test Field Area

~ 38.6 sq. Km.

Area Description:

• NE Philadelphia

• Relatively

Open/Flat Area

• Large Shopping

Mall with Large

Parking Lots With

Lines

• Wide Roads and

Streets With

Painted Traffic

Lines

Page 8: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 8

UltraCam Eagle – Test Field Area

~ 38.6 sq. miles

84 signalized GCPs.

~1.5 cm standard deviation

East-West 5 cm GSD, North-

South 15cm 60% end and

60% lat. overlap

Typical Targeted GCP.

Intersection of Parking

Stripes

Typical signal/signalized

GCP/CHK points

Page 9: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 9

Mathematical Model/Adjustment

Software used in all cases

1. BUNDLE BLOCK ADJUSTMENT

2. BLUH (Bundle block adjustment Leibniz University Hannover) Author: Karsten

Jacobsen

3. Self-calibration Models x, y = image coordinates normalized to maximal radial distance 162.6mm (scale factor: 162.6 /

maximal radial distance) r² = x² + y² b = arctan (y/x)

1. x' = x - y•P1 y' = y - x•P1 angular affinity

2. x' = x - x•P2 y' = y + y•P2 affinity

3. x' = x - x•cos 2b • P3 y' = y - y•cos 2b • P3

4. x' = x - x•sin 2b • P4 y' = y - y•sin 2b • P4

5. x' = x - x•cos b • P5 y' = y - y•cos b • P5

6. x' = x - x•sinb • P6 y' = y - y•sin b • P6

7. x' = x + y•r•cos b • P7 y' = y - x•r•cos b • P7 tangential distortion 1

8. x' = x + y•r•sin b • P8 y' = y - x•r•sin b • P8 tangential distortion 2

9. x' = x - x•(r²-16384) •P9 y’ = y - y•(r² - 16384) •P9 radial symmetric r³

10. x ' = x - x•sin(r • 0.049087) • P10 y' = y - y•sin(r • 0.049087) • P10 radial symmetric

11. x' = x - x•sin(r • 0.098174) • P11 y' = y - y*sin(r •0 0.098174) • P11 radial symmetric

12. x' = x - x•sin 4b • P12 y' = y - y• sin 4b •P12

General additional

parameters in Hannover

program system BLUH

Page 10: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 10

29. – 33 special parameters for the internal transformation of DMC sub-images

34. x’ = x – x*y*P34 y’ = y for upper right quarter DMC Y 1

35. x’ = x y’ = y – x*y*P35 for upper right quarter DMC X 1

36. x’ = x – x*y*P36 y’ = y for lower right quarter DMC Y 2

37. x’ = x y’ = y – x*y*P37 for lower right quarter DMC X 2

38. x’ = x – x*y*P38 y’ = y for lower left quarter DMC Y 3

39. x’ = x y’ = y – x*y*P39 for lower left quarter DMC X 3

40. x’ = x – x*y*P40 y’ = y for upper left quarter DMC Y 4

41. x’ = x y’ = y – x*y*P41 for upper left quarter DMC X 4

42 – 49 scale parameters for UltraCam

50 – 57 shift X parameters for UltraCam

58 – 65 shift Y parameters for UltraCam

66 – 73 UltraCam master images perspective

79 common perspective deformation of DMC version 1 sub-images

80 common radial symmetric parameter for DMC version 1 sub-images

81-88 parameters for geometry at the corners of the image (problem of CCD

flatness)

Mathematical Model/Adjustment

Software used in all cases

Special additional parameters in Hannover program system BLUH

BLUH includes additional parameters specifically for the Z/I DMC (1st version)

and UltraCam cameras as well as for cameras having problems with the flatness

of their CCD (parameters 81 to 88)

Page 11: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 11

UCE. Experimental Block UCE. Experimental Block

Page 12: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 12

UltraCam Eagle results:

Double coverage Block. All GCPs

Block: Low + High Altitude Flight (GSD= 5cm respectively 15cm)

additional

parameters

σo

μm

RMSE

84 GCPs [cm]

MAX Errors

84 GCPs [cm]

RMX RMY RMZ M-X M-Y M-Z

no selfcalibr. 1.28 2.3 2.8 3.0 6.5 7.7 11.4

12 St 1.23 2.3 2.7 2.8 6.4 7.7 10.5

12 ST+C.S. 1.18 2.2 2.6 2.7 6.7 7.5 10.3

C. Spec 1.18 2.3 2.6 2.7 6.6 7.5 10.3

C. Spec+Co 1.18 2.3 2.6 2.6 6.6 7.6 10.2

Block: Low Altitude Flight (GSD=5cm)

additional

parameters

σo

μm

RMSE 84 GCPs [cm]

Maximal Errors 84 GCPs [cm]

RMX RMY RMZ M-X M-Y M-Z

no self calibr 1.15 2.2 2.5 2.8 5.0 7.8 7.2

12 St 1.10 2.5 2.3 2.5 5.1 7.4 7.2

12 St +C. S. 1.05 2.0 2.3 2.4 5.8 7.3 7.4

C. Spec 1.06 2.0 2.3 2.4 4.9 7.2 6.8

C. Spec+Co 1.07 2.0 2.4 2.4 4.9 7.3 6.8

Overall accuracy (σo ) improved

approx 10% by self-calibration.

Horizontal accuracy not improved by

self-calibration. Only vertical

accuracy improved by self calibration

Only East-West 5cm GSD - same effect

as above. Although up to 4 mm in Z

again negligible. UC Eagle height-to-

base ratio 2.93 - smaller than in other

UltraCam models

Only North-South 15 cm GSD -

same tendency

Block: High Altitude Flight (GSD=15cm)

additional

parameters

σo

μm

RMSE

84 GCPs [cm]

Maximal Errors

84 GCPs [cm]

RMX RMY RMZ M-X M-Y M-Z

no self calibr. 1.16 6.2 6.7 7.5 23.3 18.1 29.1

12 St 1.14 5.9 6.4 7.0 21.4 17.5 29.3

12 St +C. S. 1.10 6.0 6.3 7.2 22.0 17.4 29.8

C. Spec 1.09 6.0 6.3 7.2 21.9 17.3 29.8

C. Spec+C 1.09 6.0 6.3 7.2 22.1 17.3 30.3

Page 13: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 13

UltraCam Eagle results:

Double coverage Block. All GCPs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

No Self-Calib 12 St. 12 St.+C.Spec.

C. Spec. C. Spec.+Cor.

[GD

S]

Low + High Altitude Flight. All GCPs

0

0.1

0.2

0.3

0.4

0.5

0.6

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

No Self-Calib 12 St. 12 St.+C.Spec.

C. Spec. C. Spec.+Cor.

[GS

D]

Low Altitude Flight. All GCPs. 5 cm

Accuracy is clearly influenced by the points of the low

altitude flight

Best fit with camera specific add. Parameters

No additional gain with add. Parameters for corner

distortions

No apparent gain in accuracy between 12 St + Cam. Spec

and Cam Specific Add. Param. alone

No additional gain with add. Parameters for corner

distortions

As expected RMSZ is the lowest accuracy (H/B ≈1:2.9)

Page 14: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 14

UltraCam Eagle results:

High Altitude Flight. All GCPs

0

0.1

0.2

0.3

0.4

0.5

0.6

RMSX RMSY RMSZ RMSX RMSY RMSZ RMSX RMSY RMSZ RMSX RMSY RMSZ RMSX RMSY RMSZ

No Self-Calib 12 St. 12 St.+C.Spec. C. Spec. C. Spec.+Cor.

[GS

D]

High Altitude Flight. All GCPs 15 cm. GSD

1. In terms of GSD there is no significant difference between no self-Calib and the different self-calibration approaches

2. In all cases accuracy in terms of RMS is between 0.4 and 0.5 GSD

3. Best fit is when Camera specific Add. Param are used

4. Lowest accuracy (in terms of RMS) is for the Z-component (remember H/B for the Eagle is still 1:2.9 for focal length 80 mm)

5. Advisable to use all combination of add. Parameters. Program decides based on stochastical model eliminating the

possibility of over parameterization.

Page 15: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 15

No self Calibration 12 Additional Par. 12 ST + Camera Specific Camera Specific + corner effects

a b c d

Although very small - with 12 standard parameters remaining systematic image errors

(b). Becomes small with camera specific Add Param (c). cleaning of the corner effect by

(d) – even if only negligible effect to ground coordinates

Systematic image errors by self-calibration

advisable to use all additional parameters

(automatically reduced by program to

required parameters )

Remaining

systematic image

errors (by

analysis of

residuals)

Page 16: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 16

Accuracy versus number

and distribution of GCPs

and ChK Pts.

GCPs/

CHKs ADJ. TYPE

Root mean square differences at check points [cm] σ0 μm RMX RMY RMZ max X max Y max Z

44/

40

no self calibr. 1.22 1.9 3.2 4.0 5.7 7.5 9.9

12 St. 1.18 1.9 3.2 4.1 5.7 7.4 9.3

12 St. + C S 1.13 1.9 3.2 4.0 5.8 7.6 8.9

C Spec+81-88 1.13 1.9 3.3 4.6 5.8 7.5 9.5

28/

56

no self calibr. 1.18 2.3 3.3 5.1 7.9 8.3 17.5

12 St. 1.14 2.4 3.3 5.4 8.6 8.1 17.0

12 St. + C S 1.09 2.4 3.3 5.3 8.6 8.2 16.4

C Spec 1.10 2.4 3.3 4.9 8.4 8.2 15.8

C Spec+81-88 1.09 2.4 3.3 4.8 8.4 8.2 15.8

10/

74

no self calibr. 1.13 2.7 3.6 6.1 7.6 10.8 21.3

12 St. 1.10 2.5 3.7 5.8 8.3 11.4 21.5

12 St. + C S 1.02 2.5 3.6 5.8 8.1 11.4 21.9

C Spec 1.05 2.6 3.6 5.8 7.9 11.0 19.0

C Spec+81-88 1.06 2.6 3.7 5.8 7.8 11.1 17.9

5/

79

no self calibr. 1.13 3.7 4.8 8.5 10.8 12.4 27.8

12 St. 1.09 3.7 4.6 7.1 11.1 12.9 26.1

12 St. + C S 1.03 3.6 4.4 5.8 11.3 12.4 23.5

C Spec 1.04 3.7 4.5 6.0 11.1 12.2 21.6

C Spec+81-88 1.04 3.8 4.6 6.2 11.1 12.4 20.9

accuracy for fewer

number of GCPs

along with different

sets of additional

parameters

In general :

Smaller Standard

Deviation for less

number of GCPs

Page 17: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 17

Accuracy vs. number and

distribution of GCPs and

Check Pts.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

No Self-Calib 12 St. 12 St.+C.Spec.

C. Spec. C. Spec.+Cor.

44 GCPs and 40 Check Points

[GS

D]

Absolute Accuracy. Double Coverage Flight

1. Absolute Accuracy in terms of RMS/GSD falls (although

not that much) for lower numbers of GCPs. Systematic

errors start exercising some influence.

2. Nevertheless in all cases remains bellow the smallest GSD

3. Once again one can notice the dominating effect of the low

altitude flight in terms of accuracy of their pass/tie points,

but not for the extreme case of only 5 GCPs

4. Additional Parameters for corner distortions are not

significant and may add slight deformation in the area

0

0.2

0.4

0.6

0.8

1

1.2

1.4

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

No Self-Calib 12 St. 12 St.+C.Spec.

C. Spec. C. Spec.+Cor.

10 GCPs and 74 Check Points

[GS

D]

Absolute Accuracy on Check Points

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

RM

SX

RM

SY

RM

SZ

5 GCPs and 79 Check Points

[GS

D]

Absolute Accuracy on Check Points

Page 18: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 18

Standard Deviation and

Number of GCPs

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

No Self Calibration

12 Std. Add. Param

12Std.+ Camera Spec

Camera Specific C. Spec. + Corner

St.

Dev

. (M

icro

ns)

Standar Deviation and Num. of GCPs

84/0

44/40

28/56

10/74

5/79

GCPs/Chk.Pts

1. Fewer numbers of GCPs result in better accuracy in terms of St. Deviation.

Systematic errors are more free to exercise their influence because there are less

constraints.

2. In all cases best accuracy in terms of St. Deviation occurs for 12 St. Add. Param +

Camera Specific Additional Parameters

3. Almost no difference in accuracy between Camera Specific Add. Param only and

these plus Add. Param. for corner Deformation. Conclusion: no geometric distortion

on the corners of the synthetic image of the Eagle

Page 19: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 19

ULTRACAM EAGLE.

CAMERA SYSTEM

CALIBRATION

Page 20: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 20

CAMERA SYSTEM CALIBRATION

For “DIRECT SENSOR ORIENTATION or INTEGRATED SENSOR ORIENTATION”, meaning Orientation with no

use of control points, or in other words to use readings from exterior sensors of the camera, we need to know or to

assure the following:

1. Location of camera principal point. ABGPS and PPC are highly correlated any ABGPS shift affects this and

consequently the image coordinates

2. If the angular EOs are to be obtained from IMU (Roll, Pitch, roll) (Omega, Phi, Kappa) angular misalignment

required

3. IMU – ABGPS usually includes a Kalman filter, “LEVER ARM” important =distance between IMU and camera

projection center

4. calibrated distance focal length of the camera may change with flying height

Pressurized cabin,

cover glass

Lens in free

atmosphere t = 7 ° C

Lens in free

atmosphere t like air

Flying

Altitude

6 Km 14 km 6 Km 14 KM 6 Km 14 Km

Wide Angle

f=153 mm -20μm -38μm -36μm -58μm -47μm -80μm

Normal

Angle

f= 305 mm

+12μm -17μm -33μm -28μm -110μm -172μm

Change of focal length with altitude of Platform, according to Mayer 1978

Page 21: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 21

CAMERA SYSTEM CALIBRATION

EEFECT OF CHANGE OF FOCAL LENGTH

DOES NOT INFLUENCE X and Y. IT ONLY PRODUCES AN AFFINE DEFORMATION

OF ALTITUDE

Suppose df= 15 μm, in case of traditional orientation with control points – for

image scale 1:6,500 and a Δh= 100 m against leveled control points is

6,500 = H+dh/(f+df); or dh = 6,500 (f+df) – H; replacing dh~1 cm

As above in the case for Direct Sensor Orientation it can be proved that dh ~ 10

cm.

“HENCE, FOR DIRECT SENSOR ORIENTATION,

LABORATORY CALIBRATION IS NOT SUFFICIENT”

Page 22: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 22

UCE CAMERA SYSTEM

CALIBRATION

SYSTEM CALIBRATION PARAMETERS:

1. Location of camera principal point

2. Operational focal length of the camera

3. Misalignment angles between the IMU axis and Camera axis

4. Calibrated distance between the IMU origin and camera projection center

(also known as the Lever Arm)

The tests were conducted using the same UC Eagle, same block

GSDs, IMU and Airborne GPS, same GCPs as before, but with strip

line flown in a forward and reverse direction. This allows

independent determination of airborne GPS shift and principal point.

Correction for focal

length -.008 mm

Shift of principal

point in x .004 mm

Shift of the principal

point in y -.006 mm

.00326 .00520 .00065 -.262 .123 .286

CPITCH CROLL CYAW CX CY CZ

[GRADS]

These parameters are used to correct the IMU-GPS.

Page 23: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 23

UCE CAMERA SYSTEM

CALIBRATION

SQUARE MEAN OF DIFFERENCES

RMSX = +/- 3cm RMSY = +/- 3cm RMSZ = +/- 6cm

root mean square differences at 84 GCPs used as check points

MAXIMAL DIFFERENCES

MAX DX = 7cm MAX DY = 10cm MAX DZ = 14cm

Using the calibrated focal length and the calibrated/corrected image

coordinates RELATIVE ORIENTATION

MAXIMUM – Y-PARALLAX = 8.7 Microns

Calibration GCPS Add.

Params RMX RMY RMZ

max

X

max

Y

max

Z

Factory 5 GCPS 12 St. + C S 3.6 4.4 5.8 11.3 12.4 23.5

System Cal. None None 3.0 3.0 6.0 7.0 10.0 14.0

Page 24: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 24

Geometric Analysis of

DMC II 230

color coded number of images / object point

Image footprints – 54mm GSD

and 9 used GCPs, footprint: 752m

x 827m image base = 215m

71% end lap, 47% side lap + 2

crossing flight lines

Monolithic CCD

Page 25: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 25

Geometric Analysis of

DMC II 230

Averaged residuals, block

adjustment without self

calibration. RMSx = 0.41µm

RMSy = 0.40µm Block adjustment without self calibration –

discrepancies at independent check points,

circles = GCPs

Page 26: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 26

Geometric Analysis of

DMC II 230

Block adjustment with self

calibration – discrepancies at

independent check points, left:

additional parameters 1 – 12,

right: additional parameters 1 – 12

+ 81 - 88

Systematic image errors – left: with additional

parameters 1 – 12, right: with additional

parameters 1 – 12, 80 - 88

Page 27: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 27

Geometric Analysis of

DMC II 230

at (8) GCPs o

microns

at (36) check points

RMSX RMSY RMSZ RMSX RMSY RMSZ

0 parameters 1.7cm 1.1cm 1.9cm 1.72µm 2.0cm 1.9cm 2.9cm

1 - 12 1.6cm 1.1cm 1.9cm 1.72µm 1.9cm 1.8cm 2.6cm

1 – 12, 80 - 88 1.7cm 1.1cm 2.2cm 1.72µm 1.9cm 1.8cm 2.7cm

Averaged residuals – block

adjustment with additional

parameters 1 – 12, 81 – 88

Page 28: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 28

Geometric Analysis of

DMC II 250

CASE C. Img scale

1 : 27 824 or 15.6cm GSD

Endlap 60%; Sidelap 60%

+ crossing flight

Footprint size:2184m x

2613m

CASE A. Image scale

1 : 9658 or 5.4cm GSD

Endlap 60%; Sidelap 40%

Footprint size:758m x

906m

CASE B. Img Scale 1 : 16 813 or 9.4cm

GSD. Endlap 60%; Sidelap 60%

+ crossing with same overlap

Footprint size:1320m x 1579m

Page 29: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 29

Geometric Analysis of

DMC II 250

CASE A. GSD=5 cm

Root mean square differences at check points [GSD].

1/5 = without self calibration 2/6= additional parameters 1-12.

3/7 = additional parameters 1-12, 81-88. Whole Block stronger

due to cross strips

Page 30: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 30

Geometric Analysis of

DMC II 250

CASE B. GSD=9 cm

Root mean square differences at check points [in GSDs]

1/5/9 = without self calibration, 2/6/10= additional parameters 1-12.

3/7/11 = additional parameters 1-12, 81-88

Whole block better in dz (due to cross strips) with self-calib 1-12.

(See column 2 )

Page 31: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 31

Geometric Analysis of

DMC II 250

CASE C. GSD=15 cm

root mean square differences at check points [in GSDs]

1/5/9 = without self calibration, 2/6/10= additional parameters 1-12,

3/7/11 = additional parameters 1-12, 81-88.

Page 32: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 32

Geometric Analysis of

DMC II 250

JUST ONE FLIGHT LINE

Root mean square differences at check points [in

GSDs] of block adjustments with self calibration by

additional parameters 1-12 of blocks with images of

just one flight line – the average of the results of

East-West- and North-South-flight lines is shown

Page 33: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 33

ZI IMAGING DMCII TEST

DMCII 250 block, 5cm GSD

DMCII 250

block,

above 9cm GSD

below 15cm

GSD

DMCII 230 block, 7cm

GSD

(Operational Block)

DMCII-versions based

on a monolithic large

size CCD, so no camera

specific additional

parameters required.

Only the standard

parameters 1 – 12 and

the special parameters

for the image corners 81

– 88 are justified. All 8

DMCII-blocks did not

require the special

additional parameters 81

– 88, so for optimal

results only the standard

parameter 1 – 12 had to

be used

Page 34: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 34

THE Z/I IMAGING

DMC II TESTS

DMCII 140, 9cm GSD DMCII 230, 7cm GSD DMCII 250, 9cm GSD

remaining systematic image errors DMCII

DMCII 140, 9cm GSD DMCII 230, 7cm GSD DMCII 250, 9cm GSD

systematic image errors DMCII

Image points of

operational block not

equally distributed, so

gaps in remaining

systematic image

errors, vectors above

and below gaps are

larger because of

limited number of points

in these sub-areas

In general, systematic

image errors and

remaining systematic

image errors very small.

Over all blocks and

images average of the

systematic image errors

are 0.32μm or 0.06

pixels

Page 35: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 35

Radiometric image quality (edge analysis)

object

image

edge in image gray value profile point spread function

Factor for

effective

resolution

camera blue, pan-

sharpened

green, pan-

sharpened

red, pan-

sharpened

DMCII 230 0.98 0.97 0.98

DMCII 250 0.87 0.88 0.84

UltraCam Eagle 1.01 1.02 1.03

Factors for effective resolution - multiplication with GSD or pixel size

The figure is important for identification of objects

Page 36: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 36

CONCLUSSIONS

UltraCam Eagle 1. Reduction of GCP number does not aggressively affect the overall accuracy of the block. The

rate of change of the σ0 is practically negligible.

2. The vertical accuracy component is greatly influenced by using fewer GCPs, while the changes

to the horizontal components is insignificant.

3. The use of corner additional parameters does not improve ground coordinates. Surprisingly,

nearly identical results were achieved with self-calibration using the 12 standard parameters plus

the camera specific add parameters as compared with camera specific alone. Nevertheless, it is

advisable to use all parameters.

4. A boresight calibration field area was flown with all appropriate requirements. Results of the

calibration of the camera parameters and other data acquisition systems were totally acceptable.

Direct Sensor Orientation was carried out with discrepancies on 84 GCPs with RMS in the

range of 4 to 6 cm for plan and height with maximum discrepancies of 9 cm and 14 cm - largest

computed y-parallax = 8.6µm

5. Factor for effective resolution only slightly greater than 1.0, meaning that the apparent (real)

GSD is practically equal to the nominal GSD.

Page 37: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 37

CONCLUSSIONS

Z/I DMCII

1. Very small systematic errors. They can be ignored for data acquisition in model.

2. For block configurations p=60% and q=40% RMSE at the critical height component clearly

below 1 GSD.

3. Factor for effective resolution only slightly lower than 1, meaning the apparent (real) GSD is

practically equal to nominal GSD

Page 38: ACCURACY AND RADIOMETRIC STUDY ON LATEST GENERATION …egl.asprs.org/wp-content/uploads/2012/07/AnnArbor... · dmcii 140 11200 12096 7.2 92 2 80.64 87.09 1:2.8 135 DMCII 230 14144

Document number- 38

Thank you very much

for your kind attention

QUESTIONS..?

Ricardo M. Passini

David Day

Karsten Jacobsen