54
D. Pribat IWORID ’05. 4-7 July 2005. ESRF Grenoble Active matrix back planes for the control of large area X-ray imagers D. Pribat and C. Cojocaru Laboratoire de Physique des Interfaces et des Couches Minces Ecole Polytechnique 91128, Palaiseau, France

Active matrix back planes for the control of large area X

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Active matrix back planes for the control of large area X-ray imagers

D. Pribat and C. CojocaruLaboratoire de Physique des Interfaces et des Couches

MincesEcole Polytechnique

91128, Palaiseau, France

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Outlook

• Introduction / General considerations• Amorphous silicon flat panel imaging

technology• Need for pixel electronics. Limitations of a-Si• Alternative large areas technologies

– Polysilicon– Nanowires

• Summary and conclusion

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Solid state X-ray imagers

• c-Si based detectors– Linear arrays

• Diodes• Microstrips

– Two dimensional detectors• CCD: max surface ~ 8x10 cm2 (eg., CCD595, Fairchild Imaging)• CMOS: max surface ~ 17x22 cm2 (C7830-01, Hamamatsu)

• a-Si:H based detectors

Wafer Scale Integration ⇒ Yield?

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Active matrix flat panel X-ray imaging system

Electronic storageCompactnessNo chemical waste/photo

Immediate viewingDigital processingImage enhancement

From L. Antonuk

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Indirect detection:p-i-n photodiode

Direct detection:photoconductor

The two detection schemes

X-rays ⇒ e-h pairs ⇒ q

From L. Antonuk

X-rays ⇒ photons ⇒ e-h pairs ⇒ q

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Indirect detection

From L. Antonuk

Direct detection

Top view micrographs of individual pixels

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Imaging array

Pixel

VB (Bias line)

CST

READ CFB

Column Charge

Amplifier

Data line

Gate line

Pixell

General organisation of an active matrix detector

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Why a-Si:H?

• a-Si:H TFTs represent a very mature technology– Used in AMLCDs (revenue of 48.5 G$ in 2004)– 5 to 4 mask process for the active matrix– Processed on 1.870x2.200 m2 mother plates (gen. 7)– Highly rad hard

• a-Si:H p-i-n photodiodes (indirect detection) – Well matched with CsI:Tl (~ 550nm)– Sub-µs response time ⇒ dynamic applications– Low dark current ⇒ low exposure level

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Advanced TFT process: down to 4 masks

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Why a-Si:H?

• a-Si:H TFTs represent a very mature technology– Used in AMLCDs (revenue of 48.5 G$ in 2004)– 5 to 4 mask process for the active matrix– Processed on 1.870x2.200 m2 mother plates (gen. 7)– Highly rad. hard

• a-Si:H p-i-n photodiodes (indirect detection) – Well matched with CsI:Tl (~ 550nm)– Sub-µs response time ⇒ dynamic applications– Low dark current ⇒ low exposure level

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Evolution of PECVD systems (TFT stack deposition)

From AKT

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Recent evolution of LCD panel prices

From Display Search

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Street price of 15” TFT-LCD displays

From Display Search

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Why a-Si:H?

• a-Si:H TFTs represent a very mature technology– Used in AMLCDs (revenue of 48.5 G$ in 2004)– 5 to 4 mask process for the active matrix– Processed on 1.870x2.200 m2 mother plates (gen. 7)– Highly rad. hard

• a-Si:H p-i-n photodiodes (indirect detection) – Well matched with CsI:Tl (~ 550nm)– Sub-µs response time ⇒ dynamic applications– Low dark current ⇒ low exposure level

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

0.0001 – 0.010.6 – 2400.03 – 3Exposure range (mR)

8030120X-ray spectrum (kVp)

33 ms/frame< 5 < 5Image readout time (s)

1000 x 10003600 x 48001750 x 2150Pixel count

250 x 25050 x 50150 x 150Pixel area (µm2)

25 x 2518 x 24 35 x 43Imager size (cm)

FluoroscopyMammographyRadiography

Some requirements for medical imaging

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Charge must be transferred through long data line: ⇒ Column capacitance limits noise performance of charge amplifiers⇒ Coupling introduces pick-up noiseThermal noise in the pixel TFT:⇒ (kTCST)1/2 noise ~ 500 e-rms

Pixel

VB (Bias line)

CST

READ CFB

Column Charge

Amplifier

Data line

Gate line

Pixel

VB (Bias line)

CST

READ CFB

Column Charge

Amplifier

Data line

Gate line

Some limitations of active matrix imagers

Increase SNR:- High pixel fill factor- Pixel amplification

Challenge for fluoroscopy(~ 1000 electrons for a-Se photocond)

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Pixel amplification

AMPLIFIER

CFB ++

__

AMP

READ

RST

VG

QOUTVDD

vO

TRESET TINT TREAD

RST

RD

K.S. Karim, ITC ‘05

Source follower circuit

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Charge gain for pixel amplification (a-Si:H TFTs)

0 1 2 30 1 2 3

CPIX = 1 pF

CPIX = 2 pF

CPIX = 4 pFCPIX = 10 pF

Gi = 13.3

Gi = 6.7

Gi = 3.3Gi = 1.3

QP (fC)

0

10

20

30

QO

UT

(fC)

10 pF++

__

hν+ +– –

QOUT

VDD

CPIXQP

60/25150/25

150/25

OK for fluoroscopybut signal saturationfor radiography!!

K.S. Karim, ITC ‘05

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

High dynamic range pixels

VRESETV READ2

VREAD1

VG

VDD

VO

UT1

VA

MP_R

ESET1

VO

UT2

VA

MP_R

ESET2

VRESETV READ2

VREAD1

VG

VDDVRESET

V READ2

VREAD1

VG

VDD

VO

UT1

VA

MP_R

ESET1

VO

UT2

VA

MP_R

ESET2V

AM

P_RESET2

K.S. Karim, ITC ‘05

Conclusion:Need for pixel circuitry!!

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

a-Si drawbacks for circuits

Metastability

Poor transport properties⇒ large TFTs⇒ parasitic effects⇒ Small fill factor. Need for stacked sensor structure

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

a-Si:H drawbacks for circuits

OK if low duty cycle

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

a-Si drawbacks for circuits

Metastability

Poor transport properties⇒ Large TFTs⇒ Parasitic effects ⇒ Noise increase⇒ Small fill factor. Need for stacked sensor structure

Alternative technologies→ Poly-Si→ Si Nanowires

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

The various crystallisation processes for Si on glassThe various crystallisation processes for Si on glass

CRYSTALLISATION

Liquid Phase(Laser) Solid Phase

Furnace, RTA, CW Laser… Metal Induced

MILC

FE-MIC/MILC

MICC

Pulsed Laser CW Laser

“Full Sheet”

ELC

SLS

Phase Shift Mask

Patterned/Localised

SPC: high noise level TFTsdue to carrier number fluctuations.Corradetti, APL, 67, 1730 (1995)

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Crystallisation of a-Si: pulsed laser system with line beam optics

XeClXeCl, 308 nm, 50Hz, 308 nm, 50Hz

y

x

El

TopTop--hat energy profilehat energy profile

Largest line beam (Microlas):350 mm X 250 µm

L = (Dτ)1/2

D = κ/ρCp

L ~100 nm in SiO2, for τ ~25 ns

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Why pulsed laser?

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Poly-Si pros and cons

• High mobility TFTs (µn ~ 350 cm2/Vs. µp ~ 150 cm2/Vs)

• Low noise level TFTs (Carluccio, APL 71, 578,1997)

• Low Vth• Self-aligned TFTs

• BUT:– Complex, small process window for high quality TFTs– Vth dispersion (grain size uniformity)– Surface roughness (reliability)– Non stabilised technology– Niche applications in displays so far, although studied for 2

decades

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Grain size as a function of laser energy density (1)

E = 360 mJ/cm2 E = 400 mJ/cm2

E = 430 mJ/cm2 E = 470 mJ/cm2

500 nm

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

cc(( µµ

m)

m)

Laser energy density (a.u.)Laser energy density (a.u.)

Grain size as a function of laser energy density (2)

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Poly-Si pros and cons

• High mobility TFTs (µn ~ 350 cm2/Vs. µp ~ 150 cm2/Vs)

• Low noise level TFTs (Carluccio, APL 71, 578,1997)

• Low Vth

• BUT:– Complex, small process window– Vth dispersion (grain size uniformity)– Surface roughness (reliability)– Non stabilised technology– Niche applications in displays so far, although studied for 2

decades

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Semiconductor nanowires

• Si nanowires studied for CMOS replacement.

• However:– They can be grown at low to moderate T,– No need for refractory substrate,– No need for monocrystalline substrate.

Interest for displays and imagers!!

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Vapor:SiH4,

or SiH4 + PH3 or B2H6

Au-SiLiquid alloy

substrate

SingleCrystal

SiWhisker

vapor

Principle of the VLSGrowth method:

Synthesis of NWs

T ~ 400°C

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

VLS growth of Si µ-wire arrays

Si Substrate

Gold

SiO2

T ~ 550°CSiH4 + H2

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Si NanoWire FET

µ ~ 1350 cm2/VsLieber, Nano Lett., 2003

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Challenges with nanowires

• How to manipulate NWs?• How to organise them?• Controlled doping

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

500 nm500 nm

nanotubes de carbone par CVD dans les membranes d’Aluminium anodisées

Al 2O 3

Anodisation de Aluminium

SO42-

Ni

Electrodeposition du catalyseur

2

V

4

Al 2O 3

MWNT

Ni

Al

CVD

Al

1

MWNT

3

Membrane Al 2 O 3

0.5 cm

polycarbonate

106 pores

Co 2+

Cu 2+

Electrodeposition

Template synthesis

Magnetic nanostructure

100 nm

Co

Cu

6000 nm

80 nm

Cu

V

Track-etched membrane template

Membrane

Single contact

Template synthesis and structuring of nanomaterials(NWs and CNTs)

Hexagonal self-ordering

Al203 membrane

Polycarbonatemembrane(random order)

Wade & Wegrowe, Europ. Phys. J. Appl. Phys. 2005

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

1µm1µm

200 nm

Anodic alumina membranes: self-organisation at nanometric scale

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Au-SiLiquid alloyAl

alumina membrane

Siliconcrystal

vapor

alumina membrane

Al

Template growth ofSi NWs

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

3 0 0 4 0 0 5 0 0 6 0 0 7 0 0

6 0 5 cm -14 1 3 .5 cm -1

5 1 7 .3 cm -1

inte

nsity

(a.u

.)R A M A N s h ift (c m -1)

2 92 cm -1

Si NWs in porous Al2O3

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

1µm

Template-grown nanostructures:OK for two-terminal devices

Ex : GMR measurements on a Co/Cu nw

Wade & Wegrowe, Europ. Phys. J. Appl. Phys. 2005

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Non-conducting substrate

Al thin film0.1-1µm

Non-conducting substrateAl

Metal electrode

Capping layer (SiO2, resin…)

Al Porous aluminum oxide & electrodeposited catalyst

Dissolution of aluminum and growth of CNTsor nanowires

Gate

MetalCNTs, NWsContacts Source/Drain

Gatedielectric

Template growth in lateral porous anodic Al2O3 films

Nano Lett., Vol. 5, No. 4, 2005CNRS patent FR 03 11959

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Template growth in lateral porous anodic Al2O3 films

Nano Lett., Vol. 5, No. 4, 2005CNRS patent FR 03 11959

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

a) b)

c) d)

SEM characterisations of lateral Al2O3 membranes

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

TEM characterisations of lateral Al2O3 membranes (1)

The red bars represent 3.5 nm

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

TEM characterisations of lateral membranes (2)

5 nm, MEHR

Pores filled with Te

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Si

Al

Si

Al

Si

Al

Si

AlAl stripe

electrodeposited Au nanoparticles

porous alumina

insulating layer

Modulation doped SiNWs growth

SiH4 + B2H6 , PH3 SiH4 + B2H6 , PH3SiH4

RIE removal of the capping insulating layer, wet etch removal of the Al stripe

masking the composite SiNWs in porous alumina

RIE etch of unprotected SiNWs

wet etch removal of the alumina membrane contacting the SiNWs Gate insulator and Gate deposition

Si Si

Si Si

S D

Si

S D

gate

Si

Al

1

2 3 4

5 6 7

8 9 10

Si

Al

Si

Al

Si

Al

Si

Al

Si

Al

Si

Al

Si

Al

Si

AlAl stripe

electrodeposited Au nanoparticles

porous alumina

Si

Al

Si

AlAl stripe

electrodeposited Au nanoparticles

porous alumina

insulating layer

Modulation doped SiNWs growth

SiH4 + B2H6 , PH3 SiH4 + B2H6 , PH3SiH4

RIE removal of the capping insulating layer, wet etch removal of the Al stripe

masking the composite SiNWs in porous alumina

RIE etch of unprotected SiNWs

wet etch removal of the alumina membrane contacting the SiNWs Gate insulator and Gate deposition

SiSiSiSi SiSiSiSiSi

SiSiSi Si

S D

Si

S D

SiSiSi

S D

Si

S D

gate

Si

S D

gate

SiSiSi

S D

gate

Si

Al

Si

Al

Si

Al

Si

Al

1

2 3 4

5 6 7

8 9 10

Transistor fabrication with sequential doping

CNRS patent 2005

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

substrate

Al

Al

Al

Al

substrate

Al

Al

Al

Al

substrate

AlAl

Al

Al

Al

Al

Al

Al

Mask # 1Al etching

Array with a 5-mask process (1)

CNRS patent 2005

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Al

Al

Al

Al

SiO2

Porous alumina

Al

SiO2

Al

Al

Al

Al

AlAl

SiO2

Porous aluminaPorous alumina

AlAl

SiO2

Al

SiO2 deposition+

Mask # 2+

Anodic oxidation+

Catalyst electrodep.

Array with a 5-mask process (2)

CNRS patent 2005

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Al

Al

Al

Al Al

SiH4 + B2H6 , PH3 SiH4 + B2H6 , PH3SiH4

Al

Al

Al

Al

Al Al

SiH4 + B2H6 , PH3 SiH4 + B2H6 , PH3SiH4

Al

TFT realisationin one pump down

Array with a 5-mask process (3)

CNRS patent 2005

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Al

Al

Al

VDD

+++

VO

RESET READ

- - -

Mask # 3: Gate and S/D metal

Array with a 5-mask process (4)

CNRS patent 2005

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Al

Al

Al

VDD

+++

VO

RESET READ

- - -

SiO2 deposition + mask 4

Array with a 5-mask process (5)

CNRS patent 2005

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Al

Al

Al

VDD

+++

VO

RESET READ

- - -

Metal 2 deposition (lower capacitance electrode)+ etching (mask # 5)

Array with a 5-mask process (6)

CNRS patent 2005

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Al

Al

Al

VDD

+++

VO

RESET READ

- - -

p-i-n stack deposition + ITO (upper capacitance electrode)

Array with a 5-mask process (7)

CNRS patent 2005

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble

Conclusions

• a-Si:H-based imagers present a number of advantages– Large size, high resolution, high image quality– Electronic picture handling– Compactness– Synergy with AMLCD industry (equipment, technologies…)– ….

• Need for added pixel complexity– a-Si:H limitations

• Alternative technologies– Poly-Si: complex (laser), not mature. Niche applications in

displays– Si NWs: simple, only CVD. Currently being developed

D. Pribat

IWORID ’05. 4-7 July 2005. ESRF Grenoble