57
TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142 ACIAR PROJECT FIS/2006/142 TANJUNG LUAR (EAST LOMBOK) LONGLINE SHARK FISHERY FINAL REPORT

aciar project fis/2006/142 tanjung luar (east lombok) longline shark

  • Upload
    vuanh

  • View
    214

  • Download
    3

Embed Size (px)

Citation preview

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

         

 

ACIAR PROJECT FIS/2006/142

TANJUNG LUAR (EAST LOMBOK) LONGLINE

SHARK FISHERY FINAL REPORT                                                        

   

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

       

ACIAR  PROJECT  FIS/2006/142  

TANJUNG  LUAR  (EAST  LOMBOK)  LONGLINE  

SHARK  FISHERY  FINAL  REPORT    

This  report  is  an  extension  output  from  ACIAR  Project  FIS/2006/142,  Developing  new  assessment  and  policy  frameworks  for  Indonesia’s  marine  fisheries,  including  the  control  and  management  of  Illegal,  Unregulated  and  Unreported  (IUU)  Fishing.  This  project  was  a  collaboration  between  Agency  of  Marine  and  Fisheries  Research  and  Development  (Indonesia),  Directorate  General  of  Capture  Fisheries  (Indonesia),  University  of  Wollongong  (Australia)  and  Commonwealth  Scientific  and  Industrial  Research  Organisation  (Australia).    Suggested  citation:      White,  W.T.,  Dichmont,  C.,  Purwanto,  Nurhakim,  S.,  Dharmadi,  West,  R.J.,  Buckworth,  R.,  Sadiyah,  L.,  Faizah,  R.,  Sulaiman,  P.S.  &  Sumiono,  B.  (2012).  Tanjung  Luar  (East  Lombok)  Longline  Shark  Fishery.  Report  prepared  for  ACIAR  Project  FIS/2006/142,  Developing  new  assessment  and  policy  frameworks  for  Indonesia’s  marine  fisheries,  including  the  control  and  management  of  Illegal,  Unregulated  and  Unreported  (IUU)  Fishing.  Australian  National  Centre  for  Ocean  Resources  and  Security  (ANCORS),  University  of  Wollongong,  Australia.  53  pp.    ISBN:  978-­‐1-­‐74128-­‐227-­‐6  (Hardcopy)  ISBN:  978-­‐1-­‐74128-­‐228-­‐3  (eBook)            

   

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

Contents    1.   INTRODUCTION ..................................................................................................... 1  1.1  Background  ...................................................................................................................................  1  1.2  Project  Objectives  ......................................................................................................................  2  1.3  The  Tanjung  Luar  Shark  Longline  Fishery  ......................................................................  3  1.3.1    Fishery  characteristics  ........................................................................................................  4  1.3.2    Catch  Statistics  Information  ..............................................................................................  5  1.3.3    Effort  Information  ..............................................................................................................  11  1.3.4    Species,  Sex  and  Size  Composition  Data  ...................................................................  13  1.3.5    Comparison  of  gillnet  and  longline  catches  at  Tanjung  Luar  ..........................  25  1.4    Yield  per  recruit  analyses  ...................................................................................................  26  

2.0 RECOMMENDATIONS & FURTHER WORK .................................................... 37  3.0 REFERENCES ........................................................................................................ 41  APPENDICES ................................................................................................................ 43  Appendix  1:  Supplementary  Tables  ........................................................................................  43  Appendix  2:  Data  handling  notes  .............................................................................................  46  Appendix  3:  Protocol  &  keys  for  enumerators  ...................................................................  47  Appendix  4:  Recommendations  from  stakeholder  workshops.  .................................  52  

     

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

 

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

1

1. INTRODUCTION  1.1 Background  This  Final  Report  is  an  extension  output  of  ACIAR  Project  FIS/2006/142:  “Developing  new  assessment  and  policy  frameworks  for  Indonesia’s  marine  fisheries,  including  the  control  and  management  of  Illegal,  Unregulated  and  Unreported  (IUU)  Fishing”.  The  project  was  a  collaboration  between  the  Agency  of  Marine  and  Fisheries  Research  and  Development  (AMAFRAD)  and  Directorate  General  of  Capture  Fisheries  (DGCF),  both  of  Indonesia’s  Ministry  of  Marine  Affairs  and  Fisheries,  together  with  Australian  partners  University  of  Wollongong  and  Commonwealth  Scientific  and  Industrial  Research  Organisation  (CSIRO).  The  project  commenced  in  2008  with  three  principle  objectives:    1. To  develop  new,  fishery-­‐specific  stock  assessment  processes.  2. To  develop  new,  innovative  fisheries  policy  and  management  frameworks.  3. To  develop  improved  scientific  and  policy  frameworks  for  sustainable  management  of  

Red  Snapper  stocks  within  Indonesia  waters.    Phase  1  of  the  project  included  a  survey  of  all  marine  fisheries  at  seven  fishing  ports  in  six  provinces:  Tanjung  Luar  (West  Nusa  Tenggara),  Kedonganan  (Bali),  Muncar  (East  Java),  Pacitan  (East  Java),  Sadeng  (DI  Yogyakarta),  Cilacap  (Central  Java),  and  Palabuhanratu  (West  Java).  In  March  2009,  three  fisheries  were  chosen  for  in-­‐depth  study:    Lobsters  of  south  coast  Java,  sardines  (lemuru)  of  Bali  Strait,  and  the  shark  fishery  of  East  Lombok.  These  fisheries  became  the  focus  for  objectives  1  and  2  above  during  Phase  2.  This  required  as  complete  as  possible  assessments  of  these  selected  fisheries  through  collation  of  existing  information,  field  investigations,  interviews  with  fisheries  officers  at  all  levels  (National,  Provincial,  Regency  and  Sub-­‐district),  interviews  with  port  authorities,  fishers  associations,  fishing  companies,  and  from  consultations  with  all  relevant  stakeholders  in  workshops  such  as  this  one.  Key  issues  were  identified  for  each  fishery  and  draft  recommendations  formulated  to  address  the  needs  for  improved  fisheries  statistics,  seasonal  market  sampling,  biological  research,  stock  assessments,  improved  fisheries  laws,  regulations  and  management,  and  also  addressing  IUU  fishing  problems.    The  Report  presents  the  results  of  an  assessment  workshop  for  the  Tanjung  Luar  (East  Java)  Longline  Shark  Fishery.  The  Workshop  objectives  were  to:    

1. Analyse  Dinas  Perikanan  catch  and  effort  statistics  and  compare  with  the  market  survey  data  

2. Describe  the  species,  sex  and  size  composition  data  of  the  fishery  based  on  the  market  survey  data;  

3. Describe  issues  with  the  various  data  sets  and  develop  recommendations  to  address  these;  

4. Develop  further  policy  recommendations  based  on  analyses  of  the  available  information  provide  summaries  of  all  information  as  a  workshop  report.  

 We  examined  information  on  shark  catches  and  effort  for  the  Tanjung  Luar  district.  The  information  came  from  three  separate  sources:  Market  surveys  conducted  as  part  of  this  

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

2

and  previous  ACIAR  surveys,  Dinas  Perikanan  statistics  and  “Local  Fisheries”  data.  By  the  last  we  mean  the  data  collected  on  catches  and  effort  at  each  market.  This  data  should  be  the  basis  of  all  aggregated  provincial  level  Dinas  Perikanan  data,  but  is  not  subject  to  the  scaling  and  aggregation  rules.  By  using  comparisons  among  these  sets  we  can  examine  how  statistics  at  different  scales  are  produced,  and  whether  procedures  might  be  updated  to  provide  better  information  for  fisheries  management.    1.2 Project Objectives  Indonesian  fisheries  are  among  the  largest  and  most  productive  worldwide,  and  are  critical  to  the  nation’s  economic  development  and  in  providing  food  resources  to  millions  of  people.  Based  on  FAO  data  for  2004,  about  4.5  million  tonnes  of  marine  fish  (value  ~  $US3.2  billion)  are  harvested  by  millions  of  people  using  a  range  of  gears,  including  hundreds  of  thousands  of  fishing  boats.  This  places  Indonesian  marine  capture  fisheries  among  the  top  five  in  terms  of  national  fisheries  production.    The  University  of  Wollongong  (UoW)  and  CSIRO  Marine  and  Atmospheric  Research  from  Australia  have  collaborated  with  agencies  within  the  Ministry  for  Marine  Affairs  and  Fisheries  (MMAF)  in  Indonesia  to  develop  a  research  project  to:  better  understand  the  characteristics  of  the  various  district  and  provincial  fisheries  (e.g.,  fishing  methods,  capture  species,  fishing  areas,  fish  marketing  and  trade,  IUU  fishing  activities,  fishing  vessel  licensing  and  regulatory  framework,  fisheries  data  collection  process);  and,  to  investigate  new  and  innovative  assessment  and  management  approaches.  The  agencies  within  MMAF  involved  with  the  project  are:  the  Research  Centre  for  Fisheries  Management  and  Conservation  (RCFMC)  and  the  Directorate  General  of  Fisheries  Resources  Management  (DFRM).    A  scoping  study  of  fishing  activities,  catches,  management  and  IUU  fishing  in  seven  fishing  ports  over  a  region  that  encompasses  several  provinces  (West,  Central  &  East  Java,  Lombok  and  Bali)  has  been  completed  and  three  fisheries  selected  as  case  studies  for  further  detailed  investigation:  the  Tanjung  Luar  (Lombok)  Shark  Fishery;  the  Bali  Strait  Lemuru  Fishery;  and,  the  South  Java  Lobster  Fishery.  For  each  of  these  fisheries,  a  series  of  stakeholder  workshops,  training  and  capacity  building  activities,  and  data  review  meetings  will  be  conducted.  These  activities  are  designed  to  provide  new  fisheries  data,  raise  awareness  of  fisheries  research  and  management  options,  and  engage  with  policy  makers  at  the  national,  provincial  and  district  levels  of  government.    The  primary  goal  of  this  Data  Review  and  Assessment  Meeting  was  to  review  the  newly-­‐derived  and  existing  information  concerning  the  Tanjung  Luar  (Lombok)  Shark  Fishery  and  provide  initial  assessment  of  the  fishery  and  policy  advice  based  on  these  analyses.  Meeting  objectives  were  specifically  to:    

• Describe  species  composition  and  finer  scale  biological  information  collected  as  part  of  several  related  ACIAR  projects  over  the  past  9  years;  

• Evaluate  the  usefulness  of  the  current  Dinas  Perikanan  statistics;  • Describe  issues  with  existing  data  sets  and  develop  recommendations  to  improve  

collection  of  catch  statistics  and  related  information;  and,  • Develop  policy  recommendations  and  other  advice  based  on  these  analyses.  

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

3

Information  came  from  three  separate  sources:  market  surveys  conducted  by  RCFC  and  CSIRO  researchers  as  part  of  this  and  previous  ACIAR  projects;  “local  fisheries  data”;  and  official  Dinas  Perikanan  catch  statistics.  Local  fisheries  data  is  collected  at  each  market  and  is  not  subject  to  scaling  or  aggregation.  This  data  should  be  the  basis  for  the  Dinas  Perikanan  catch  statistics,  which  have  been  scaled  and  aggregated  according  to  an  established  procedure.    1.3 The Tanjung Luar Shark Longline Fishery  Tanjung  Luar  is  located  in  East  Lombok  and  is  part  of  the  Nusa  Tenggara  Barat  (NTB)  province.  The  longline  fishery  for  sharks  is  a  dominant  component  of  the  landings  at  this  site,  and  detailed  market  data  of  all  sharks  landed  at  this  site  between  2001  and  2011  show  that  the  landings  from  the  longline  fishery  represent  93%  of  the  biomass  of  all  sharks  recorded  during  these  surveys.  This  fishery  targets  sharks  primarily  for  their  fins,  but  all  sharks  are  landed  whole  into  the  market  place  and  almost  all  parts  are  utilised.  Fishers  use  gill  nets  to  obtain  bait,  typically  skipjack  tuna  (Katsuwonis  pelamis),  for  use  on  the  longlines.  The  longline  fishery  consists  of  vessels  operating  drift  longlines  (pelagic)  and  vessels  operating  bottom  set  longlines.    Landings  occur  between  6  am  and  8  am  every  day  with  all  sharks  being  brought  into  a  covered  area  and  lined  up  according  to  the  boat  by  which  they  were  caught.  After  8  am,  each  boat’s  catch  is  sold  by  auction  and  if  sold,  processors  commence  processing  of  the  sharks  immediately.  Fins  are  removed  first,  then  the  trunk  is  cut  in  half  longitudinally  and  cartilage,  flesh  and  skin  are  separated  into  piles.    

     Landing  of  sharks  at  6am  from  a  drift  longline  boat  at  Tanjung  Luar.  Rows  of  landed  sharks  from  three  drift  longline  boats  (one  row  =  one  boat)  prior  to  auction  

   

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

4

1.3.1 Fishery characteristics There  are  a  total  of  41  vessels  that  use  either  drift  or  bottom  longlines  targeting  sharks  at  Tanjung  Luar.  [note:  data  collected  from  Tanjung  Luar  fisheries  office  in  2009],  of  which  

• 19  vessels  were  5–10  GT;  capacity  between  1–10  tons  • 22  vessels  were  10–30  GT;  capacity  >  10  tons  

 The  pelagic  (drift)  longlines  have  the  following  physical  characteristics:    

- Length  –  1,000-­‐2,000  m  - Branch  length  5  m  - 500  hooks  in  total  - hook  size  no.  1  - Multi  filament  nylon  line  no.  10  

           

Illustration of a section of a drift longline  Longlines  are  released  to  follow  the  current  when  setting.  The  fishing  areas  for  the  drift  longlines  are  around  Nusa  Tenggara  Timur  (East  Nusa  Tenggara)  and  to  as  far  as  Sorong  (Papua).  Trip  duration  is  23-­‐30  days,  with  a  4  person  crew.  June  and  July  are  peak  months  for  this  method.    The  bottom  longlines  have  the  following  physical  characteristics:    

- Length  –  18,000  m  - 7-­‐10  bamboo  poles  with  flags  and  floats  - 60  hooks  between  flags  - Branch  length  15  m  - 30  m  between  branches  - 600  hooks  in  total  - hook  size  no.  0  - Multi  filament  nylon  line  no.  6  

       

                                                                                                                                                                                                                 Illustration  of  a  section  of  a  bottom  set  longline    Bottom  longlines  are  set  in  50-­‐100  m  depth.  The  fishing  areas  for  the  bottom  longlines  are  around  Nusa  Tenggara  Timur  (East  Nusa  Tenggara)  and  Southern  Sumbawa  water.  Trip  duration  is  7  days,  with  a  3-­‐4  person  crew.  December  to  March  is  the  peak  season  for  this  method.        

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

5

Utilisation  of  the  catch    Each  boat’s  catch  of  longline  sharks  is  auctioned  after  all  sharks  are  landed,  often  at  around  the  same  time  (8–9  am)  each  day.  Information  on  the  final  auction  prices  for  the  catches  of  71  boats  has  been  collected  by  the  market  data.  Following  auctioning,  processors  quickly  start  working  on  animals  with  fins  being  removed,  then  flesh,  skin  and  cartilage  being  separated  out.    

Organising  excised  fins  from  sharks  during  processing      Fins  are  dried  at  the  landing  site  and  fetch  very  high  values  once  dried.  Prices  vary  depending  on  size  and  species  (prices  per  dry  kilo):  

• Hiu  Korea  I  (super  size)       Rp.  500.000  /  kg  • Hiu  Korea  II  (small  size)       Rp.  200.000  /  kg  • Hiu  Kajen  (large  Carcharhinus  sp)     Rp.  1.000.000  /  kg  • Hiu  Macan  (tiger  sharks)       Rp.  800.000  /  kg  • Hiu  Putih  (largest  size  –  C.  obscurus)     Rp.  1.500.000  /  kg  • Hiu  martil  (hammerhead  sharks)     Rp.  1.000.000  /  kg  

 Fins  are  then  sold  and  distributed  to  Lombok,  Denpasar,  Surabaya  and  Jakarta.  The  flesh  is  sold  to  the  local  area  and  salted;  the  salted  meat  then  sent  to  East  and  West  Java.  The  liver  is  processed  for  its  oil  and  the  resulting  oil  sent  to  Java.  The  skin  is  utilised  as  a  food  source  (crackers  –  kerupak)  or  as  leather  for  wallets,  etc.  Cartilage  will  often  be  sold  as‘filler’  in  shark-­‐fin  soup  and  teeth  are  exported  to  Bali  to  be  sold  as  souvenirs.    1.3.2 Catch Statistics Information Three  datasets  were  available  to  estimate  catches  of  sharks  by  the  longline  fishery:    1)  Market  survey  data:  collected  by  this  and  previous  ACIAR  projects  (White,  Dharmadi,  et  al.).  Daily  species  and  catch  composition  data  from  Tanjung  Luar  on  85  occasions  between  April  2001  and  February  2011.  Data  collected:  species  composition  of  the  longline  catches  and  gear  type  (bottom  or  pelagic);  sex  and  total  length  (or  precaudal  length  if  tail  damaged)  or  disc  width  were  recorded  for  each  individual  shark  or  ray  landed;  clasper  length  (mm),  clasper  calcification,  maturity  level,  weight  (kg),  fish  number  (if  vertebrae  collected),  and  number  and  mean  size  of  embryos  (opportunistic  

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

6

data);  weight  (kg)  was  estimated  using  previously  published  length  vs.  weight  relationships.  In  each  case,  the  equation  was  checked  to  make  sure  it  was  correct  and  gave  realistic  weight  calculations.  From  2004  onwards,  the  number  of  longline  boats  landing  on  each  day  was  recorded  and  for  each  individual  of  each  species  a  boat  number  (e.g.  1,  2,  3…)  was  recorded  to  indicate  which  particular  boat  they  were  landed  from.    2)  Provincial  Dinas  Perikanan  data  for  East  Lombok:  Annual  shark  catches  for  East  Lombok  from  2000-­‐2009.  For  comparison  with  Tanjung  Luar  data,  this  data  was  adjusted  to  account  for  the  proportion  of  the  provincial  catches  that  is  from  Tanjung  Luar  (90%)  and  the  proportion  of  the  Tanjung  Luar  catch  of  sharks  that  is  from  the  longline  fishery  (93%  -­‐  determined  from  market  survey  data).    3)  “Local  fisheries”  daily  data:  Daily  landing  data  (in  kg)  of  key  groups,  including  sharks,  for  2009  and  2010  only.  The  shark  data  were  then  adjusted  to  reflect  the  proportion  of  the  typical  Tanjung  Luar  catch  that  is  from  the  longline  boats  (i.e.  93%).    Annual  shark  landings  at  Tanjung  Luar    Since  landings  of  sharks  varied  throughout  the  year,  to  determine  annual  catches  of  sharks  from  the  market  survey  data,  a  seasonal  pattern  of  landings  was  developed  to  allow  for  estimation  of  annual  catches  based  on  the  surveys  available  for  that  particular  year.  This  pattern  was  produced  by  using  average  daily  landings  for  each  month  observed  in  market  survey  data,  with  data  for  all  years  combined.  These  averages  were  calculated  by  dividing  the  total  observed  landings  (tonnes)  per  month  across  all  years  by  the  number  of  survey  days  per  month,  across  all  years  (Table  1).  The  resulting  seasonal  pattern  (Fig.  1)  shows  catches  highest  in  July  to  October  and  lowest  in  January  and  December.    Table  1.    Calculation  of  average  daily  landings  for  each  month  using  the  market  survey  data  for  all  years  combined.  

 

Month  Number  of  survey  days    

Total    observed  landings  

(kgs)  

Average  landings    per  day    (kgs)  

January   4   1055.1   263.8  February   2   1852.6   926.3  March   12   10872.1   906.0  April   5   5742.6   1148.5  May   4   4087.0   1021.8  June   3   2658.0   886.0  July   9   15994.1   1777.1  August   11   19841.1   1803.7  September   8   24618.5   3077.3  October   13   24485.0   1883.5  November   4   2857.2   714.3  December   4   1435.8   358.9  

   

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

7

                               

 Fig.  1    Shark  landings  per  day  over  each  month  for  2001  to  2011,  indicating  the  seasonal    

pattern  in  catches.  Estimates  are  derived  from  Table  1.      

To  determine  the  annual  catches  based  on  market  survey  data,  the  monthly  catches  were  estimated  by  scaling  the  average  daily  landings  from  market  survey  data,  i.e.  multiplying  by  the  number  of  days  within  each  month.  Where  there  were  no  data  available  for  a  specific  month,  the  monthly  catches  were  interpolated  by  multiplying  the  ratio  between  average  daily  landings  for  that  month  and  for  the  nearest  month  (where  data  available)  by  the  estimated  catches  for  the  nearest  month.  The  annual  catches  were  then  an  aggregate  of  the  monthly  estimated  catches  for  one  year.        Annual  shark  catches  derived  by  provincial  Dinas  Perikanan  data  for  east  Lombok  declined  substantially  over  the  early  2000s,  from  1836  tonnes  in  2001  to  just  143  tonnes  in  2005  (Table  2;  Fig  2).  (Note  as  per  the  note  to  Table  2,  these  figures  have  been  adjusted  to  reflect  Tanjung  Luar).  However,  they  increased  steadily  thereafter,  to  731  tonnes  in  2009.  These  should  theoretically  represent  total  whole  fish  weights,  and  not  components  such  as  fins.  Catches  were  not  broken  down  by  species  but  just  as  ‘shark’.  These  estimates  differ  markedly  from  those  derived  directly  from  “Local  Fisheries”  data;  however  currently  only  one  year  overlaps  to  enable  a  comparison.  The  annual  catch  for  2009,  the  longline  fishery  was  estimated  from  this  latter  source  as  362  tonnes  (total  landings  of  sharks,  not  rays)  in  Tanjung  Luar  (summing  daily  data),  compared  to  731  tonnes  by  the  Dinas  data  (Table  2  and  Fig.  2).          In  contrast  to  information  derived  from  Dinas  Perikanan,  estimates  of  annual  catch  based  on  market  survey  data  indicate  that  there  was  no  marked  decline  between  2001  and  2005,  nor  a  subsequent  increase  in  catches.  The  market  survey  data  suggest  that  annual  catches  were  reasonably  constant  over  the  decade  and  generally  lower  than  the  estimates  from  the  Dinas  Perikanan  data  (Table  2  and  Fig.  2).      

!

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

8

 Table  2.    Calculation  of  annual  landings  (tonnes)  based  on  data  from  the  three  sources:  provincial  Dinas  Perikanan  data  (adjusted  to  Tanjung  Luar  only);  markets  survey  data  and  “local  fisheries”  daily  landings  data,  for  the  years  where  data  is  available  between  2000  and  2011.    

Year  Dinas  Perikanan  Catch  Data  (Tanjung  Luar  only)  (tonnes)1  

Market  Survey  Data    using  seasonal  

pattern  (tonnes)  

“Local  Fisheries”  data  

(tonnes)2  

2000   1726.2   -­‐   -­‐  2001   1836.0   247.5   -­‐  2002   784.4   319.7   -­‐  2003   916.2   -­‐   -­‐  2004   773.1   541.5   -­‐  2005   142.5   432.3   -­‐  2006   297.6   607.7   -­‐  2007   517.4   -­‐   -­‐  2008   650.8   332.8   -­‐  2009   730.8   482.5   362.4  2010   -­‐   342.6   375.1  2011   -­‐   413.7   -­‐  

 1Calculated  by  multiplying  total  catches  from  Dinas  Perikanan  data  for  east  Lombok,  by  93%  to  estimate  catches  from  the  longline  fishery  (based  on  market  data),  then  by  90%  to  account  for  minor  landing  sites.  2Calculated  by  multiplying  total  catches  by  local  Fisheries  data  by  93%  to  estimate  longline  landings.        

                                             

Fig.  2    Comparison  of  annual  shark  catch  estimates  for  Tanjung  Luar,  using  longlines  only,  based  on  the  three  data  sources:  market  survey  data.  Dinas  Perikanan  data  and  “Local  Fisheries”  data.  

       

!

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

9

It  was  considered  that  the  market  survey  data  was  the  best  estimate  of  catches  currently  available  for  Tanjung  Luar.  “Local  Fisheries”  daily  data  were  found  to  be  similar  in  the  two  years  available.  The  Dinas  Perikanan  summary  statistics,  however,  were  considered  to  be  quite  inaccurate:  it  appears  that  the  quality  of  data  at  point  of  collection  is  good  -­‐  lack  of  reporting  is  not  a  major  issue  -­‐  but  subsequent  treatment  to  scale  data  to  produce  annual  summaries  by  district  or  region  is  introducing  some  serious  biases.        Although  the  overall  annual  landing  estimates  from  the  “local  fisheries”  and  market  survey  data  were  very  similar,  it  should  be  noted  that  substantial  discrepancies  were  still  observed  at  a  daily  level  in  some  cases.  For  the  period  where  the  former  data  were  available  (2009  and  2010),  market  survey  data  were  also  available  for  10  of  the  same  days.  The  catches  for  these  10  days  were  compared  to  examine  how  the  two  data  sources  differed  (Fig.  3).  The  resulting  comparison  shows  that  for  about  half  of  the  days,  the  estimated  landings  of  sharks  were  very  similar.  However,  for  three  of  the  days,  the  local  fisheries  data  overestimated  the  catch  by  about  1  tonne  each  day.  Also,  on  one  day  (3),  the  local  data  had  zero  catch  recorded  while  the  market  survey  data  reported  close  to  400  kg  landed.  For those days where inconsistencies in the data were observed, the immediately adjacent days were also different, thus translation errors do not appear to account for those differences. Thus  it  is  important  to  note  that,  while  the  local  data  provide  similar  estimates  of  the  shark  catches  at  Tanjung  Luar,  there  are  still  obvious  under  and  overestimation  of  the  catches  occurring  on  some  days.  This  was  particular  evident  when  comparing  the  catches  of  rays  between  the  two  data  sources  for  the  same  survey  days  (Fig.  4).  In  this  case,  the  catches  of  rays  were  similar  on  some  of  the  days  but  on  one  particular  day  they  underestimated  the  landings  of  rays  by  almost  5  tonnes!  In  fact  the  local  fisheries  data  did  not  record  this  amount  of  rays  for  that  whole  month,  let  alone  for  that  one  day.                            

             

Fig.  3    Comparison  of  the  catches  (kg)  of  sharks  from  the  “local  fisheries”  daily  data  and  the  market  survey  data  for  the  10  survey  days  which  overlap  between  2009  and  2010  at  Tanjung  Luar.  

     

!

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

10

                                             

Fig.  4    Comparison  of  the  catches  (kg)  of  rays  from  the  local  fisheries  daily  data  and  the  market  survey  data    for  the  10  survey  days  which  overlap  between  2009  and  2010  at  Tanjung  Luar.  

   

In  conclusion,  although  the  “local  fisheries”  data  is  providing  reliable  annual  estimates  of  the  shark  catches  at  Tanjung  Luar,  there  still  appear  to  be  some  issues  with  the  data  collection  at  some  stages.  It  is  also  not  fully  understood  how  this  data  is  collected  since  on  the  market  survey  trips,  there  is  no  one  visibly  recording  daily  landings  data.    Estimates  of  monthly  landings  based  on  the  local  fisheries  data  and  the  market  survey  data  also  highlight  the  fact  that  they  show  similar  trends,  but  under  and  overestimation  still  appears  to  be  an  issue  (Fig.  5).            

                             

Fig.  5    Monthly  estimates  of  shark  longline  landings  using  the  market  survey  data  and  the  “local  fisheries”  data.  Arrows  indicate  timing  of  market  surveys  in  2009  and  2010.  

     

!

! !

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

11

 1.3.3 Effort Information  Dinas  Perikanan  data    Information  on  fishing  effort  was  provided  by  the  provincial  Dinas  Perikanan.  Data  for  the  Regency  of  East  Lombok  are  provided  from  seven  landing  sites,  of  which  Tanjung  Luar  is  just  one.  Data  including  catches,  number  of  trips  and  number  of  boats  are  collected  at  each  site,  and  then  collated  across  the  regency.  Further  processing  of  data  occurs  at  the  provincial  level,  where  statistical  summaries  are  provided  for  each  regency.      We  were  unable  to  extract  effort  data  for  Tanjung  Luar  alone.  However  sources  in  Dinas  Perikanan  indicated  that  effort  from  Tanjung  Luar  comprises  about  70%  of  total  longline  effort  from  the  East  Lombok  district  but  about  90%  of  shark  catches.  These  percentages  are  a  rough  estimate  as  we  were  unable  to  obtain  more  precise  information  on  this  breakdown.    Effort  data  were  expressed  as  trips  per  year,  but  the  calculation  of  this  is  not  understood.  It  could  be  based  on  numbers  of  boats  multiplied  by  trip  length,  but  it  is  just  not  clear  what  to  what  the  information  actually  refers.  The  data  show  a  drop  in  effort  between  2000  and  2002  and  then  a  dramatic  increase  between  2004  to  2006,  to  almost  100,000  trips  (Fig.  6).  However,  given  the  information  we  have  on  the  number  of  boats  and  estimated  number  of  trips  from  the  market  survey  later  (see  in  subsequent  section),  these  appear  to  be  gross  overestimates  of  the  number  of  trips  occurring  from  this  area.  The  dramatic  increase  seen  between  2004  and  2006  does  not  match  with  observations  at  Tanjung  Luar  during  this  period  as  part  of  previous  ACIAR  projects  focusing  on  this  fishery.    

                                     

Fig.  6    Annual  effort  for  drift  (pelagic)  longline,  expressed  as  total  number  of  fishing  trips,  for  Tanjung  Luar.  Data  points  were  estimated  as  70%  of  the  total  for  the  East  Lombok  district.  

 Likewise,  the  number  of  licences  (gear  units)  in  East  Lombok  by  year,  adjusted  for  drift  longline  only,  varied  between  about  20,000  (2002)  and  110,000  (2009)  (Fig.  7).  Given  observed  number  of  long-­‐liners  at  Tanjung  Luar  was  41  boats  (see  earlier)  and  trip  

!

!"

!20,000

!40,000

!60,000

!80,000

!100,000

!120,000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

No.$of$trip

s

Year

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

12

length  is  23-­‐30  days,  this  also  appears  to  be  a  gross  over-­‐estimate.  The  rate  of  change  between  years  is  also  not  consistent  between  years.                      

               

Fig.  7    Annual  number  of  registered  longline  gears,  for  the  East  Lombok  province    based  on  Dinas  Perikanan  data.  

 A  further  issue  with  the  Dinas  Perikanan  data  was  that  bottom  longline  effort  data  were  only  provided  for  three  years,  even  though  this  gear  type  was  utilised  during  the  whole  market  survey  period.  In  conclusion,  the  effort  data  provided  by  Dinas  Perikanan  appears  to  be  quite  inaccurate  and  not  useable  for  estimation  of  effort  patterns  and  certainly  not  useable  for  catch  per  unit  effort  calculations.    Market  survey  data    Collection  of  effort  data  was  not  a  primary  objective  of  the  market  sampling.  However,  as  catches  for  sharks  are  separated  by  boat,  then  it  is  feasible  to  estimate  the  number  of  boats  contributing  to  catches  at  the  market  at  any  sampling  event.  Based  on  the  market  data  collected  during  this  and  the  previous  ACIAR  projects,  which  recorded  the  number  of  both  pelagic  and  bottom  longline  boats  landing  per  day,  the  average  daily  landings  of  both  longline  types  was  calculated  for  each  month  (years  combined).  Also,  the  estimated  number  of  landings  per  month  as  well  as  estimated  annual  totals  was  calculated.      The  overall  pattern  in  number  of  landings  follows  a  similar  pattern  to  the  annual  catches  per  month  with  years  combined  (Figs  8  and  9).  The  number  of  pelagic  longline  landings  per  month  are  very  low  in  January  and  February  (high  seas  season)  but  increase  markedly  in  March  through  to  August;  then  decline  rapidly  in  December.  The  number  of  bottom  longline  landings  varied  considerably  throughout  the  year  and  were  highest  in  February  and  October.     The  annual  estimated  total  number  of  landings  of  both  pelagic  and  bottom  longline  boats  calculated  using  the  above  data  is  686  and  597,  respectively.  These  figures  represent  the  number  of  trips  per  year  by  both  longline  types  at  Tanjung  Luar  based  solely  on  our  market  data.  Based  on  the  fact  that  one  bottom  longline  boat  has  a  trip  length  of  7  days  and  thus  can  theoretically  undertake  52  trips  per  year,  an  approximate  number  of  13  

!

!"

!200

!400

!600

!800

!1,000

!1,200

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Fishing'Ge

ar'Units

Year

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

13

bottom  longline  boats  was  calculated  for  Tanjung  Luar.  Similarly  with  the  pelagic  longlines,  based  on  a  trip  length  of  23-­‐30  days,  an  approximate  number  of  38-­‐49  boats  was  calculated.    

         

Fig.  8    Average  number  of  landings  per  day  for  both  longline  types.  

Fig.  9    Estimated  number  of  landings  per  month  for  both  longline  types.    

1.3.4 Species, Sex and Size Composition Data Overall  species  composition    A  total  of  36  species  were  recorded  from  both  longline  types,  comprising  31  shark  species  and  5  ray  species  (Fig.  10).  Nine  shark  families  were  recorded  with  the  Carcharhinidae  (whaler  sharks)  being  the  most  abundant  with  18  species.  All  other  families  were  represented  by  only  1,  2  or  3  species.  Two  of  the  species  recorded  from  this  fishery,  Pseudotriakis  microdon  and  Dasyatis  microps,  represented  new  records  for  Indonesia  (White  et  al.,  2006).  Seventeen  of  the  36  species  belong  to  one  of  the  threatened  categories  according  to  the  IUCN  Red  List  of  Threatened  Species  (www.iucnredlist.org)  (see  Table  A1  in  Appendix  1).  

!

!

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

14

                                   

Fig.  10    Number  of  species  by  family  recorded  from  the  longline  fishery  at  Tanjung  Luar.    

Analysis  of  species  composition  data  by  years  surveyed  focused  on  the  most  abundant  species.  To  identify  the  most  important  species  in  catches,  we  identified  those  species  that  comprised  20%  or  more  of  the  catch,  by  number  or  weight,  in  any  year,  by  either  pelagic  or  bottom  set  longline  gears.  Species  which  constituted  at  least  20%  to  the  total  number  or  total  biomass  in  a  particular  year  were  considered  the  most  abundant  species  for  further  analysis  (see  Table  A2  in  Appendix  1).    Annual  trends  in  catches  of  abundant  species    Drift  (pelagic)  longline    The  results  of  analyses  of  the  percentage  contribution  to  the  number  and  weight  of  each  of  the  most  abundant  pelagic  longline  caught  species  in  each  of  the  survey  years,  showed  that  there  was  no  obvious  annual  trend  in  catches  for  most  species  (Figs  11  and  12).  Carcharhinus  falciformis  was  by  far  the  most  abundant  species  landed  by  pelagic  longlines  in  all  years  surveyed.  By  weight,  C.  falciformis  was  also  a  large  proportion  of  the  catch  in  each  year,  but  a  number  of  other  species,  C.  obscurus,  Galeocerdo  cuvier,  Isurus  oxyrinchus,  Prionace  glauca  and  Alopias  pelagicus  also  had  a  similar  or  slightly  larger  contribution  to  the  catch  in  at  least  one  of  the  years  surveyed.  In  contrast  to  tuna  longline  catches  where  P.  glauca  typically  represents  the  vast  majority  of  the  catch,  far  lower  proportions  were  recorded  in  this  study.  This  is  likely  related  to  the  area  being  fished  or  the  depth  being  fished.  Prionace  glauca  is  an  oceanic  species,  but  this  fishery  occurs  generally  relatively  close  to  land  (thus  offshore  waters  rather  than  oceanic).  This  is  consistent  with  the  presence  of  large  numbers  of  C.  falciformis  which  prefer  deepwater  but  close  to  landmasses.  This  species  is  typically  considered  a  cool  water  species  and  in  tropics  tends  to  sit  below  the  thermocline  at  around  80-­‐100  m  (Pepperell,  2010).  This  is  in  the  fishing  zone  for  tuna  longlines  but  less  so  for  the  shark  drift  longlines  which  would  be  in  shallower  water.      

!

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

15

 

                                                 

Fig.  11    Annual  trends  in  the  percentage  (by  number)  of  each  of  the  7  abundant  species    from  the  pelagic  longline  data.  

       

                                                 

Fig.  12  Annual  trends  in  the  percentage  (by  weight)  of  each  of  the  7  abundant  species    from  the  pelagic  longline  data.  

 

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

16

 Bottom  longline    The  results  of  analyses  of  the  percentage  contribution  to  the  number  and  weight  of  each  of  the  most  abundant  bottom  longline  caught  species  in  each  of  the  survey  years,  showed  that  there  was  no  obvious  annual  trend  in  catches  for  most  species  (Figs  13  and  14).  The  only  species  which  showed  an  apparent  trend  was  Hexanchus  griseus.  However,  this  can  be  explained  by  the  very  large  size  of  several  individuals  caught  in  some  years.  For  example,  in  2001several  large  individuals  were  recorded  with  one  having  an  estimated  weight  of  632  kg.  The  most  abundant  species  (by  number)  recorded  from  this  gear  type  were  Carcharhinus  amblyrhynchos,  C.  obscurus  and  C.  sorrah.  By  weight,  C.  obscurus  was  typically  the  most  abundant  species,  with  C.  sorrah  contributing  much  less  due  to  the  much  smaller  average  size  of  this  species.    

                                                                         

Fig.  13    Annual  trends  in  the  percentage  (by  number)  of  each  of  the  8  abundant  species    from  the  bottom  longline  data.  

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

17

                                                           

Fig.  14    Annual  trends  in  the  percentage  (by  weight)  of  each  of  the  8  abundant    species  from  the  bottom  longline  data.  

 There  were  no  clear  declining  trends  in  catches  over  the  years  for  any  of  the  abundant  species.  This  might  indicate  that  there  is  little  point  of  concern.  However,  it  could  also  be  a  result  of  fishers  needing  to  fish  further  away  in  order  to  obtain  similar  catches.  During  previous  ACIAR  projects,  socioeconomists  provided  questionnaires  to  the  fishers  in  Tanjung  Luar  and  in  this  many  indicated  that  catches  have  gone  down  and  they  need  to  fish  further  afield  (Vieira,  unpubl.  data).  Thus,  this  needs  to  be  considered  as  well  as  the  impact  on  the  minor  species,  which  one  could  argue  are  the  species  where  you  are  more  likely  to  see  reductions  in  catches.      The  species  composition  differed  markedly  between  the  pelagic  and  bottom  longlines  which  largely  reflects  habitat  differences  (bottom  set  in  shelf  waters  vs  drifting  in  offshore  waters)  as  well  as  the  fishing  areas  where  gear  is  being  deployed.  Bottom  longlines  use  slightly  smaller  hooks  but  it  was  not  felt  that  selectivity  differed  substantially  between  pelagic  and  bottom  longlines,  or  at  least  was  a  secondary  factor  compared  to  habitat  differences.    Trends  in  the  mean  length  of  sharks  over  time    The  mean  length  of  each  of  the  abundant  shark  species  in  each  of  the  year  was  calculated  to  determine  whether  there  were  obvious  trends  in  the  size  over  time.  For  both  longline  

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

18

types,  there  was  no  distinct  trend  in  the  mean  length  of  sharks  over  the  years  surveyed  for  any  of  the  species  (Figs  15  and  16).  It  should  be  noted  that  this  only  refers  to  the  most  abundant  species,  and  the  limited  data  for  some  of  the  minor  species  does  not  allow  for  an  analysis  of  the  mean  length  over  years.  Carcharhinus  longimanus  is  one  of  the  minor  species  which  was  recorded  in  small  numbers  between  2001  and  2005,  but  has  not  been  recorded  in  subsequent  years.  This  may  be  due  to  declines  in  this  species,  or  may  be  due  to  area  being  fished.  This  species  is  an  oceanic  species  and  prefers  open  waters  thus  fishing  may  not  be  occurring  in  such  waters.  However,  Prionace  glauca  and  Isurus  oxyrinchus  are  oceanic  species  also  but  are  still  being  landed  in  this  fishery  over  the  whole  time  series.  Examination  of  the  tuna  longline  bycatch  in  other  regions  would  yield  better  information  on  this  species.    

                                                                     

Fig.  15    Mean  length  of  the  most  abundant  pelagic  longline  caught  species  over  the  years  surveyed.      

   

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

19

                       

                     

         

Fig.  16    Mean  length  of  the  most  abundant  bottom  longline  caught  species  over  the  years  surveyed.    Seasonality  of  the  catch    For  each  of  the  most  abundant  species  in  either  the  pelagic  or  bottom  longline  fisheries,  the  average  landings  per  day  (both  by  weight  and  by  number  caught)  was  calculated  for  each  month  (yearly  data  combined)  (Fig.  17).  The  monthly  trends  in  C.  falciformis  landings  closely  followed  the  overall  catch  pattern  produced  from  the  market  survey  data  with  highest  landings  between  March  and  October.  Sphyrna  lewini  followed  a  relatively  similar  pattern  with  a  clear  peak  in  September  and  October.  This  peak  coincides  with  the  approximate  time  of  birthing  in  this  species  and  is  also  when  the  catch  is  dominated  by  large,  often  pregnant,  females.  Thus,  this  may  represent  a  reproductively-­‐motivated  movement  pattern  of  this  species  into  the  fishing  areas  being  exploited.  Carcharhinus  obscurus  landings  showed  a  very  distinct  trend  with  a  clear  peak  in  August  to  October  and  very  minimal  landings  in  January  to  June.  This  is  likely  a  result  of  movement  patterns  of  the  species,  since  primarily  large  subadults  are  landed  in  the  fishery  that  are  probably  moving  from  adjacent  regions  at  that  time  of  the  year.  Prionace  glauca  catches  showed  a  very  distinct  peak  in  catches  in  September,  which  would  presumably  be  related  to  movement  of  the  species  or  changes  in  area  being  fished.  Alopias  pelagicus  catches  were  highest  in  July  and  September.  Carcharhinus  sorrah  catches  were  greatest  in  February  to  May  with  very  few  or  none  recorded  in  other  months.  This  species  is  a  more  inshore  species  so  this  peak  may  be  reflected  in  the  fishing  areas  exploited  by  the  bottom  longline  fishers,  or  may  be  a  result  of  movement  patterns  of  the  species  at  this  time  of  the  year.  Isurus  oxyrinchus  catches  were  greatest  between  May  and  October  which  followed  the  peak  fishing  season  of  the  pelagic  longline  boats.  The  remaining  species  catches  exhibited  little  monthly  variation.    

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

20

     

                                                                                                                   

Fig.  17    Mean  weights  landed  by  days  surveyed  of  the  most  abundant  longline  caught  species  throughout  the  year  (yearly  data  combined).  

   

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

21

Sex  ratio    For  the  most  abundant  species  designated  previously  for  both  longline  types  combined,  the  overall  sex  ratio  of  the  landings  was  determined  (Fig.  18).  The  sex  ratios  of  the  catches  of  C.  brevipinna,  C.  falciformis,  C.  limbatus,  C.  obscurus  and  G.  cuvier  were  close  to  parity.  The  catches  of  I.  oxyrinchus  and  A.  pelagicus  contained  slightly  more  females  than  males  (1.4  and  1.3  times  more  females  than  males,  respectively).  The  catches  of  H.  griseus  and  C.  sorrah  contained  more  than  twice  the  number  of  females  than  males.  In  the  case  of  H.  griseus,  this  is  possibly  due  to  the  small  sample  size  and  more  catch  data  for  this  species  would  be  required  to  validate  this.  In  the  case  of  C.  sorrah  where  the  sample  size  is  quite  high,  some  segregation  of  the  sex  or  gear  selectivity  is  apparent.  Since  size  at  maturity  between  males  and  females  of  C.  sorrah  is  similar,  it  is  likely  that  the  species  is  segregating  by  sex  and  bottom  longline  fishers  are  targeting  those  areas  where  females  occur  at  a  higher  level.  Davenport  &  Stevens  (1988)  found  that  off  northern  Australia,  there  were  1.7  females  per  male,  thus  it  is  possible  that  the  natural  population  of  this  species  has  a  skewed  sex  ratio  with  more  females  than  males.      

                                                 

Fig.  18    Ratio  of  females  to  males  for  the  most  abundant  species  caught  by  both  longline  types  at  Tanjung  Luar.      The  catches  of  Sphyrna  lewini  were  heavily  biased  towards  females  with  almost  5  females  per  male.  In  contrast,  Stevens  &  Lyle  (1989)  found  that  catches  in  northern  Australia  were  heavily  skewed  towards  males.  Thus,  some  segregation  of  the  sexes  appears  to  be  occurring  and  fishing  is  possibly  focused  on  the  area  where  females  are  occurring.  In  the  case  of  the  blue  shark,  Prionace  glauca,  5  times  more  males  were  recorded  than  females.  This  suggests  sexual  segregation  and  since  this  species  is  known  to  occur  in  deeper  waters  in  the  tropics  (Pepperell,  2010),  perhaps  males  are  encountered  in  shallower  waters  in  this  area.  This  does  however  contradict  previous  research  which  has  shown  females  are  more  likely  to  swim  near  the  surface  than  males  (Pepperell,  2010).  Investigation  of  the  sex  ratio  of  P.  glauca  in  the  bycatch  of  the  tuna  longline  catch  in  

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

22

Indonesia  would  be  required  to  understand  this  sex  ratio  pattern  better.  This  species  is  known  to  show  strong  sexually  segregation  and  off  eastern  Australia  a  similar  sex  ratio  to  that  observed  in  this  study  was  also  recorded  (Stevens,  1984).  In  the  latter  study,  females  were  observed  most  abundantly  in  September  and  October,  but  in  our  study  females  only  constituted  16%  of  the  catch  in  these  months.  It  therefore  appears  as  if  the  gear  used  by  these  fishers  is  not  fishing  in  habitats  where  females  occur  or,  more  likely,  females  are  located  in  different  areas,  not  fished  by  these  longliners.  Examination  of  the  tuna  longline  bycatch  would  be  valuable  to  better  understand  this  process.  One  important  conclusion  that  can  come  from  this  data  is  that  the  Tanjung  Luar  fishery  is  likely  to  be  heavily  impacting  on  S.  lewini  populations  given  it  is  one  of  the  most  abundant  species  caught  and  that  it  catches  predominantly  females.  In  contrast,  this  fishery  is  likely  to  only  have  low  impact  on  P.  glauca  populations  given  that  it  predominantly  catches  males.    Length  frequency  distributions    Length  frequency  histograms  were  produced  for  the  abundant  species  in  both  the  pelagic  and  bottom  longline  fisheries.  Length  classes  of  100  mm  were  used  and  individuals  were  classified  as  either  immature  or  mature  based  on  known  female  and  male  maturity  (see  Appendix  1,  Table  A2).    The  length  frequency  plots  for  the  abundant  pelagic  longline  species  (Fig.  19)  show  that  for  the  majority  of  species,  the  majority  of  the  catch  is  comprised  of  immature  individuals.  This  is  particularly  evident  in  Carcharhinus  obscurus  where  although  only  a  relatively  small  size  range  of  individuals  was  recorded,  almost  all  of  these  sharks  were  just  prior  to  becoming  mature.  A  similar  situation  was  also  found  with  Galeocerdo  cuvier,  with  the  vast  majority  of  individuals  recorded  being  immature.  In  contrast,  the  vast  majority  of  Prionace  glauca  recorded  were  mature  with  only  a  very  small  number  of  immature  individuals  recorded.      The  length  frequency  plots  for  the  abundant  bottom  longline  species  (Fig.  20)  showed  a  more  mixed  result.  The  catches  of  several  species,  C.  amblyrhynchos,  C.  limbatus  and  C.  sorrah,  were  dominated  by  mature  individuals.  As  was  shown  in  Fig.  19,  C.  obscurus  and  G.  cuvier  catches  were  dominated  by  immature  individuals.  Carcharhinus  brevipinna  and  Sphyrna  lewini  catches  were  dominated  by  immature  sharks,  but  they  also  included  a  large  number  of  mature  individuals.                      

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

23

                                                                                                           

Fig.  19    Length  frequency  histograms  for  the  abundant  species  caught  by  pelagic  longlines  at  Tanjung  Luar.  Red  bars  indicate  immature  individuals;  blue  bars  indicate  mature  individuals.  

                   

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

24

                                                                                                       

Fig.  20    Length  frequency  histograms  for  the  abundant  species  caught  by  bottom  longlines  at  Tanjung  Luar.  Red  bars  indicate  immature  individuals;  blue  bars  indicate  mature  individuals.  

     

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

25

1.3.5 Comparison of gillnet and longline catches at Tanjung Luar  To  gain  an  understanding  of  the  effect  of  other  gear  types  on  the  species  that  were  abundant  in  the  longline  fishery  catches,  the  proportion  of  catches  by  both  number  and  weight  caught  by  gillnets  for  the  abundant  species  were  determined  where  comparable  data  was  available.  Such  comparable  data  were  available  for  24  of  the  85  days  surveyed.  The  number  and  biomass  of  sharks  caught  by  gillnets  compared  to  longlines  at  Tanjung  Luar  was  proportionally  low  for  the  vast  all  but  one,  Carcharhinus  sorrah,  of  the  abundant  species  (Table  3).  The  most  abundant  longline  caught  species,  C.  falciformis,  was  also  caught  by  gillnets  operating  out  of  Tanjung  Luar,  but  this  only  represented  2  and  10%  by  number  and  weight,  respectively,  of  the  catches  of  this  species.  It  is  clear  from  this  data  that  the  longline  fishery  accounts  for  the  vast  majority  of  the  catches  of  the  dominant  species  at  Tanjung  Luar.  Carcharhinus  obscurus  and  Hexanchus  griseus  were  not  caught  by  gillnets  at  this  site,  at  least  during  the  surveys  conducted  on  this  and  previous  projects.  One  important  finding  from  this  dataset  is  that  for  some  species,  in  particular  C.  sorrah,  the  catches  from  multiple  fisheries  need  to  be  taken  into  account.    

Table  3    Proportion  of  gillnet  catches  to  longline  catches  for  the  most  abundant  species.  

   %  by  number  

%  by  weight  

Alopias  pelagicus   2.8   26.0  Carcharhinus  amblyrhynchos   16.3   15.8  Carcharhinus  brevipinna   11.1   7.2  Carcharhinus  falciformis   2.1   10.0  Carcharhinus  limbatus   9.6   7.8  Carcharhinus  obscurus   0   0  Carcharhinus  sorrah   50.0   56.3  Galeocerdo  cuvier   0.6   1.0  Hexanchus  griseus   0   0  Prionace  glauca   0.4   3.3  Sphyrna  lewini   1.6   5.7  

     

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

26

1.4 Yield per recruit analyses  As  indicated  in  the  preceding  ACIAR  project,  Artisanal  Fisheries  for  Sharks  and  Rays  in  Eastern  Indonesia,  yield  per  recruit  analyses  are  a  means  of  providing  general  policy  advice  about  the  capacity  for  a  species  to  support  sustainable  fisheries,  when  full  assessments  based  on  abundance  or  fishing  mortality  rate  information,  are  not  feasible.  Utilising  the  methods  and  analyses  developed  by  Blaber  et  al.  (2009),  we  introduce  a  new  analysis  for  Alopias  pelagicus  and  updated  analyses,  given  new  biological  information,  for  Sphyrna  lewini,  Prionace  glauca,  Isurus  oxyrinchus,  Carcharhinus  falciformis  and  C.  obscurus.  Data  derived  from  the  current  project  and  updated  literature  information  were  both  used  to  inform  the  analyses  (see  Appendix  1,  Table  A3).  Information  required  included  age  at  maturity,  maximum  age,  litter  size,  sex  ratio,  length-­‐weight  relationships  and  the  von  Bertalanffy  parameters  (Linf  and  K,  as  well  as  t0  or  Lzero).  These  were  established  from  the  market  sampling  data  or,  if  this  was  not  possible,  taken  from  the  literature  (Appendix  1,  Table_A3).    For  three  species,  I.  oxyrinchus,  C.  falciformis  and  C.  obscurus,  the  growth  information  included  in  the  analyses  was  via  a  form  of  the  von  Bertalanffy  growth  function  (Semba  et  al.,  2009),  that  utilises  additional  information  on  pup  size  at  birth,  i.e.  Lzero  (Appendix  1,  Table  A3).  However,  as  estimation  of  all  the  parameters  in  the  growth  function  is  affected  by  changing  the  form  of  the  function  used,  it  was  possible  to  use  this  approach  for  only  those  species  where  growth  equations  had  been  published  in  that  way.  The  proportion  of  reproductive  potential  remaining  after  harvest  (Gallucci  et  al.,  2006)  was  also  determined.  For  given  relative  age  at  vulnerability  attributes  of  a  fishery,  this  indicates  the  ability  of  a  population  to  grow  or  not.  As  in  Blaber  et  al.  (2009),  this  is  presented  as  an  additional  reference  point.        The  per  recruit  models  used  published  life  history  parameters  and  observations  from  market  sampling.  A  50:50  sex  ratio  was  assumed  for  all  species.  Since  relative  vulnerability  at  age  i  (vi)  was  unknown,  a  range  of  values  are  considered.  Relative  vulnerability  at  age  was  calculated  as:  

 ( )

( )1

1 12

i

iv

i

Ω

Ω Ω=

Ω +   (0.1)  

  where     1Ω  is  a  concentration  parameter,  determining  the  steepness  of  the  relative  vulnerability  at  age  curve,  and   2Ω is  the  age  at  50%  relative  vulnerability.  The  different  ages  at  50%  vulnerability  were  tested  in  the  analyses:  0,  6  and  14  years.  This  reflects  the  variety  of  fishing  gears  observed  in  the  region.  Average  length  and  then  weight  for  each  age  were  calculated  from  the  von  Bertalanffy  growth  function  and  length-­‐weight  regression:   ( )( )01 K i i

iL L e− −∞= − (0.2)

    where   tL is  the  length  at  age,  i       L∞ is  the  average  maximum  length,       K  is  the  instantaneous  rate  of  growth,  and       i0  is  the  age  at  which  length  is  zero.  

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

27

and     b

i iW aL= (0.3)

A  Leslie  Matrix  discrete  model  (Quinn  &  Deriso,  1999)  of  an  unharvested  population,  assuming  population  parameters  remain  constant  over  time,  can  be  written  as:  

1t t+ =N MN  where  the  population  vector  of  female  abundance  Nt  in  year  t  is  multiplied  by  the  projection  matrix  M  (of  size  imax  by  imax)  to  get  the  female  population  vector  of  abundance  in  year  t+1.        The  projection  matrix  was  developed  as:  

       where  Si  is  the  annual  survival  fraction  of  age  i  at  the  beginning  of  the  year,  and  fi  is  the  net  fecundity  of  age  i  females.  

For  a  fished  population,  the  formula  becomes:    

1t t+ =N MHN    where  H  is  the  harvest  matrix  with  diagonal  elements  hi  (or   iFe− )  is  the  harvest  survival  matrix  at  age  i.    There  are  properties  of  this  projection  matrix  that  are  useful.  For  example,  if  the  dominant  eigenvalue  of  the  MH  matrix  (λʹ′ -­‐  giving  the  multiplicative  increase  of  the  harvested  population  at  the  stable  age  distribution  or  can  be  defined  as  the  long-­‐term  deterministic  measure  of  growth  rate  of  a  population  in  a  constant  environment)  is  equal  to  1,  then  it  indicates  that  those  harvests  have  led  to  a  stationary  population  size  (Quinn  and  Deriso  1999);  if  λʹ′  <  1  then  abundance  ultimately  decreases,  while  if  λʹ′ >1  then  abundance  increases.  In  the  latter  case,  after  a  population  reaches  a  stable  age  distribution,  it  will  grow  exponentially  at  a  rate  equal  to  lambda.  Gallucci  et  al.  (2006)  calculate  the  reproductive  potential  and  demonstrate  that  the  fraction  of  the  reproductive  potential  harvested  annually,  Φ ,  is  linearly  related  to  the  annual  change  in  population  size,  λʹ′ .  They  further  calculate  a  value                                    which  is:  

( )1 /stationary λ λΦ = −      Where  λ is  the  dominant  eigenvector  of  matrix  M.  Thus  the  proportion  of  reproductive  potential  that  remains  after  fishing  can  be  used  as  an  indicator  of  whether  a  population  has  the  capacity  to  grow,  and  the  value                                          can  be  used  as  a  reference  point.  It  is  therefore  possible  to  calculate  the  corresponding  fishing  mortality  (Fstationary)  that,  over  the  long  term  and  given  a  specific  age  at  50%  vulnerability  (Ω2),  would  produce  a  population  that  is  in  a  stable  state.  The  following  standard  per  recruit  outputs  were  also  calculated  for  the  three  ages  at  50%  vulnerability:  the  equilibrium  fishing  mortality  that  corresponded  to  the  maximum  yield  per  recruit,  Fmax,  and  the  equilibrium  fishing  mortality  at  20%  of  virgin  stock  size.    

!

1 0 2 0 max

1

2

max

0 00

0 0

o i

i

S f S f S fS

SS

! "# $# $# $# $# $% &

KK

M ML

!Φstationary

!Φstationary

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

28

The  key  outputs  from  the  per-­‐recruit  analyses,  as  well  as  calculated  instantaneous  natural  mortality  rates,  M,  are  shown  in  Table  4  and  Figures  21  to  26.  As  in  the  previous  study,  these  analyses  show  that  substantial  fishing  across  age  classes  when  age  at  50%  vulnerability  (Ω2)  was  low,  would  result  in  erosion  of  population  biomass  and  low  total  yield,  and  that  fishing  mortality  would  have  to  be  very  low  for  fishing  to  be  sustainable.  Sustainable  instantaneous  fishing  mortality  rates,  F,  would  need  to  be  0.1  year-­‐1  or  less,  for  most  of  the  species  investigated  and  was  as  low  as  0.05  year-­‐1  for  Carcharhinus  obscurus  and  Sphyrna  lewini.  This  generally  low  productivity  reflected  combined  low  natural  mortality  rates,  delayed  maturity  and  low  fecundity.  Natural  mortality,  M  was  estimated  to  be  no  greater  than  0.12  year-­‐1  (for  Prionace  glauca)  among  the  species  examined  here,  but  was  less  than  0.06  year-­‐1  for  C.  obscurus.  The  updated  input  parameters  increased  the  estimate  of  M  for  Isurus  oxyrinchus  to  0.0962  (from  0.06  in  Blaber  et  al.,  2009).        Given  that  optimum  harvest  levels  for  some  pelagic  finfish  have  been  shown  to  be  of  the  order  of  0.6  M  (Patterson  1992),  it  is  likely  that  harvest  levels  for  many  of  the  sharks  and  rays  should  be  as  little  6-­‐8%  and  for  those  with  the  lowest  M  values,  might  be  as  little  as  3%.  However,  the  level  of  sustainable  fishing  mortality,  as  expected,  is  also  very  dependent  on  the  age  at  50%  vulnerability,  which  is  usually  determined  by  the  gear  type  and  size.  If  all  age  classes  are  selected,  only  A.  pelagicus  among  the  species  analysed  can  sustain  fishing  mortality  levels  greater  than  0.1  year-­‐1.  In  contrast,  C.  obscurus  and  S.  lewini  were  able  to  sustain  fishing  mortality  rates  of  just  0.05  year-­‐1  (Fmax1,  Table  4).  Also,  with  all  age  classes  fully  vulnerable,  the  maximum  fishing  mortality  in  the  yield  per  recruit,  ,  was  often  at  a  similar  scale  to  the  equilibrium  fishing  mortality  rate  at  20%  virgin  stock  size  (F20;  Table  4),  also  indicating  the  low  productivity  of  these  species.      The  values  of  Fstationary  (the  value  of  F  below  which  spawning  biomass  would  grow)  for  the  species  when  all  age  classes  were  equally  selected  was  low  for  most  species,  although  not  identical  to  Fmax,  with  the  Fstationary  for  A.  pelagicus  Isurus  oxyrinchus  and  C.  falciformis,  being  substantially  less  than  the  corresponding  Fmax.    For  S.  lewini,  the  Fstationary  (0.131)  was  marginally  larger  than  the  corresponding  Fmax,  at  0.10,  but  for  P.  glauca,  the  Fstationary  (0.472)  was  much  greater  than  the  corresponding  Fmax  (0.15).        If  the  age  at  which  the  fish  were  fully  subject  to  fishing  were  substantially  delayed,  all  species  were  more  resilient  to  fishing,  and  yields  and  fishing  mortality  rates  from  the  fully  fished  age  classes  could  be  higher.  For  all  of  the  species  investigated,  increasing  the  age  at  50%  vulnerability  (Ω2)  to  6  years  increased  potential  yields  per  recruit,  by  30%  or  more  (Table  4).  The  instantaneous  fishing  mortality  rate  that  could  be  sustained  was  increased  substantially  in  all  cases,  especially  so  for  blue  sharks,  P.  glauca,  with  an  increase  from  0.15  year-­‐1  to  0.60  year-­‐1  (Table  4;  Figs.  21-­‐26).      The  increased  resilience  to  fishing  was  also  reflected  in  the  values  of  Fstationary.  Comparison  of  Fstationary  values  for  Ω2=6  with  those  for  Ω2=0  shows  a  strong  relative  increase  (Table  4).  Nevertheless,  values  of  Fstationary  for  C.  obscurus,  C.  falciformis,  I.  oxyrinchus  and  A.  pelagicus,  were  close  to  or  less  than  0.1  year-­‐1.  The  value  for  S.  lewini,  (0.176  year-­‐1)  was  a  little  larger  and  was  near  the  corresponding  Fmax  (Table  4).  Again,  the  Fstationary  for  P.  glauca  (27.44  year-­‐1)  was  atypical  of  the  group  investigated,  and  was  much  greater  than  the  corresponding  Fmax  of  0.6  year-­‐1.    

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

29

Increasing  the  age  at  50%  vulnerability  (Ω2)  to  14  years  did  not  universally  increase  potential  yields  per  recruit.  For  two  species,  A.  pelagicus  and  P.  glauca,  with  M  values  relatively  higher  than  those  for  the  other  species,  the  maximum  yield  per  recruit  at  Ω2  =  14  years,  was  similar  to  that  at  Ω2=0  years  (Table  4;  Fig.  21,  Fig.  26).  For  the  remaining  species,  however,  there  were  substantial  increases  of  20-­‐30%  (Table  4  Figs,  22-­‐25).      There  were,  however,  universal  increases  in  the  values  of  all  the  parameters  indicating  resilience  when  the  age  at  50%  selectivity  was  increased.  Thus  Fmax  and  F20  values  for  all  species  all  showed  substantial  increases  when  (Ω2)  was  set  to  14  years  (Table  4,  Figs  21-­‐26).  The  value  of  Fstationary,  for  P.  glauca,  32.05  year-­‐1(Table  4),  was  very  high,  indicating  high  resilience  for  this  species  when  only  the  oldest  age  classes  were  fully  subject  to  fishing.      

     

 Fig.  21    Per-­‐recruit  analyses  and  harvested  reproductive  fraction,  as  functions  of  fishing  mortality  rate,  for  Alopias  

pelagicus  at  Tanjung  Luar.            

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

30

   

Fig.  22    Per-­‐recruit  analyses  and  harvested  reproductive  fraction,  as  functions  of  fishing  mortality  rate,  for  Isurus  oxyrinchus  at  Tanjung  Luar.  

                 

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

31

   

Fig.  23    Per-­‐recruit  analyses  and  harvested  reproductive  fraction,  as  functions  of  fishing  mortality  rate,  for  Carcharhinus  falciformis  at  Tanjung  Luar.  

                       

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

32

   

Fig.  24    Per-­‐recruit  analyses  and  harvested  reproductive  fraction,  as  functions  of  fishing  mortality  rate,  for  Carcharhinus  obscurus  at  Tanjung  Luar.  

               

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

33

   

Fig.  25    Per-­‐recruit  analyses  and  harvested  reproductive  fraction,  as  functions  of  fishing  mortality  rate,  for  Sphyrna  lewini  at  Tanjung  Luar.  

   

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

34

   

Fig.  26    Per-­‐recruit  analyses  and  harvested  reproductive  fraction,  as  functions  of  fishing  mortality  rate,  for  Prionace  glauca  at  Tanjung  Luar.  

 As  in  the  previous  ACIAR  study  of  sharks  in  eastern  Indonesia  (Blaber  et  al.,  2009),  the  work  here  underscored  the  fundamental  difficulty  of  managing  fisheries  sustainably  for  some  shark  species:  slow-­‐growing,  late-­‐maturing  species  with  low  fecundity  could  not  sustain  fishing  at  more  than  minimal  fishing  mortality  levels  unless  younger  age  classes  were  significantly  protected.  Carcharhinus  obscurus  and  I.  oxyrinchus  for  example,  maturing  at  20  years  of  age  and  with  low  natural  mortality  rates,  could  sustain  very  little  fishing  except  on  the  very  oldest  age  classes.        Updated  information  for  Sphyrna  lewini  and  Carcharhinus  falciformis,  (Appendix  1,  Table  A3),  specifically  growth  parameters  for  these  populations  and  age  at  50%  maturity  parameters  as  well  as  a  number  of  pups  per  year,  all  indicated  that  the  species  are  less  productive  in  this  region  than  previously  indicated  for  those  species.  The  reduced  litter  size  observed  in  this  study  for  C.  obscurus  had  the  consequence  of  reducing  the  fishing  mortality  rates  which  this  species  might  sustain.  The  analyses  of  Blaber  et  al.  (2009),  utilised  data  from  other  regions.  The  effect  of  changes  in  parameters  was  reflected  in  the  results  for  the  per-­‐recruit  analyses.  In  particular  the  values  of  Fstationary  in  the  cases  where  

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

35

50  %  selectivity  was  6  years  and  14  years,  were  substantially  lower  than  those  indicated  in  Blaber  et  al.  (2009).  The  higher  values  in  Blaber  et  al.  (2009)might  have  been  interpreted  as  showing  significant  resilience  when  younger  age  classes  were  effectively  protected.  In  the  current  study,  the  Fstationary  values  were  much  lower,  and  while  indicating  that  there  would  be  some  resilience  benefit  when  those  younger  age  classes  are  not  selected,  even  then  only  a  low  level  of  fishing  would  be  likely  to  be  sustainable.  Such  a  change  highlights  the  importance  of  using  information  that  is  derived  from  local  data.        Protection  of  the  younger  age  classes,  controlling  the  minimum  age  at  50%  selection  to  age  6  years,  provided  increased  yields  per  recruit  to  all  species  but  especially  to  A.  pelagicus  and  P.  glauca,  the  two  species  of  the  group  with  relatively  higher  M  values.  The  relatively  low  age  at  maturity  and  high  fecundity  for  P.  glauca  (Table  A3)  would  have  also  enhanced  this  effect.  Further  increasing  the  minimum  age  at  50%  selection  to  age  14  years  increased  yields  per  recruit  for  all  species  considered,  excepting  A.  pelagicus  and  P.  glauca:  by  this  age,  most  of  the  productivity  of  these  last  two  species  has  been  lost  to  natural  mortality.  Protection  of  the  younger  age  classes  via  selectivity  changes  conferred  resilience  benefits,  as  indicated  by  increasing  Fstationary  Fmax  and  F20values  across  all  species,  as  the  age  at  50%  selectivity  was  increased.      The  results  suggest  that  there  would  be  yield  benefits  and  increasing  resilience  benefits  by  effectively  protecting  younger  sharks.  Thus  there  might  be  management  options  available  that,  via  gear  controls,  might  reduce  mortality  on  the  younger  age  classes.  Alternatively  if  the  ontogeny  and  spatial  dynamics  of  these  species  were  well  known,  then  there  might  be  opportunities  for  spatial  management  to  provide  similar  protection.    The  per  recruit  analyses  presented  here  are  simple  analyses,  based  on  limited  information,  that  are  intended  to  provide  general  policy  direction.  Managers  and  researchers  associated  with  these  fisheries  should  be  encouraged  to  undertake  more  detailed  and  alternative  analyses,  to  further  explore  policy  options  and  to  drive  acquisition  of  information  to  support  better  management.  Nevertheless,  general  policy  directions  from  our  analyses  are  clearly  that  these  sharks  can  mostly  sustain  only  limited  fishing  pressure,  especially  if  there  is  significant  impact  on  the  youngest  age  classes.  For  the  less-­‐productive  species,  sustainable  annual  harvest  rates  may  be  less  than  5%.  Consequently,  these  species  may  be  overfished  even  while  appearing  abundant,  and  initially  sustaining  high  catch  rates.      It  is  also  important  to  consider  that  the  fisheries  landing  shark  at  Tanjung  Luar  are  not  the  only  fisheries  in  this  area  that  catch  sharks.  There  are  many  interactions  with  other  fisheries,  such  as  tuna  longline  and  gillnet  fisheries,  that  all  catch  younger  sharks  of  at  least  some  of  the  species.  Fishers  from  other  areas  can  catch  fish  around  Tanjung  Luar,  while  fishers  from  Tanjung  Luar  can  also  fish  elsewhere.  This  means  that  there  are  no  clear  management  options  applying  to  the  Tanjung  Luar  area  in  isolation  that  might  be  suggested.  Reduction  of  shark  bycatch  in  these  other  fisheries  might  improve  sustainability.            

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

36

Table  4    Results  from  the  Yield  per  recruit  analyses.       C.  obscurus   C.  falciformis   I.  oxyrinchus   P.  qlauca   S.  lewini   A.  pelagicus  M   0.0546   0.0706   0.0962   0.11607   0.06312   0.1074  out1   0.0714   0.0674   0.0365   0.4724   0.1312   0.037  out2   0.0931   0.1045   0.0481   27.4405   0.17559   0.0567  out3   0.1705   0.5801   0.09   32.0503   0.3891   0.262  Lambda   1.071   1.065   1.0356   1.5034   1.1338   1.035  Phi   0.0663   0.0614   0.0344   0.3348   0.11807   0.0342  YPRMax1   24243527   10   25   162   7   12  

YPRMax2  33522139.8820404+0i   16   36   276   9   16  

YPRMax3  44224774.5123861+0i   21   41   161   12   12  

Fmax1   0.05   0.1   0.1   0.15   0.05   0.2  Fmax2   0.1   0.25   0.25   0.6   0.1   1.3  Fmax3   0.25   1.75   1.95   1.95   0.2   1.95  F20perc1   0.05   0.1   0.1   0.2   0.05   0.1  F20perc1   0.05   0.1   0.1   0.2   0.05   0.1  F20perc3   0.15   1.95   0.2   1.95   0.15   1.95        

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

37

2.0 RECOMMENDATIONS & FURTHER WORK  The  Dinas  Perikanan  statistics  should  not  be  used  in  its  current  form  for  the  analysis  of  the  Tanjung  Luar  shark  longline  fishery.  Urgent  action  should  be  to  scrutinise  the  process  by  which  this  statistical  data  is  collected  and  calculated  for  the  area  and  provide  input  into  constructing  a  better  system.    Some  management  actions  are  not  pertinent  to  the  fishery,  e.g.  P.  glauca  is  mostly  impacted  by  the  tuna  fishery  and  less  so  by  the  Tanjung  Luar  shark  fishery  where  mostly  males  are  landed.    A  well-­‐designed  market  sampling  program  including  daily  estimation  of  catches  was  considered  to  be  the  most  accurate  means  of  determining  catch  and  effort  information.  Market  sampling  could  be  continued  by  enumerators  for  one  week  per  month  (just  sharks  and  rays),  over  12  months.  If  there  is  no  lunar  effect,  this  could  be  conducted  by  the  lemuru  enumerators  who  do  not  sample  on  the  full  moon.  Project  has  provided  a  written  protocol  for  this  activity  (see  Appendix  3).  This  would  provide  an  excellent  level  of  coverage  of  shark  catches  and  will  test  whether  the  suggested  protocol  is  manageable  by  the  enumerators.  These  enumerators  would  be  able  to  collect  length  information  for  the  species  known  to  occur  in  the  longline  fishery  and  the  use  of  already  identified  length-­‐weight  relationships  for  these  species  will  enable  accurate  weights  of  the  catches  to  be  determined.  This  will  require  development  of  an  appropriate  data  sheet  and  file  system  (W.  White  to  construct).  As  we  were  unable  to  ascertain  in  this  project  how  local  fisheries  data  is  collected,  enumerators  would  be  able  to  provide  this  insight.  Monitoring  should  also  continue  to  collect  information  separating  bottom  and  pelagic  longlines  and  the  number  of  landings  on  the  days  surveyed.          A  summary,  recommendations  and  next  steps  required  for  the  various  aspects  covered  in  this  report  are  summarised  in  the  table  below.  The  major  recommendations/conclusions  resulting  from  this  are:    

1. Dinas  Perikanan  data  is  not  useable  without  the  derivation  and  treatment  (scaling  etc)  of  data  being  made  explicit  –  OTHERWISE  DO  NOT  USE  

2. Most  market  data  suggest  no  major  problem  but  indications  trip  length  is  extending  and  may  mask  changes  to  fishing  areas  or  patterns.  

3. Because  of  high  impact  on  S.  lewini  management  should  concentrate  upon  this  species  

4. YPR  shows  several  species  are  quite  vulnerable  to  fishing.  5. Extend  the  market  collection  method  to  get  catch  and  effort  data  by  the  “local  

fisheries”  officers  –protocols  to  be  constructed                  

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

38

       Reporting Recommendation/Summary

information New Steps

1. Species Composition

• Difference between pelagic/bottom longlines, and composition by weight and numbers but 7-8 species are dominant.

• No trends over time. • Need to monitor

catches of both longline types using both numbers and weights.

• Recommendation 2: Most market data suggest no major problem but indications trip length is extending and may mask changes.

• Continue species and size composition monitoring.

• Attempt to monitor at species level for 36 key spp then others.

• Highlight TEPs.

2. Mean length • No apparent trend for the abundant species.

• Continue monitoring.

• Analyse minor species catches to detect any declines in these species.

• Analyse proportion of juveniles caught in gillnet and other fisheries at TL

3. Length Frequency

• This is a fishery for large sharks but much of the catch is immature.

• A number of other fisheries also catch immature fish of some species, e.g. S. lewini and C. falciformis (but not all species, e.g. P. glauca)

• Monitor catches of species caught by the longline fishery in other fisheries at TL

4. Per recruit analyses

• Good info used from actual population (ACIAR projects).

• Should calculate value PR

• Recommendation 4: YPR shows several species quite vulnerable to fishing.

• Need to look at all

• Convert age to length.

• Need to consider cumulative impacts from other fisheries

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

39

the fisheries taking juv. As bycatch – such as gillnet and tuna fisheries

5. Sex ratio • High impact on S. lewini likely because high % of females, YPR attributes, size composition. Many fisheries in other regions report mostly males caught for S. lewini. Females possibly more oceanic?

• Most species ~ 50:50 • P. glauca is the

opposite, low % females (impact in other fisheries not known).

• Recommendation 3: Because of high impact on S. lewini management should concentrate upon this species.

• Sex ratio in tuna longline fishery for overlapping species should be determined

6. Seasonality • Strong seasonality in some species. Often relative to the seasonal catch and effort pattern.

• C. sorrah: high catches between Feb and May.

• Ground truth with new enumerator data.

7. Catch comparisons

• Market and Dinas data have a very different pattern.

• 2005 Dinas data at issue but do not know why. “Local Fisheries” and market survey data match relatively well.

• Little confidence in Dinas Perikanan statistics. Affected by change in databasing, collection and analysis methods suggested, e.g. 2005 catch low across all fishing methods

• Recommendation 5: extend the market collection method to get catch and effort data by the “local

• Calculate proportion of this fishery in numbers caught relative to other fisheries

• Need clarity on who and how local fisheries data is collected.

• Extend Dinas Perikanan data to 2010.

• Need description from local to provincial level data collection and handling methods.

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

40

fisheries” officers –protocols to be constructed

8. Effort comparison

(DP # boats X # trips X #days/trip)

• Dinas Perikanan effort statistics 20-120 thousand trips!?! No confidence in scale or trends: huge leaps from 1 year to next; over-estimate by orders of magnitude then makes sense. Implied number of vessels huge, much more than ever observed during market surveys.

• Market data 50-60 vessels, about 1200 trips/year. This data is sound.

• Confirm that there have been changes in trip lengths over time -Simon Viera

9. CPUE • Recommendation 1: Dinas Perikanan data is not useable – DO NOT USE

• Need CPUE estimates from market data (median catch per trip from market data)

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

41

3.0 REFERENCES  Bishop,  S.  D.  H.,  Francis,  M.  P.,  Duffy,  C.  &  Montgomery,  J.  C.  (2006)  Age,  growth,  maturity,  

longevity  and  natural  mortality  of  the  shortfin  mako  shark  (Isurus  oxyrinchus)  in  New  Zealand  waters.  Marine  and  Freshwater  Research  57:  143–154.  

Blaber,  S.  J.  M.,  Dichmont,  C.  M.,  White,  W.,  Buckworth,  R.,  Sadiyah,  L,  Iskandar,  B.,  Nurhakim,  S.,  Pillans,  R.,  Andamari,  R.,  Dharmadi  &  Fahmi  (2009)  Elasmobranchs  in  southern  Indonesian  fisheries:  the  fisheries,  the  status  of  the  stocks  and  management  options.  Reviews  in  Fish  Biology  and  Fisheries  19:  367–391.  

Castro,  J.  I.  &  Mejuto,  J.  (1995)  Reproductive  parameters  of  blue  shark,  Prionace  glauca,  and  other  sharks  in  the  Gulf  of  Guinea.  Marine  of  Freshwater  Research  46:  967–973.  

Compagno,  L.  J.  V.  (2001)  Sharks  of  the  world.  An  annotated  and  illustrated  catalogue  of  shark  species  known  to  date.  Volume  2.  Bullhead,  mackerel  and  carpet  sharks  (Heterodontiformes,  Lamniformes  and  Orectolobiformes).  Rome,  Italy:  FAO.    

Davenport,  S.  &  Stevens,  J.D.  (1988)  Age  and  growth  of  two  commercially  important  sharks  (Carcharhinus  tilstoni  and  C.  sorrah)  from  northern  Australia.  Australian  Journal  of  Marine  and  Freshwater  Research  39:  417–433.  

Gallucci,  V.F.,  Taylor,  I.G.  &  Erzini,  K.  (2006)  Conservation  and  management  of  exploited  shark  populations  based  on  reproductive  value.  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences  63:  931–942.  

Last,  P.  R.  &  Stevens,  J.  D.  (2009)  Sharks  and  Rays  of  Australia.  Australia:  CSIRO  Australia.    

Lessa,  R.,  Santana,  F.  M.  &  Hazin,  F.  H.  (2004)  Age  and  growth  of  the  blue  shark  Prionace  glauca  (Linnaeus,  1758)  off  northeastern  Brazil.  Fisheries  Research  66:  19–30.  

Liu,  K.M.,  Chen,  C.T.,  Tai-­‐Hsiang,  L.  &  Joung,  S.J.  (1999)  Age,  Growth,  and  Reproduction  of  the  Pelagic  Thresher  Shark,  Alopias  pelagicus  in  the  Northwestern  Pacific.  Copeia  1,  68–74.  

Oshitani,  S.,  Hideki,  N.  &  Tanaka,  S.  (2003)  Age  and  growth  of  the  silky  shark  Carcharhinus  falciformis  from  the  Pacific  Ocean.  Fisheries  Science  69:  456-­‐464.  

Pepperell,  J.  (2010)  Fishes  of  the  Open  Ocean:  A  Natural  History  and  Illustrated  Guide.  UNSW  Press,  272  pp.  

Piercy,  A.  C.,  Sulikowski,  J.  &  Burgess,  G.  (2007)  Age  and  growth  of  the  scalloped  hammerhead  shark,  Sphyrna  lewini,  in  the  north-­‐west  Atlantic  Ocean  and  Gulf  of  Mexico.  Marine  and  Freshwater  Research  58:  34–40.  

Quinn,  T.J.  II  &  Deriso,  R.B.  (1999)  Quantitative  fish  dynamics.  Oxford  University  Press,  New  York,  542  p.  

Ribot-­‐Carballal,  M.C.,  Galván-­‐Magaña,  F.Y  &  Quiñónez-­‐Velázquez,  C.  (2005)  Age  and  growth  of  the  shortfin  mako  shark  Isurus  oxyrinchus  from  the  western  coast  of  Baja  California  Sur,  Mexico.  Fisheries  Research  76:  14–21.  

Semba,  Y.  N.,  Nakano,  H.  &  Aoki,  I.  (2009)  Age  and  growth  analysis  of  the  shortfin  mako,  Isurus  oxyrinchus,  in  the  western  and  central  North  Pacific  Ocean.  Environmental  Biology  of  Fishes  84:  377–391.    

Simpfendorfer,  C.A.  (2000)  Growth  rates  of  juvenile  dusky  sharks,  Carcharhinus  obscurus  (Leseur,  1818),  from  southwestern  Australia  estimated  from  tag-­‐recapture  data.  Fishery  Bulletin  98:  811–822.  

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

42

Simpfendorfer,  C.A.,  McAuley,  R.,  Chidlow,  J.  &  Unsworth,  P.  (2002)  Validated  age  and  growth  of  the  dusky  shark,  Carcharhinus  obscurus,  from  Western  Australia.  Marine  and  Freshwater  Research  53:  567–573.  

Skomal,  G.B.  &  Natanson,  L.J.  (2003)  Age  and  growth  of  the  blue  shark  (Prionace  glauca)  in  the  North  Atlantic  Ocean.  Fishery  Bulletin.  101:  627–639.  

Stevens,  J.D.  (1984)  Biological  observations  on  sharks  caught  by  sport  fishermen  off  New  South  Wales.  Australian  Journal  of  Marine  and  Freshwater  Research  35:  573-­‐590.  

Stevens,  J.D.  &  Lyle,  J.M.  (1989)  Biology  of  three  hammerhead  sharks  (Eusphyra  blochii,  Sphyrna  mokarran  and  S.  lewini)  from  northern  Australia.  Australian  Journal  of  Marine  and  Freshwater  Research  40:  129–146.  

White,  W.T.  (2007a)  Biological  observations  on  lamnoid  sharks  (Lamniformes)  caught  by  fisheries  in  eastern  Indonesia.  Journal  of  the  Marine  Biological  Association  of  the  United  Kingdom  87:  781–788.    

White,  W.T.  (2007b)  Catch  composition  and  reproductive  biology  of  whaler  sharks  (Carcharhiniformes:  Carcharhinidae)  caught  by  fisheries  in  Indonesia.  Journal  of  Fish  Biology  71:  1512–1540.  

White,  W.T.,  Last,  P.R.,  Stevens,  J.D.,  Yearsley,  G.K.,  Fahmi  &  Dharmadi  (2006)  Economically  Important  Sharks  and  Rays  of  Indonesia.  ACIAR  Publishing,  Canberra,  329  pp.    

White,  W.T.,  Bartron,  C.  &  Potter,  I.C.  (2008)  Catch  composition  and  reproductive  biology  of  Sphyrna  lewini  (Carcharhiniformes,  Sphyrnidae)  in  Indonesian  waters.  Journal  of  Fish  Biology  72:  1675–1689.  

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

43

APPENDICES Appendix 1: Supplementary Tables Table  A1    Species  composition  and  relevant  IUCN  red  list  categories.  

Family   Scientific  name   Common  name  Red  List  category  

Sharks        

 Alopiidae   Alopias  pelagicus   Pelagic  Thresher   Vulnerable  

 Alopiidae   Alopias  superciliosus   Bigeye  Thresher   Vulnerable  

 Carcharhinidae   Carcharhinus  albimarginatus   Silvertip  Shark   Near  Threatened  

 Carcharhinidae   Carcharhinus  altimus   Bignose  Shark   Data  Deficient  

 Carcharhinidae   Carcharhinus  amblyrhynchos   Grey  Reef  Shark   Near  Threatened  

 Carcharhinidae   Carcharhinus  amboinensis   Pigeye  Shark   Data  Deficient  

 Carcharhinidae   Carcharhinus  brevipinna   Spinner  Shark   Near  Threatened  

 Carcharhinidae   Carcharhinus  falciformis   Silky  Shark   Near  Threatened  

 Carcharhinidae   Carcharhinus  leucas   Bull  Shark   Near  Threatened  

 Carcharhinidae   Carcharhinus  limbatus   Common  Blacktip  Shark   Near  Threatened  

 Carcharhinidae   Carcharhinus  longimanus   Oceanic  Whitetip  Shark   Vulnerable  

 Carcharhinidae   Carcharhinus  melanopterus   Blacktip  Reef  Shark   Near  Threatened  

 Carcharhinidae   Carcharhinus  obscurus   Dusky  Shark   Vulnerable  

 Carcharhinidae   Carcharhinus  plumbeus   Sandbar  Shark   Vulnerable  

 Carcharhinidae   Carcharhinus  sorrah   Spottail  Shark   Near  Threatened  

 Carcharhinidae   Galeocerdo  cuvier   Tiger  Shark   Near  Threatened  

 Carcharhinidae   Loxodon  macrorhinus   Sliteye  Shark   Least  Concern  

 Carcharhinidae   Negaprion  acutidens   Sicklefin  Lemon  Shark   Vulnerable  

 Carcharhinidae   Prionace  glauca   Blue  Shark   Near  Threatened  

 Carcharhinidae   Triaenodon  obesus   Whitetip  Reef  Shark   Near  Threatened  

 Ginglymostomatidae   Nebrius  ferrugineus   Tawny  Nurse  Shark   Vulnerable  

 Hemigaleidae   Hemipristis  elongatus   Fossil  Shark   Vulnerable  

 Hexanchidae   Hexanchus  griseus   Bluntnose  Sixgill  Shark   Near  Threatened  

 Hexanchidae   Hexanchus  nakamurai   Bigeye  Sixgill  Shark   Data  Deficient  

 Lamnidae   Isurus  oxyrinchus   Shortfin  Mako   Vulnerable  

 Lamnidae   Isurus  paucus   Longfin  Mako   Vulnerable  

 Pseudotriakidae   Pseudotriakis  microdon   False  Catshark   Data  Deficient  

 Sphyrnidae   Sphyrna  lewini   Scalloped  Hammerhead   Endangered  

 Sphyrnidae   Sphyrna  mokarran   Great  Hammerhead   Endangered  

 Sphyrnidae   Sphyrna  zygaena   Smooth  Hammerhead   Vulnerable  

 Stegostomatidae   Stegostoma  fasciatum   Zebra  Shark   Vulnerable  Rays  

       Dasyatidae   Dasyatis  microps   Smalleye  Stingray   Data  Deficient  

 Dasyatidae   Himantura  fai   Pink  Whipray   Least  Concern  

 Dasyatidae   Himantura  uarnak   Reticulate  Whipray   Vulnerable  

 Rhinidae   Rhina  ancylostoma   Shark  Ray   Vulnerable      Rhynchobatidae   Rhynchobatus  spp   Wedgefish   Vulnerable    

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

44

Table  A2    Length-­‐at-­‐maturity  for  females  and  males  and  size  at  birth  for  the  species  designated  as  the  most  abundant  species  by  either  the  pelagic  or  bottom  longline,  by  weight  or  by  number,  in  one  of  the  years  surveyed.        

 

Length-­‐at-­‐maturity  (mm)          

 Female   Male  

Birth  size   Source  

Alopias  pelagicus   2853   2468   1370   White  (2007a)  Carcharhinus  amblyrhynchos   1350   1350   550  

Last  &  Stevens  (2009)  

Carcharhinus  brevipinna   1950   1950   745  Last  &  Stevens  (2009)  

Carcharhinus  falciformis   2161   2078   676   Market  survey  data  Carcharhinus  limbatus   1725   1894   605   White  (2007b)  

Carcharhinus  obscurus   3050   2800   950  Last  &  Stevens  (2009)  

Carcharhinus  sorrah   ~1200   1117   535   White  (2007b)  

Galeocerdo  cuvier   3300   3000   650  Last  &  Stevens  (2009)  

Hexanchus  griseus   4200   3150   675  Last  &  Stevens  (2009)  

Isurus  oxyrinchus   2800   1950   650  Last  &  Stevens  (2009)  

Prionace  glauca   2200   2200   425  Last  &  Stevens  (2009)  

Sphyrna  lewini   2285   1756   400   White  et  al.  (2008)  

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

45

Table  A3    Biological  parameters  used  for  the  yield  per  recruit  analyses  for  selected  abundant  species  in  the  Tanjung  Luar  longline  fishery.  Note  the  following  parameters  used  identical  values  for  each  of  the  7  species:  Temp  =  25,  MaxIter  =  40,  Fm_inc  =  0.05,  ah_inc  =  0.5.    

Parameter Value Source Parameter Value Source

Alopias pelagicus

Isurus oxyrinchus

Linf 3335 Drew et al. (in prep): F

Linf 3083 Semba et al. (2009): F

Kgrowth 0.11 Drew et al. (in prep): F

Kgrowth 0.09 Semba et al. (2009): F

Tzero -5.69 Drew et al. (in prep): F

Lzero 597 Semba et al. (2009): F

Pups per female 2 White (2007)

Pups per female 5 Compagno (2001)

AgeMat 12 Drew et al. (in prep): F

AgeMat 20 Bishop et al. (2006)

SexRatio 0.5

SexRatio 0.5

MaxAge 25 Drew et al. (in prep): F

MaxAge 29 Bishop et al. (2006)

Lwa 4.00E-07 Liu et al. (1999)

Lwa 0.000014 Ribot-Carballal et al. (2005)

LWb 3.2165 Liu et al. (1999)

LWb 2.98 Ribot-Carballal et al. (2005)

Carcharhinus falciformis

Prionace glauca

Linf 3204 Bartron et al. (in prep): F

Linf 3737 Skomal & Natan. (2003): F

Kgrowth 0.057 Bartron et al. (in prep): F

Kgrowth 0.13 Skomal & Natan. (2003): F

Lzero 823 Bartron et al. (in prep): F

Tzero -1.77 Skomal & Natan. (2003): F

Pups per female 4 Bartron et al. (in prep)

Pups per female 19 Castro & Mejuto (1995)

AgeMat 13.5 Bartron et al. (in prep): F

AgeMat 5 Skomal & Natan. (2003)

SexRatio 0.5

SexRatio 0.5

MaxAge 19 Bartron et al. (in prep)

MaxAge 15 Skomal & Natan. (2003)

Lwa 0.000001 Oshitani et al. (2003): F

Lwa 2.57E-05 Lessa et al. (2004)

LWb 3.2329 Oshitani et al. (2003): F

LWb 3.05 Lessa et al. (2004)

Carcharhinus obscurus

Sphyrna lewini

Linf 4150 Simpfendorfer (2002): F

Linf 3206 Drew et al. (in prep): F

Kgrowth 0.043 Simpfendorfer (2002): F

Kgrowth 0.048 Drew et al. (in prep): F

Lzero 885 Simpfendorfer (2002): F

Tzero -2.68 Drew et al. (in prep): F

Pups per female 4 Last & Stevens (2009)

Pups per female 12.5 White et al. (2009)

AgeMat 20 Simpfendorfer (2000)

AgeMat 17.5 Drew et al. (in prep): F

SexRatio 0.5

SexRatio 0.5

MaxAge 32 Simpfendorfer (2000)

MaxAge 45 Drew et al. (in prep): F

Lwa 2.512 Simpfendorfer (2000): F

Lwa 4.00E-06 Piercy et al. (2007): F

LWb 3.1253 Simpfendorfer (2000): F

LWb 3.0279 Piercy et al. (2007): F

Carcharhinus sorrah

Linf 1239 Davenport & Stevens (1988)

Kgrowth 0.34 Davenport & Stevens (1988)

Tzero -1.9 Davenport & Stevens (1988)

Pups per female 5

AgeMat 2 Davenport & Stevens (1988)

SexRatio 0.56

MaxAge 7 Davenport & Stevens (1988)

Lwa 0.000004 Davenport & Stevens (1988)

LWb 3.027 Davenport & Stevens (1988)

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

46

Appendix 2: Data handling notes  Where  there  were  blanks  for  variables  headed  the  “No.  of  (females,  males,  unsexed,  eggs,  embryos,  embryos  

left,  embryos  right),  these  were  made  zero  (not  Null).  With  the  variables  storing  length  data,  (TL,  PCL,  FL)  

the  Null  fields  (i.e.  nothing  in  the  database  field)  indicated  that  that  measurement  was  not  taken.  For  

example,  if  a  stingray  was  measured,  then  the  disc  width  (DW)  field  was  used  and  the  total  length  field  left  

blank  (Null).  

     

For  rays,  Disc  Width  was  the  standard  measurement.  Weight  was  rarely  measured,  but  when  recorded  it  

was  entered  into  the  database.  The  alternative  was  Est  weight  (an  estimate  of  the  weight  using  published  

and  tested  length  vs  weight  relationships).  These  data  items  were  alternatives  –  so  that  where  Est  weight  

was  not  recorded  that  would  indicate  that  should  be  a  weight  measurement  for  that  record,  and  vice  versa.  

 

CLO  was  clasper  outer  length  (mm)  –  Null  indicates  that  this  was  not  measured  (males)  or    

not  applicable  (females).  CL  calc  is  clasper  calcification  (NC,  not  calcified,  PC  -­‐  partially  calcified,  FC  -­‐  fully  

calcified).  FC  indicates  a  mature  animal.  Is  Null  if  not  recorded  for  males  and  is  default  always  Null  for  

females.  Maturity:  where  not  recorded  this  was  Null.  

 

Fish  number  is  a  specimen  number  only  assigned  to  an  individual  when  vertebrae  were  retained.  This  

unique  fish  number  could  be  used  to  link  various  tissue  samples  (vertebrae,  tissue  for  genetics,  gonads,  

embryos).  Note  that  the  first  2  digits  of  fish  number  refer  to  the  year  sampled,  and  the  following  digits  are  a  

sequential  number  per  species  in  a  year.  

 

On  any  particular  day,  the  catch  for  each  boat  could  be  determined.  The  boats  were  referred  to  as  boat  1,  2  

etc.  Catch  composition  and  total  weight  of  the  catch  could  be  referenced  per  boat  on  any  particular  day.  

Note  that  date  and  boat  are  a  unique  combination.  i.e.  Boat  1  on  11/2/2010  is  not  the  same  boat  as  Boat  1  

on  12/2/2010.  In  earlier  trips  this  data  was  not  recorded  but  is  available  for  about  three  quarters  of  the  

surveys.  Longline  type  was  recorded  as  either  Bottom  or  Pelagic  and  is  selected  for  each  record  and  is  

never  blank.  

   

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

47

Appendix 3: Protocol & keys for enumerators (adapted  from  White  et  al.  2006)  

Tanjung Luar Shark data collection

Pengumpulan Data cucut Tanjung Luar • Longline sharks are all brought into the tiled undercover area • Seluruh hasil tangkapan cucut dari rawai permukaan diangkut ke dalam tempat pelelangan

ikan • The landings from each boat landing on a day are placed into a separate row from the next

boat • Cucut yang didaratkan dikelompokkan secara terpisah setiap kapal • Each longline boat either fished with a pelagic (drift) longline or a bottom longline • Hasil tangkapan cucut dari rawai permukaan dan rawai dasar juga dipisahkan • Sharks will remain in area whole until auction process • Hasil tangkapan cucut tetap di tempat pelelangan sampai dilakukan proses lelang • After auction process sharks are then processed quickly • Segera setelah proses lelang selesai cucut langsung dipotong-potong dengan cepat

Data collection: 1. Species composition: use identification key and book to identify each shark

Komposisi jenis : menggunakan kunci identifikasi cucut -­‐ For each individual – record level of accuracy of identification

(1 – good, 2 – average, 3 – unsure, 4 – unknown) Setiap individu dicatat berdasarkan tingkat ketelitian dalam melakukan identifikasi (1-baik, 2-cukup, 3-kurang pasti/ragu-ragu, 4-tidak diketahui)

2. Sex: record if male, female or unknown. Jenis kelamin : dicatat (jantan, betina) atau tidak diketahui.

-­‐ Males have claspers at all sizes -­‐ Jantan memiliki klasper pada semua ukuran -­‐ Use unknown if pelvic fins removed and cannot determine sex -­‐ Gunakan kata “unknown” jika sirip perut sudah dipotong dan tidak diketahui jenis

kelaminnya. 3. Length:

Panjang : -­‐ Measure length from tip of snout to tip of tail (total length, TL) -­‐ Pengukuran panjang dari ujung moncong sampai ujung ekor (panjang total, TL) -­‐ If tail damaged then measure precaudal length (PCL) – from snout tip to origin of

upper lobe of caudal fin -­‐ Jika ekor rusak maka diukur panjang standar, mulai dari ujung moncong -­‐

4. Sampai dibagian atas lubang sirip ekor . 5. Boat number:

Jumlah kapal -­‐ For each individual shark, the number of the boat which is came from (e.g. 1, 2, 3,

etc) needs to be recorded -­‐ Masing-masing hasil tangkapan cucut, dicatat jumlah kapal dan berasal dari mana

(misalnya : 1,2,3 dst.) -­‐

6. Longline type: 7. Tipe rawai permukaan

-­‐ Record if from pelagic or bottom longline (can ask fisherman if not sure) -­‐ Catat apakah termasuk rawai pelagis atau rawai permukaan (tanyakan ke

nelayan, untuk meyakinkan) Additional data: Data tambahan:

1. Auction prices of sharks:

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

48

Harga cucut yang dilelang -­‐ For each of boat that has landed each day, record the price that the catch sells for

at the auction -­‐ Setiap kapal yang mendaratkan cucut per hari, catat berapa hasil lelang.

2. Photographs: Photo :

-­‐ Each day take at least one photo of the longline caught sharks -­‐ Paling tidak dilakukan pengambilan foto setiap hari dari hasil tangkapan rawai

cucut -­‐ Also take one photo of the large mobulid rays -­‐ Pengambilan foto juga dilakukan pada pari berukuran besar (Mobula sp)

Data entry: Use provided excel file:

-­‐ Use a new worksheet for each day -­‐ Use a new file for each month of sampling -­‐ Email file to William and Dharmadi after each trip to Lombok

Entry data : Gunakan program excel. -­‐ Gunakan worksheet baru setiap hari -­‐ Gunakan file baru untuk setiap sampling bulanan. -­‐ Kirim file ke William dan Dharmadi setelah survei dari Lombok

Key to longline species 1a Body very flat, rounded; tail whip-like ………………………………………………….. stingrays Tubuh sangat datar, membulat, ekor seperti cemeti/cambuk.................................. Pari b Body not strongly flattened; tail not whip-like Tubuh tidak rata, ekor tidak seperti cemeti/cambuk ........................................................... 2 2a Snout triangular Bentuk moncong segitiga …………………………………………..………..… Rhynchobatus spp b Snout not triangular Bentuk moncong tidak segitiga ..................................................................................................... 3 3a Head flattened and broadly rounded; back with ridges lined with large

thorns…………………………………………………………………………………… Rhina ancylostoma ; punggung dengan gurat-gurat menonjol, dilengkapi dengan gerigi atau duri yang besar-besar

b Head not flattened; back without ridges with large thorns Bentuk kepala tidak datar, punggung tanpa gerigi terdapat duri besar ......................... 4a A single dorsal fin; 6 gill slits on each side of head

Memiliki satu sirip punggung; 6 celah insang di bagian sisi kepalanya…......... …………………………………………………………………………………………………….Hexanchus spp

b 2 dorsal fins; 5 gill slits on each side of head

Memiliki dua sirip punggung; 5 buah celah insang di bagian sisi kepala...................... 5 5a Head with lateral expansions, hammer-shaped

Bentuk kepala melebar ke samping, seperti martil ................................................................ 6 b Head not expanded laterally

Kepala tidak melebar ke samping…………………………………………………............................. 7 6a Head without a median indent

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

49

Kepala tanpa lekukan di bagian tengah ........................................................ Sphyrna zygaena b Head with a median indent; first dorsal fin very tall; anterior profile of head almost straight Kepala terdapat lekukan dibagian tengah, sirip punggung pertama sangat tinggi, bentuk

kepala bagian depan hampir lurus …….………………………. Sphyrna mokarran c Head with a median indent; first dorsal fin shorter; anterior profile of curved

Kepala bagian tengah terdapat lekukan,sirip punggung pertama lebih pendek, bagian depan melengkung..................................................................................... .Sphyrna lewini

7a Prominent lateral ridges on body; body yellow with dark spots Gurat samping yang tampak pada tubuh; ....................................... Stegostoma fasciatum b No ridges or spots on body Tidak ada gurat dibagian punggung atau bintik pada tubuhnya.................................. 8a Caudal-fin upper lobe equal to or more than half total length, lower lobe distinct

Panjang sirip ekor bagian atas hamper sama atau lebih panjang dari separuh panjang totalnya, bagian bawah berbeda…………………………………………………………… 9

b Length of upper caudal-fin lobe much less than half total length

Panjang sirip ekor bagian atas jauh lebih pendek dari separuh panjang totalnya. 10 9a Eyes moderately large; no deep groove on head Mata cukup besar, tidak ada galur pada kepalanya .............................. Alopias pelagicus b Eyes very large; deep groove on head Mata sangat besar; dalam galur di kepala ........................................ Alopias superciliosus 10a Dorsal fins situated posteriorly on body, the first over pelvic fins

Sirip punggung terletak di belakang tubuh, pertama di balik sirip dada ……………….. ……………………………………………………………………………………………. Nebrius ferrugineus

b Dorsal fins further forward, the first closer to pectoral fins

Sirip belakang lebih lanjut maju, yang pertama yang lebih dekat ke sirip dada .... 11 11a Caudal fin almost symmetrical, lunate; a strong keel on either side of caudal peduncle

Sirip ekor hampir simetris, seperti bulan sabit; terdapat lunas (keel) di kedua sisi pangkal ekornya

b Caudal fin asymmetrical, heterocercal; keel on each side of caudal peduncle low or absent Sirip ekor tidak simetris, bagian atas lebih panjang dari bagian bawah; lunas (keel) di pangkal ekor tidak ada atau lemah………………………………………………………………. 13

12a Pectoral fins much shorter than head; snout very pointed and white ventrally

Sirip dada lebih pendek dari pada kepala; moncong sangat runcing dan putih dibagian tengah perut………………………………………………………………. Isurus oxyrinchus

b Pectoral fins much longer than head; snout bluntly pointed and dark ventrally Sirip dada lebih panjang dari pada kepala; moncong runcing dan gelap dibagian perut ……………………………………………………………………………………………. Isurus paucus

13a Body with many dark bars on body; labial furrows very long

Tubuh banyak garis-garis gelap; galur bibir sangat panjang …… Galeocerdo cuvier b Body without dark bars; labial furrows not very long Tubuh tanpa garis-garis, galur bibir tidak panjang ………………………………………… 14

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

50

14a Spiracles present; teeth protruding from mouth when closed Terdapat spirakel/lubang kecil dekat mulut; gigi menonjol dari mulut kalau ditutup …………………………………………………………………………… Hemipristis elongatus

b No spiracles; teeth not protruding from mouth when closed Tidak spirakel/lubang kecil dekat mulut; gigi tidak menonjol dari mulut kalau ditutup ………………………………………………………………………………………………………….. 15

15a Second dorsal fin half or more height of first dorsal fin

Sirip punggung kedua setengah atau lebih tinggi dari pada sirip punggung pertama.................................................................................................................................................... 16

b Second dorsal fin less than half height of first dorsal fin Sirip punggung kedua kurang dari setengah sirip punggung pertama ....................... 17 16a Dorsal fins white-tipped Sirip Belakang dengan ujung putih........................................................... Triaenodon obesus b Dorsal fins without white tips

Sirip belakang tanpa ujung putih ………………………………………… Negaprion acutidens 17a First dorsal fin situated between pectoral and pelvic fins; body deep blue

Sirip punggung terletak di antara sirip dada sirip perut; badan dalam warna biru ………………………………………………………………………………………………….. Prionace glauca

b First dorsal fin further forward, closest to pectoral fins; body not blue

Sirip punggung lebih ke depan, paling dekat ke sirip dada; badan tidak biru. . . . . . . ………………………………………………………………………………………………. Carcharhinus spp

18a Pectoral and first dorsal fins very broad distally; most fins with mottled white tips

Sirip dada dan sirip punggung pertama sangat lebar ; umumnya ujung bagian sirip terdapat warna putih loreng............................................................ Carcharhinus longimanus

b Not as above Tidak seperti diatas

........................................................................................................................... 19 19a First dorsal, pectoral, caudal, and sometimes pelvic fins, with distinct white tips

Sirip punggung pertama, sirip dada, sirip ekor, dan kadang-kadang sirip perut, terdapat warna putih n jelas ................................................... Carcharhinus albimarginatus

b Not as above Tidak seperti diatas .......................................................................................................................... 20 20a Caudal fin with a distinct wide black margin along entire posterior margin

Sirip ekor dengan garis tepi hitam yang lebar jelas sepanjang seluruh bagian belakang garis tepi ..................................................................... Carcharhinus amblyrhynchos

b Not as above Tidak seperti diatas ......................................................................................................................... 21 21a Interdorsal ridge present Terdapat gurat dibagian punggung ..................................................................................... 22 b Interdorsal ridge absent

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

51

Tidak terdapat gurat dibagian punggung ........................................................................... 26 22a Second dorsal, pectoral and lower caudal fins with distinct black tips

Sirip punggung kedua, sirip dada lebih rendah dari sirip ekor dengan ujung sirip nampak jelas warna hitam ……………...................................................... Carcharhinus sorrah

b Fins without distinct black tips Tanpa warna hitam dibagian ujung sirip ............................................................................ 23 23a First dorsal origin behind pectoral fin free tips; second dorsal inner margin very long Sirip punggung pertama terletak di belakang sirip dada; garis tepi sirip punggung sangat

panjang ...................................................................................... Carcharhinus falciformis b Not as above Tidak seperti diatas ......................................................................................................................

24 24a First dorsal fin situated further back, its origin closer to pectoral fin free rear tips than insertion

Sirip punggung pertama terletak lebih jauh kebelakang, lebih dekat ke sirip dada sirip, lebih tegak dari pada lekukannya …………………………… Carcharhinus obscurus

b First dorsal fin situated forward, its origin closer to pectoral fin insertion than free rear tips Sirip punggung terletak didepan, lebih dekat ke lekukan sirip dada dari pada ujung belakang ……………………………………………………………………………………………………… 25

25a First dorsal fin very tall Sirip punggung pertama sangat tinggi ..…………………………… Carcharhinus plumbeus b First dorsal fin only moderately tall Sirip punggung pertama cukup tinggi ………………………………… Carcharhinus altimus 26a First dorsal fin with broad distinct black tip (<1.5 m long)

Sirip punggung tanpa warna lebar hitam ............................. Carcharhinus melanopterus b First dorsal fin without broad black tip (if black tipped not broad)

Sirip punggung tanpa warna lebar hitam (jika hitam ujungnya , tidak lebar) ……. 27 27a Upper teeth broad and triangular Gigi atas lebar dan segi tiga …………………………….. Carcharhinus leucas/amboinensis b Upper teeth narrow, not triangular Gigi atas lebar dan tidak segi tiga ………………………………………………………………… 28 28a First dorsal fin relatively low, its origin over pectoral fin free rear tips

Sirip punggung relatif rendah, melebihi sirip dada bebas berdiri tegak dan runcing. ……………………………………………………………………………………. Carcharhinus brevipinna

b First dorsal fin taller, its origin over or forward of pectoral fin insertions Sirip punggung lebih tinggi, melebihi atau didepan lekukan sirip dada .................................................................................................................. Carcharhinus limbatus

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

52

Appendix 4: Recommendations from stakeholder workshops.  

   WORKSHOP  ON  PROVINCIAL  MANAGEMENT  FOR  SHARK  FISHERIES  

Mataram,  25-­‐27  January  2011    

 

Workshop  on  Provincial  Management   for   Shark  Fisheries  was  held  on  25  –  27   January  2011  at  Jayakarta  Hotel,  Mataram,  West  Nusa  Tenggara.  The  workshop  is  implementation  of  collaboration  project  between  The  Government  of   Indonesia  and  The  Government  of  Australia,   which   is   ACIAR   Project   No.   FIS/2006/142:   Developing   new   assessment   and  policy  framework  for  Indonesia’s  marine  fisheries,  including  the  control  and  management  of  Illegal,  Unregulated  and  Unreported  (IUU)  Fishing.    The  objectives  of  the  workshop  are  (1)  to  collect  information  of  shark  fisheries  in  West  Java,  Central  Java,  DI  Yogyakarta,  East  Java  and  West  Nusa  Tenggara,   (2)   to   identify   issues  within   shark   capture   in  West   Java,  Central   Java,  DI  Yogyakarta,  East   Java  and  West  Nusa  Tenggara,  and  (3)   to  collect  some  inputs  for  implementation  of  The  National  Plan  of  Action  for  Shark  (NPOA  Shark).      

Workshop   on   Provincial   Management   for   Shark   Fisheries   was   opened   and   headed   by  Director   of   Fisheries   Resources   Management.   The   participant   of   the   workshop   are   as  following   :  Dr.  Ron  West   (University  of  Wollongong),  Mr.  Craig  Proctor  and  Dr.  William  White   (CSIRO),   Head   of   Sub   Directorate   of   Western   Fishing   Surveillance-­‐Directorate  General   of   Marine   Fisheries   Surveillance   and   Control-­‐MMAF,   Head   of   Sub   Division   of  Research   Operational   Management-­‐Research   Centre   of   Fisheries   Management   and  Conservation-­‐MMAF,   Head   of     Program   Division-­‐Centre   of   Fisheries   Extension  Development-­‐MMAF,  Head  of  Provincial  Fisheries  Office  of  West  Nusa  Tenggara,  Head  of  Provincial  Fisheries  Office  of  DI.  Yogyakarta,  Head  of  Provincial  Fisheries  Office  of  West  Java,  Head  of   Capture   Fisheries  Division  of  West   Java   Fisheries  Office,  Head  of   Capture  Fisheries   Section  of   Central   Java   Fisheries  Office,  Head  of   Capture   Fisheries  Division  of  East  Java  Fisheries  Office,  Head  of  Sub  Directorate  of  Fisheries  Resources  Management  in  IEEZ   and   Highseas,   Head   of   Sub   Directorate   of   Fisheries   Resources   Management   in  Teritorial  Water  and  Islands,  Head  of  Sub  Directorate  of  Fisheries  Resources  Management  Evaluation-­‐Directorate   General   of   Capture   Fisheries-­‐MMAF,   Head   of   District   Fisheries  Office  of  Gunung  Kidul,  Head  of  Tanjung  Luar  Fishing  Port-­‐East  Lombok,  representative  from  Cilacap  Fishing  Port,  Palabuhanratu  Fishing  Port,  Prigi  Fishing  Port,  Sadeng  Fishing  Port,   Entrepreneur/Trader   from  Cilacap   (UD  Mina   Pamrih  Rahayu)   and   Entrepreneur/  Trader  from  Tanjung  Luar  (UD  Barokah).  

 1. Shark  Fisheries  Issues:  

a. Fishery   extension   staff   has   not   been   involved   in   collecting   of   shark   fisheries  information.  

b. Generally,   shark   is   bycatch,   but   for   Cilacap,   Palabuhanratu,   and   Tanjung   Luar  Fishing  Port,  shark  is  main  target  for  some  fishing  gears.  

TANJUNG LUAR SHARK FISHERY - ACIAR PROJECT FIS/2006/142

53

c. Shark   data   collection   is   not   optimum   due   to   lack   of   enumerator   knowledge   in  identification  of  shark  species  so  that  available  data  is  not  accurate.  

d. Implementation  of  shark  fisheries  NPOA  is  not  optimum.  e. Research,  publication  and  information  of  shark  fisheries  is  limited.    

2. Action  Plans:  a. Empowerment  and  improvement  the  role  of   fishery  extension  staff   in  shark  data  

collection.  b. Training  on  shark  species  identification  for  the  enumerator.  c. Monitoring  of  shark  capture  activity.  d. Review  of  data  collection  method  and  develop  shark  fisheries  database  including  

fishing  logbook  implementation.  e. Further  research  of  shark  fisheries.  f. Dissemination  information  in  order  to  raise  awareness  of  the  stakeholders  on  the  

important  of  shark  fisheries  management.    

3. Key  Steps  :  a. Sosialization  the  important  of  shark  fisheries  management  to  the  stakeholders  by  

brochures,  poster,  roadshow,  community-­‐based  management  (POKWASMAS).    b. Use   the   shark   fisheries   information   as   part   of   material   for   The   Coordination  

Forum  of  Fisheries  Resources  Utilization  Management  in  2011.  c. Review  of  existing  catch  data  and  research  for  shark  and  rays.  d. Define   the   role   and   function   of   each   institution   in   the   management   of   shark  

fisheries   (Directorate  General   of   Capture   Fisheries,   Research  Centre   of   Fisheries  Management   and   Conservation,   Centre   of   Fisheries   Extension   Development,  Directorate   General   of   Marine   Fisheries   Surveillance   and   Control,  Province/District  Fisheries  Official,  Fishing  Port  Authority).    

e. Training  on  shark  species  identification  for  the  enumerator.    f. Monitoring  of  shark  capture  activity.    g. Determine   the   priority   of   NPOA   shark   elements   to   be   implemented   in   all   over  

Indonesia.    

4. Recommendations  :  a. Propose  the  training  on  shark  species  identification  for  the  enumerator  in  2011  to  

The  ACIAR.  b. Develop  NPOA  shark  guidelines  for  the  stakeholders  in  the  implementation  of  the  

NPOA  in  all  over  Indonesia.  c. Use   the   standard   form   in   data   collection   and   evaluation   of   the   capture   and  

utilization  of  shark  in  the  fishery  base  landing,  and  fishing  port.  d. Implementation  of  fishing  Logbook  in  regard  to  Minister  Regulation  No.  18/  2010.    e. Further  research  of  shark  fisheries  in  Indonesia.