32
Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29 ACC 2011 - G1100750 1

Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Embed Size (px)

Citation preview

Page 1: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

ACC 2011 - G1100750 1

Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors

Brett ShapiroKamal Youcef-Toumi

Nergis MavalvalaACC 2011 – San Francisco

June 29

Page 2: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

PulsarSupernova Merging Black Holes

• Supernovae Asymmetry required

• Coalescing Binaries Black Holes or Neutron Stars

Mergers

• Pulsars Asymmetry required

• Stochastic Background (Big bang, etc.)

Gravitational Waves

2

Wave of strain amplitude h

ACC 2011 - G1100750

Page 3: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

The Laser InterferometerGravitational-wave Observatory (LIGO)

Livingston, LA

Hanford, WA

• 3, 4 km and long interferometers at 2 sites in the US• Michelson interferometers with Fabry-Pérot arms• Optical path enclosed in vacuum• Sensitive to displacements around 10-19mrms

3

Funded by

Page 4: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

4

LIGO Scientific CollaborationAustralian Consortiumfor InterferometricGravitational AstronomyThe Univ. of AdelaideAndrews UniversityThe Australian National Univ.The University of BirminghamCalifornia Inst. of TechnologyCardiff UniversityCarleton CollegeCharles Sturt Univ.Columbia UniversityCSU FullertonEmbry Riddle Aeronautical Univ.Eötvös Loránd UniversityUniversity of FloridaGerman/British Collaboration forthe Detection of Gravitational WavesUniversity of GlasgowGoddard Space Flight CenterLeibniz Universität HannoverHobart & William Smith CollegesInst. of Applied Physics of the Russian Academy of SciencesPolish Academy of SciencesIndia Inter-University Centrefor Astronomy and AstrophysicsLouisiana State UniversityLouisiana Tech UniversityLoyola University New OrleansUniversity of MarylandMax Planck Institute for Gravitational Physics

University of MichiganUniversity of MinnesotaThe University of MississippiMassachusetts Inst. of TechnologyMonash UniversityMontana State UniversityMoscow State UniversityNational Astronomical Observatory of JapanNorthwestern UniversityUniversity of OregonPennsylvania State UniversityRochester Inst. of TechnologyRutherford Appleton LabUniversity of RochesterSan Jose State UniversityUniv. of Sannio at Benevento, and Univ. of SalernoUniversity of SheffieldUniversity of SouthamptonSoutheastern Louisiana Univ.Southern Univ. and A&M CollegeStanford UniversityUniversity of StrathclydeSyracuse UniversityUniv. of Texas at AustinUniv. of Texas at BrownsvilleTrinity UniversityTsinghua UniversityUniversitat de les Illes BalearsUniv. of Massachusetts AmherstUniversity of Western AustraliaUniv. of Wisconsin-MilwaukeeWashington State UniversityUniversity of Washington

Page 5: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Quadruple Pendulum

5ACC 2011 - G1100750

Copyright Science and Technology Facilities Council (UK)

Test Mass40 Kg

≈2 m

Prototype quad pendulum

Page 6: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

10-1

100

101

102-350

-300

-250

-200

-150

-100

-50

0

50TF from Ground Motion to Test Mass Along Laser Beam (Simulation)

Frequency (Hz)

Mag

nitu

de (

m/m

db)

1/f8

Gravitational Wave Band

Quadruple Pendulum (Quad) Isolation

6

K2

K1K1

K2

K3 K3

0.5M

M

M

0.5M

xg(t)

x4(t)

x4(s)/xg(s)

steep roll off!

K4 K4

ACC 2011 - G1100750

Page 7: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Actuator Frequency Response

ACC 2011 - G1100750 7

u1

u2

u3

u4

205 mN DC

205 mN DC

3.4 mN DC

0.095 mN

Electromagnetic actuator

Electrostatic actuator

Page 8: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Location of Quadruple Pendulums

8ACC 2011 - G1100750

Page 9: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Advanced LIGO Sensitivity

9ACC 2011 - G1100750

Page 10: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Outline

• Gravitational Waves and LIGO• Quadruple Pendulum• Quad Pendulum Actuator Specifications• Actuator Sizing• Conclusion

10ACC 2011 - G1100750

Page 11: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Optical Arm Cavity Control

ACC 2011 - G1100750 11

Laser(4+ ) km

Reflected beam

Photodiode

Incident beam100 W

Cavity Resonant beam800 kW

Pendulum 2 Pendulum 1

Control LawError Signal Actuation

Goal: merms1510

u1

u2

u3

u4

High sensitivity means a limited operating point.

1064 nmnear infrared

e

Actuator size considerations• Large enough to position mirrors• Small enough to limit noise, cost, and complexity

Page 12: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Optical Arm Cavity Control

ACC 2011 - G1100750 12

Pendulum 2 Pendulum 1

u1

u2

u3

u4

R

Standard tracking diagram

Page 13: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Arm Control Block Diagram

13ACC 2011 - G1100750

± 10V

* What is the minimum baseline target size for each actuator, without considering an infinite set of possible controller designs?

Page 14: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

ACC 2011 - G1100750 1410-2

100

102

10410

-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

Frequency (Hz)

R (

m/

Hz)

Amplitude Spectum of R

Disturbance Spectrum

10-2

100

102

10410

-20

10-18

10-16

10-15

10-14

10-12

10-10

10-8

10-6

Frequency (Hz)

R (

m/

Hz)

Amplitude Spectum of R

Goal: merms1510

LIGO sensitivity spectrum

Page 15: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Outline

• Gravitational Waves and LIGO• Quadruple Pendulum• Quad Pendulum Actuator Specifications• Actuator Sizing• Conclusion

15ACC 2011 - G1100750

Page 16: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Outline

• Gravitational Waves and LIGO• Quadruple Pendulum• Quad Pendulum Actuator Specifications• Actuator Sizing• Conclusion

16ACC 2011 - G1100750

Page 17: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Arm Control Block Diagram

ACC 2011 - G1100750 17

uGy

R

RGC

GCy

1

R 1GC

RGC

Cu

1

1GC minuRGu

RGu min

†•

± 10V

† -> Moore-Penrose pseudoinverse

Page 18: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

ACC 2011 - G1100750

Minimum Least Squares Actuation

18

RGu ii min

RMSi

iu

erfp,2

101

The relative magnitudes between curves quantifies the relative ‘effectiveness’ of an actuator.

Page 19: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

ACC 2011 - G1100750 19

Conclusions

• The pseudoinverse of the combined plant TF shows the actuators have enough range with reasonable margin.

• Also shows which actuator is most effective at each frequency.

• No feedback design is required.• The pseudoinverse can guide feedback design.

Page 20: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

ACC 2011 - G1100750 20

Back Ups

Page 21: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

ACC 2011 - G1100750 21

Example Feedback Loop Gains

10-10

100

1010

Mag

nitu

de (

abs)

10-2

10-1

100

101

102

103

104

-1080

-720

-360

0

360

Pha

se (

deg)

Loop Gain from 1st, 3rd, and 4th Actuators

Frequency (Hz)

4th Stage

3rd Stage

1st StageSUM

Feedback RMS (V)

3.7*10^-3

0

2*10^-2

8*10^-5

Page 22: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Seismic Noise

• Tides - ≈ 10-5 Hz

• Microseismic peak - ≈ 0.1 to 0.3 Hz

• Anthropogenic Noise - ≈ 1 to 10 Hz

ACC 2011 - G1100750 22BU

Page 23: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Thermal Noise

ACC 2011 - G1100750 23

m

x(t)

b = dissipation factor (damping)T = Temperature (Kelvin)kb = Boltzmann’s Constant

b

k

10-1

100

101

10-28

10-26

10-24

10-22

10-20

10-18

Power Spectrum of xtherm

. T = 300 K, n = 1 rad/s.

(rad/s)

x ther

m(

)2 (m

2 s)

0.010.10.31

])([

2)(

22

22

2

n

Btherm

mb

Tbkx

k

Tkx B2Mean energy:

(equipartition function)

System in thermal equilibrium

BU

Page 24: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

Quantized Optical Noise

ACC 2011 - G1100750 24

Laser

Photodetector

Laser light consists of a finite (and uncertain) numbers of photons.

The momentum transfer onto the test mass from a random distribution of photons produces radiation pressure noise.

The random distribution of photons arriving at the photodetector produces shot noise.

Discrete Photons in laser beam

Test Mass

BU

Page 25: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

ACC 2011 - G1100750 25

Actuators

Page 26: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

ACC 2011 - G1100750 26

Page 27: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

ACC 2011 - G1100750 27

Page 28: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

ACC 2011 - G1100750 28

Advanced LIGO Schedule

Pre-assembly happening now

2010 2011 2012 2013 2014 2015

InstallationTesting Likely first

science run

• Other observatories around the world collecting data during this time.

Page 29: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

ACC 2011 - G1100750

Advanced LIGO

29

LIGO infrastructure designed for a progression of instruments

Nominal 30 year lifetime

All subsystems to be replaced and upgraded

More powerful laser – from 10W to 180 W Larger test masses – from 10 kg to 40 kg More aggressive seismic isolation Lower thermal noise coatings

Quantum noise limited in much of band Thermal noise in most sensitive region About factor of 10 better sensitivity Expected sensitivity

Neutron star inspirals to about 200 Mpc, ~40/yr

10 MO black hole inspirals to 775 Mpc, ~30/y

Advanced LIGO Astronomical Reach

Page 30: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

ACC 2011 - G1100750

Seismic Isolation

30

• 7 cascaded stages of seismic isolation External Hydraulic Pre-Isolator (HEPI). Active isolation up to 10 Hz. 2 stage Internal Seismic Isolation (ISI). Active isolation up to 30 Hz, passive above. 4 stage Quadruple Pendulum (Quad). Mirror is the final stage. Passive isolation above

1 Hz.

ISI and Quad in LIGO Vacuum Chamber Prototype ISI and Quad at MIT

Overall Isolation 9 to 10 orders of magnitude at 10 Hz.

Page 31: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

ACC 2011 - G1100750

Mirrors Suspend from Glass Fibers

31

• Developed by the University of Glasgow• Suspension thermal noise suppressed by suspending low loss fused silica test masses from fused silica fibers.

• 0.6m long, 400 µm diameter silica fibers pulled from 3 mm diameter stock and laser welded between the two silica lower stages of the quadruple pendulum.

Page 32: Actuator Sizing of a Quad Pendulum for Gravitational Wave Detectors Brett Shapiro Kamal Youcef-Toumi Nergis Mavalvala ACC 2011 – San Francisco June 29

ACC 2011 - G1100750 32

PendulumActuatorsControl

Sensors

DAC

ADC

-R

y

u

Super PlantG1x4(s)

ControlC4x1(s)

Sensors

DAC

ADC

-R

y

u