Acute Respiratory Failure 2010

Embed Size (px)

Citation preview

  • 8/8/2019 Acute Respiratory Failure 2010

    1/87

    Arterial Blood GasesArterial Blood GasesRespiratory FailureRespiratory Failure

    Michael Lippmann, MD

    Division of Pulmonary and Critical Care Medicine

    Department of Internal Medicine

  • 8/8/2019 Acute Respiratory Failure 2010

    2/87

    Respiratory SystemRespiratory System

    LungParenchyma

    Airways

    BellowsRespiratory control centers

    Peripheral nerves

    Muscles

    Chest wall

  • 8/8/2019 Acute Respiratory Failure 2010

    3/87

    Role of Respiratory SystemRole of Respiratory System

    Maintain optimal levels of oxygen and pH in theblood despite variations in ambient conditions and

    demand

    pH maintained via control of arterial PCO2

    Measurement of arterial blood gases evaluates

    effectiveness of respiratory system in fulfilling its

    role

  • 8/8/2019 Acute Respiratory Failure 2010

    4/87

    Alveolar Gas PressuresAlveolar Gas Pressures

    Determined by balance between delivery ofoxygen and carbon dioxide to the lung and theirremovalAtmospheric air passes through airways where it is

    fully saturated with water vapor and delivered to thealveoli

    Oxygen is delivered to the alveoli by ventilation andtaken up by the hemoglobin in the blood perfusing thelung

    Carbon dioxide is delivered to the alveoli by the bloodperfusing the lung and removed by ventilation

  • 8/8/2019 Acute Respiratory Failure 2010

    5/87

    Effect of V/Q Ratio on Alveolar GasEffect of V/Q Ratio on Alveolar Gas. .

    Normal

    range of

    V/Q

    ratios

    .1 .2 .4 .6 .8 1 2 4 6 810

    POPO22 in alveolusin alveolus

    and capillary

    and capillary

    PCO2 in alveolus

    and capillary

    20

    40

    60

    80

    100

    120

    140

    160

    20

    40

    60

    80

    100

    120

    140

    160

    Log V/Q ratios. .

    PO

    2orP

    CO

    2

  • 8/8/2019 Acute Respiratory Failure 2010

    6/87

    Alveolar PCOAlveolar PCO22

    PaCO2 = VCO2/(VE-VD)Where:

    PaCO2 = Arterial carbon dioxide tension

    VCO2 = CO2 production by the bodyVE= Minute ventilation

    VD = Dead space ventilation

    Therefore, arterial carbon dioxide tension will increase if:

    there is an absolute decrease in bellows function

    the bellows are unable to increase ventilation in proportion to

    increased CO2 production or increased dead space

    .

    .

    .

    . . .

  • 8/8/2019 Acute Respiratory Failure 2010

    7/87

    Alveolar Gas Equation for OxygenAlveolar Gas Equation for Oxygen

    PPAAOO22 = F= FIIOO22(P(PBB - P- PHH22OO) - P) - PaaCOCO22/R/R

    Where:

    FIO2= Fraction inspired oxygen tensionP

    B= Barometric pressure (747 mm Hg)

    PH2O

    = Partial pressure of water vapor (47 mm Hg)

    PaCO

    2= Arterial carbon dioxide tension

    R = Respiratory equivalent (0.8)

  • 8/8/2019 Acute Respiratory Failure 2010

    8/87

    Alveolar Gas Equation for OxygenAlveolar Gas Equation for Oxygen

    Balance between removal of oxygen from the alveolus byperfusion, and the addition of oxygen to the alveolus by

    ventilation determines alveolar O2 Calculates the PO2 of an alveolus with a specific ratio of

    ventilation to perfusion The first part calculates the alveolar PO2 in the absence of any

    perfusion

    The second component corrects for effect of perfusion, whichremoves oxygen and adds CO2 to the alveolus

    PPAAOO22 = FIO= FIO22(P(PBB - P- PHH22OO) - P) - PaaCOCO22/R/R

  • 8/8/2019 Acute Respiratory Failure 2010

    9/87

    Arterial Gas PressuresArterial Gas Pressures

    Determined by the average of gas contents ofblood leaving alveolo-capillary units

    Gas pressure gas content

    Pressure index of the tendency of a gas

    molecule to moveGas molecules move from areas of higher pressure to

    those of lower pressure

    Flow stops when pressure (not content) equilibrates

    Content number of gas molecules contained in agiven volume

  • 8/8/2019 Acute Respiratory Failure 2010

    10/87

    Ideal Gas LawIdeal Gas Law

    P = pressure

    V = volume of vessel = number of moles of gas

    R = universal gas constant

    T = absolute temperature

    Pressure will increase with

    Increase in amount of gas Decrease in volume of

    container

    Increase in temperature

    PV =PV = RTRT

  • 8/8/2019 Acute Respiratory Failure 2010

    11/87

    Henrys LawHenrys Law

    P = kCP = kC The solubility of a gas in a liquid is directly proportional

    to the partial pressure of that gas above the liquid

    kis a temperature-dependent constant (769.2 Latm/mol for

    oxygen in water at 298K)Pis the partial pressure (atm)

    Cis the concentration of the dissolved gas in the liquid (mol/L)

    The less soluble the gas (higher k) the lower the content for any

    pressure

  • 8/8/2019 Acute Respiratory Failure 2010

    12/87

    Oxygen ContentOxygen Content

    Oxygen is poorly soluble in plasma and is carriedby hemoglobin

    Oxygen capacity = 1.34 (ml O2/g Hgb) x

    hemoglobin (g/dl)Oxygen content = (oxygen carrying capacity) x

    (% oxygen saturation) + 0.003 ml/dl (PaO

    2)

  • 8/8/2019 Acute Respiratory Failure 2010

    13/87

    Oxyhemoglobin Dissociation CurveOxyhemoglobin Dissociation Curve

    Oxygen content = (1.34 ml x Hgb) SaO2 Curve also represents relationship between

    PO2 and oxygen content

    0

    20

    40

    60

    80

    100

    20 40 60 80 100 120

    SO

    2%

    PO2

    Left-shifted (Increased affinity) decreased temp decreased 2-3 DPG increased pH carbon monoxide

    Right-shifted (Decreased affinity) increased temp

    increased 2-3 DPG

    decreased pH

  • 8/8/2019 Acute Respiratory Failure 2010

    14/87

    Oxygen ContentOxygen Content P PaaOO22 = 100= 100

    1.34 ml O2

    x (16 g/dl Hgb) x 98% = 21 ml O2

    +

    0.003 ml O2 (100) = .03 ml O2

    1.31 ml

    O2

    1.31 mlO

    2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 mlO

    2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2 1.31 ml

    O21.31 mlO

    2

    .03 ml

    O2

    O2 Content = 21.03 ml/dl blood

  • 8/8/2019 Acute Respiratory Failure 2010

    15/87

    Oxygen ContentOxygen Content P PaaOO22 = 40= 40

    1.34 ml O2

    x (16 g/dl Hgb) x 75% = 16 ml O2

    +

    0.003 ml O2 (40) = .012 ml O2

    1.00 ml

    O2

    1.00 mlO

    2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 mlO

    2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2 1.00 ml

    O21.00 mlO

    2

    .012 ml

    O2

    O2 Content = 16.012 ml/dl blood

  • 8/8/2019 Acute Respiratory Failure 2010

    16/87

    Oxygen ContentOxygen Content P PaaOO22 = 600= 600

    1.34 ml O2

    x (16 g/dl Hgb) x 100% = 21.4 ml O2

    +

    0.003 ml O2 (600) = .18 ml O2

    1.34 ml

    O2

    1.34 mlO

    2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 mlO2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2 1.34 ml

    O21.34 mlO

    2

    .18 ml

    O2

    O2 Content = 21.58 ml/dl blood

  • 8/8/2019 Acute Respiratory Failure 2010

    17/87

    MixingMixingEqual volumes (100 cc) of blood mixed together

    each with equal amounts of hemoglobin (16g/dl)

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2

    1.31 ml

    O2 1.31 ml

    O21.31 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2 1.00 ml

    O21.00 ml

    O2

    PO2 = 100

    SO2 = 98%

    Content = 21 ml O2/100cc

    PO2 = 40

    SO2 = 75%

    Content = 16 ml O2/100cc

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    PO2 = 54

    SO2 = 86.5%

    Content = 18.5 ml O2/100cc

    1.16 ml

    O2

    1.16 ml

    O21.16 ml

    O2

    1.16 ml

    O2

    1.16 mlO2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    1.16 ml

    O2

    + =

  • 8/8/2019 Acute Respiratory Failure 2010

    18/87

    MixingMixingEqual volumes (100 cc) of blood mixed together

    each with equal amounts of hemoglobin (16g/dl)

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2

    1.34 ml

    O2 1.34 ml

    O21.34 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2

    1.00 ml

    O2 1.00 ml

    O21.00 ml

    O2

    PO2 = 600

    SO2 = 100%

    Content = 21.4 ml O2/100cc

    PO2 = 40

    SO2 = 75%

    Content = 16 ml O2/100cc

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    PO2 = 57

    SO2 = 87.5%

    Content = 18.7 ml O2/100cc

    1.17 ml

    O2

    1.17 ml

    O21.17 ml

    O2

    1.17 ml

    O2

    1.17 mlO2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    1.17 ml

    O2

    + =

  • 8/8/2019 Acute Respiratory Failure 2010

    19/87

    West Two-Compartment Model -West Two-Compartment Model -

    OxygenOxygen

    Bloodflow

    2.4 l/min

    2.4 l/min

    VA2 l/min

    PO2 99

    VA2 l/min

    PO2 99VAQ

    = .83VAQ

    = .83

    P

    O299SO

    297.5

    PO299

    SO297.5

    PO299 SO2 97.5

    . .

    . .

  • 8/8/2019 Acute Respiratory Failure 2010

    20/87

    V/Q Mismatch - OxygenV/Q Mismatch - Oxygen

    Blood

    flow

    2.4 l/min

    2.4 l/min

    VA3.6 l/min

    PO2 117

    VA0.4 l/min

    PO2 51.5VAQ

    = 1.5VAQ

    = .167

    PO2117

    SO298.2

    PO251

    .5 SO286

    PO264 SO2 92.1

    . .

    ..

  • 8/8/2019 Acute Respiratory Failure 2010

    21/87

    Alveolar-arterial GradientAlveolar-arterial Gradient

    Calculated alveolar O2(P

    AO

    2) -

    measured arterial O2 (PaO2)

  • 8/8/2019 Acute Respiratory Failure 2010

    22/87

    A-a GradientA-a Gradient

    Measures dispersion of V/Q ratios within thelung

    Normal lung has narrow range of V/Q ratios

    The greater the variability, the higher the A-agradient

    . .

    . .

  • 8/8/2019 Acute Respiratory Failure 2010

    23/87

    A-a GradientA-a Gradient

    Clinically, can be used to assess underlying lungfunction in patients with decreased P

    aCO

    2or

    receiving supplemental oxygen

    Arterial PO2may be normal or elevated despite the

    presence of significant V/Q mismatch

    In these situations the increased A-a gradient can

    indicate significant underlying lung dysfunction

    . .

  • 8/8/2019 Acute Respiratory Failure 2010

    24/87

    PCOPCO22 versus COversus CO22 ContentContent

    50

    55

    60

    40 50 60

    Deoygenated

    bloodOxygenated

    blood

    0

    20

    40

    60

    20 40 60 80

    CO

    2con

    ten

    t

    PCO2

  • 8/8/2019 Acute Respiratory Failure 2010

    25/87

    V/Q Mismatch - Carbon DioxideV/Q Mismatch - Carbon Dioxide

    CO2 production

    200 ml/min

    PCO2 46

    50%flow

    PCO2 40

    100 ml/minCO2

    50%flow

    PCO2 40

    100 ml/minCO2

    PCO240

    PCO24

    0

    PCO2 40

    . .

  • 8/8/2019 Acute Respiratory Failure 2010

    26/87

    V/Q Mismatch - Carbon DioxideV/Q Mismatch - Carbon Dioxide

    CO2 production

    200 ml/min

    PCO2 46

    50%flow

    100 ml/min

    CO2

    50%flow

    0 ml/min

    CO2

    PCO246

    PCO240

    PCO2 43

    . .

  • 8/8/2019 Acute Respiratory Failure 2010

    27/87

    OptionsOptions

    Increase blood flow to normal V/Q regions

    Increase ventilation of normal V/Q regions (normal

    ventilatory drive)

    Increase arterial and mixed venous PCO2 (blunted

    ventilatory drive)

    . .

    . .

    COCO22 Elimination Must Equal COElimination Must Equal CO22ProductionProduction

  • 8/8/2019 Acute Respiratory Failure 2010

    28/87

    Bicarbonate Buffer SystemBicarbonate Buffer System

    H2CO3H+

    + HCO3-

    weak acid conjugate

    base

    Equilibrium is far to the left - there are 600 parts

    of CO2 in solution for every part carbonic acid

    Thus, carbonic acid component is equal todissolved CO2. Dissolved CO2 in mmole =

    0.03 x PCO2

    CO2 + H2OH2CO3H+ + HCO3-

  • 8/8/2019 Acute Respiratory Failure 2010

    29/87

    Henderson-Hasselbach EquationHenderson-Hasselbach Equation

    Effectiveness of a buffer depends on its pK (pH at

    which the buffer exists half as the weak acid and

    half as the conjugate base). Buffering is optimal at

    its pKAlso depends on the amount of buffer present

  • 8/8/2019 Acute Respiratory Failure 2010

    30/87

    Henderson-Hasselbach EquationHenderson-Hasselbach Equation

    pH pKconjugate base

    weak acid= + log

    [ ]

    [ ]

    For the bicarbonate system:

    p H= 6.1 l o g [H C O3 ] m e t a b o l i c0. 0 3xP C O

    2

    r e s p i r a t

  • 8/8/2019 Acute Respiratory Failure 2010

    31/87

    The bicarbonate generated by the buffer pair does not

    effectively buffer the change in H+ when PCO2rises

    CO2+ H

    2OH

    2CO

    3H+ + HCO

    3

    -

    doubling the CO2doubles [H+]

    for every mole rise in [H+] there will be an identical rise in

    [HCO3

    -]

    Thus [HCO3

    -] will rise only 40 nanoequivalents, an

    insignificant increase compared to usual concentration

    Bicarbonate Buffer SystemBicarbonate Buffer System

  • 8/8/2019 Acute Respiratory Failure 2010

    32/87

    Bicarbonate Buffer SystemBicarbonate Buffer System

    PCO2 40

    [HCO3-] = 24 mmole

    0.03 x PCO2 = 1.2 mmole

    pH = 6.1 + log (24/1.2)

    ph = 7.4

    Lung

    PCO2 40

    [HCO3-] = 19 mmole

    0.03 x PCO2 = 1.2 mmole

    pH = 6.1 + log (19/1.2)

    ph = 7.3

    Lung

    CO2 CO2

    + 5 meq H+

    Open

    (Ventilating)

    System

  • 8/8/2019 Acute Respiratory Failure 2010

    33/87

    PCO2 40

    [HCO3-] = 24 mmole

    0.03 x PCO2 = 1.2 mmole

    pH = 6.1 + log (24/1.2)

    ph = 7.4

    Lung

    PCO2 207

    [HCO3-] = 19 mmole

    0.03 x PCO2 = 6.2 mmole

    pH = 6.1 + log (19/6.2)

    ph = 6.59

    Lung

    CO2

    + 5 meq H+

    Bicarbonate Buffer SystemBicarbonate Buffer System

    Closed

    (Non ventilating)

    System

  • 8/8/2019 Acute Respiratory Failure 2010

    34/87

    Acid-Base TerminologyAcid-Base Terminology

    Acidemia blood pH < 7.36Alkalemia blood pH > 7.44

    Hypocapnia PaCO2< 36 mmHg

    Hypercapnea PaCO2 > 44 mmHgHyperventilation associated with hypocapnia

    Hypoventilation associated with hypercapnea

    Tachypnia high breathing rate

  • 8/8/2019 Acute Respiratory Failure 2010

    35/87

    Acid-Base TerminologyAcid-Base Terminology

    Respiratory acidosisA primary process associated with an increase in P

    aCO

    2

    Decreases pH

    Compensation through renal retention of bicarbonate

    Respiratory alkalosis

    A primary process associated with a decrease in PaCO

    2

    Increases pH

    Compensation through renal excretion of bicarbonate

  • 8/8/2019 Acute Respiratory Failure 2010

    36/87

    Acid-Base TerminologyAcid-Base Terminology

    Metabolic acidosis

    A primary process associated with a decrease in serumbicarbonate

    Decreases pH

    Compensation through hyperventilation

    Metabolic alkalosis

    A primary process associated with an increase in serumbicarbonate

    Increases pHCompensation through hypoventilation

  • 8/8/2019 Acute Respiratory Failure 2010

    37/87

    Blood Gas InterpretationBlood Gas Interpretation

    Normal valuespH between 7.36 and 7.44

    PCO2between 36 and 44 mmHg

    PO2between 80 and 100 mmHg

  • 8/8/2019 Acute Respiratory Failure 2010

    38/87

    Blood Gas InterpretationBlood Gas Interpretation

    Establish relationship between pH and PCO2Primary respiratory disorder

    Inverse relationship between changes in pH and PCO2

    In acute disorders reciprocal change of 0.08 in pH for every

    change of 10 mmHg PCO2

    Primary metabolic disorder

    Changes in pH and PCO2discordant or change in pH is of a

    greater magnitude than expected by change in PCO2

  • 8/8/2019 Acute Respiratory Failure 2010

    39/87

  • 8/8/2019 Acute Respiratory Failure 2010

    40/87

    Blood Gas InterpretationBlood Gas Interpretation

    pH 7.24, PCO2 40Low pH with normal PCO2

    Metabolic acidosis

    pH 7.32, PCO2 30

    PCO2 and pH both low

    Metabolic acidosis with partial respiratory

    compensation (respiratory alkalosis)

  • 8/8/2019 Acute Respiratory Failure 2010

    41/87

    Acute Respiratory FailureAcute Respiratory Failure

    Arterial carbon dioxide tension (PaCO2) greaterthan 50 mm Hg concomitant with an arterial pH

    less than 7.3

    and/or

    Arterial oxygen tension (PaO2) less than 50 mm

    Hg when breathing room air at sea level

  • 8/8/2019 Acute Respiratory Failure 2010

    42/87

    Bellows Failure - EtiologiesBellows Failure - Etiologies

    Respiratory control centersdrugs, infections, bleeding, trauma

    Peripheral nerves

    Guillain Barre syndrome, polio

    Muscles

    myotonic dystrophy, fatigue

    Chest wall

    kyphoscoliosis

  • 8/8/2019 Acute Respiratory Failure 2010

    43/87

    Bellows Failure - EtiologiesBellows Failure - Etiologies

    Respiratory control centersdrugs, infections, bleeding, trauma

    Peripheral nerves

    Guillain Barre syndrome, polio

    Muscles

    myotonic dystrophy, fatigue

    Chest wall

    kyphoscoliosis

  • 8/8/2019 Acute Respiratory Failure 2010

    44/87

    Ventilation vs. COVentilation vs. CO22

    21 3 4 5 6 7 8 9 10

    20

    40

    60

    80

    100

    120

    Alveolar ventilation

    PaC

    O2

  • 8/8/2019 Acute Respiratory Failure 2010

    45/87

    Effects ofEffects ofHypercapneaHypercapnea

    Decreased PaO2 proportional to rise in PaCO2 (A-agradient normal)

    Acidemia (compensated by metabolic changes if

    the increase is gradual)

  • 8/8/2019 Acute Respiratory Failure 2010

    46/87

    Lung FailureLung Failure

    Characterized by hypoxemia with widened A-agradient

    Hypercapnea not seen until later stages when

    bellows failure supervenes

    V/Q mismatch most common cause

    easily corrected by supplemental oxygen

    Intrapulmonary right-to-left shunting is refractory

    to supplemental oxygen

    . .

  • 8/8/2019 Acute Respiratory Failure 2010

    47/87

    Lung InfectionsLung Infections

    Among the most common causes of V/Qmismatch

    Upper airway or bronchial infections decreaseairflow to the distal alveoli

    Infections of the distal airways and alveoli(pneumonia) disrupt or totally obstruct airflow toan area of the lung

    Release of inflammatory mediators mayparadoxically increase the perfusion to these areasfurther lowering V/Q ratios

    . .

    . .

  • 8/8/2019 Acute Respiratory Failure 2010

    48/87

    Supplemental Oxygen in V/Q MismatchSupplemental Oxygen in V/Q Mismatch

    Increasing the concentration of oxygen in inspiredair (FIO

    2) increases P

    AO

    2

    Increased PAO

    2equilibrates with capillary blood

    increasing PO2 and O2 content of blood leaving thealveolo-capillary unit

    Blood with higher O2content mixes with blood

    from other units and increases Pa

    O2

    A-a gradient remains elevated

    . .

  • 8/8/2019 Acute Respiratory Failure 2010

    49/87

    ShuntShunt

    Defined as areas of the lung where there isperfusion but no ventilation (V/Q ratio = 0)

    Refractory to supplemental oxygen

    Arterial oxygen tension dependant upon mixed

    venous oxygen tension

    . .

  • 8/8/2019 Acute Respiratory Failure 2010

    50/87

    Shunt and Mixed Venous OxygenShunt and Mixed Venous Oxygen

    PO2

    0

    20

    40

    60

    80

    100

    20 40 60 80 100 120

    SO

    2%

    140 200 300 400 500 6000

    20

    40

    60

    80

    100

    20 40 60 80 100 120

    SO

    2%

    140 200 300 400 500 600

    PO2

    Oxygenated Shunt Mixed

  • 8/8/2019 Acute Respiratory Failure 2010

    51/87

    ARDSARDS

    A specific form of lung injury with diverse causescharacterized pathologically by diffuse alveolar

    damage and pathophysiologically by a breakdown

    in both the barrier and gas exchange function of

    the lung, resulting in proteinaceous alveolaredema and hypoxemia

  • 8/8/2019 Acute Respiratory Failure 2010

    52/87

    Adult Respiratory DistressAdult Respiratory Distress

    Syndrome (ARDS)Syndrome (ARDS)

    Characterized physiologically by stiff, non-compliant lungs

    and refractory hypoxemia due to shunt

    Multiple possible etiologies cause diffuse damage to the

    alveolo-capillary membrane resulting in increased vascularpermeability

    Fluid accumulation in the alveolar and interstitial space

    makes the lungs stiffer and inactivates surfactant causing

    alveolar instability and collapse further reducing lungcompliance

  • 8/8/2019 Acute Respiratory Failure 2010

    53/87

    ARDS: Diagnostic CriteriaARDS: Diagnostic Criteria

    Definitive

    Diffuse bilateral alveolar edema

    Increased lung vascular permeability

    Diffuse alveolar damage at pathologic examination

    OperationalDyspnea usually severe

    Hypoxemia with PaO2 / FIO2 < 200

    Bilateral radiographic infiltrates

    Reduced respiratory system compliance

    No evidence of cardiac etiology

  • 8/8/2019 Acute Respiratory Failure 2010

    54/87

    ARDS: CausesARDS: Causes

    Direct Lung InjuryDirect Lung Injury

    Common causes

    Pneumonia

    Aspiration of gastric contents

    Less common causes Pulmonary contusion

    Fat emboli

    Near-drowning

    Inhalational injury Reperfusion injury

    Indirect Lung InjuryIndirect Lung Injury

    Common causes

    Sepsis

    Severe trauma with shock

    and multiple transfusions

    Less common causes

    Cardiopulmonary bypass

    Drug overdose

    Acute pancreatitis Transfusion of blood

    products

  • 8/8/2019 Acute Respiratory Failure 2010

    55/87

    Pathophysiologic FeaturesPathophysiologic Features

    Increased permeabilty of pulmonary vasculature

    Loss of hypoxic vasoconstriction

    Intrapulmonary right-to-left shunt

    Increased pulmonary vascular resistance

  • 8/8/2019 Acute Respiratory Failure 2010

    56/87

    Consequences of IncreasedConsequences of Increased

    PermeabilityPermeability

    Formation of shunt

    Increase in ventilation to non-flooded alveoli

    Loss of complianceOverdistension of ventilated alveoli

  • 8/8/2019 Acute Respiratory Failure 2010

    57/87

    Lung ComplianceLung Compliance

    Change in lung volume for any given change intranspulmonary pressure

    Normally about 80-100 ml/cm H2O

    Early in ARDS, compliance decreases because of

    reduced volume of aeratable lung

  • 8/8/2019 Acute Respiratory Failure 2010

    58/87

    Lung Heterogeneity in ARDSLung Heterogeneity in ARDS

    The lung in ARDS includes

    Healthy tissue

    Recruitable tissue

    Diseased tissue

    PEEP is used to open recruitable tissue and

    maintain its patency throughout the inspiratory-

    expiratory cycle

  • 8/8/2019 Acute Respiratory Failure 2010

    59/87

    ARDSARDS

  • 8/8/2019 Acute Respiratory Failure 2010

    60/87

    PEEP in ARDSPEEP in ARDS

    Hypoxemia reversed through the use of positive

    end expiratory pressure (PEEP)Prevents collapse of unstable alveoli allowing

    them to participate in gas exchangeOpened alveoli positioned on a more compliant

    portion of their pressure-volume curveDelivered tidal volume can be distributed to more

    alveoli reducing over-distention of the previouslyventilated alveoli

  • 8/8/2019 Acute Respiratory Failure 2010

    61/87

    Lung RecruitmentLung Recruitment

    Gattinoni et al. NEJM, 2006

  • 8/8/2019 Acute Respiratory Failure 2010

    62/87

    Effects of PEEP on ComplianceEffects of PEEP on Compliance

    Pressure

    Volume

    {

    {normal

    ARDS

    Alveolar

    compliance

    curve

  • 8/8/2019 Acute Respiratory Failure 2010

    63/87

    Protective VentilationProtective Ventilation

    NEJM 2001;344:1986

  • 8/8/2019 Acute Respiratory Failure 2010

    64/87

    PEEP The Double Edged SwordPEEP The Double Edged Sword

    Potential protective effects of PEEP

    Reduction of shear stresses by preventing collapse of

    alveoli

    Reduction of high levels of FIO

    2

    Detrimental effects of PEEP

    Decreased cardiac output

    Overdistension of normal alveoli

  • 8/8/2019 Acute Respiratory Failure 2010

    65/87

    Oxygen TransportOxygen Transport

    Danger ofhypoxemia (low arterial oxygentension) is that it will lead to insufficient

    delivery of oxygen to the tissues (hypoxia)

    leading to cellular dysfunction, lacticacidosis, and potential cell death

  • 8/8/2019 Acute Respiratory Failure 2010

    66/87

    Causes of HypoxiaCauses of Hypoxia

    Reduced O2Delivery

    Low cardiac output (heart failure, tamponade)

    Low hemoglobin concentration (anemia)

    Low arterial oxygen tension

    Reduced O2 unloading in tissues High oxygen-hemoglobin affinity (alkalosis, reduced 2,3 DPG,

    abnormal hemoglobin)

    Impaired O2utilization in mitochondrion

    Enzyme poisons (cyanide)

  • 8/8/2019 Acute Respiratory Failure 2010

    67/87

    Lung and Bellows FailureLung and Bellows Failure

    Fatigue - the inability of a muscle to continue to

    develop or maintain a predetermined force

    When energy demands become excessive, fatigue

    results and inspiratory muscles fail to generate or

    sustain minute ventilation required to maintainnormal arterial carbon dioxide tension

    Characteristics - elevated arterial PCO2, hypoxemia

    with an increased A-a gradient

  • 8/8/2019 Acute Respiratory Failure 2010

    68/87

    Respiratory MusclesRespiratory Muscles

  • 8/8/2019 Acute Respiratory Failure 2010

    69/87

    Diaphragmatic InsertionsDiaphragmatic Insertions

    Di h ti O i t tiDi h ti O i t ti

  • 8/8/2019 Acute Respiratory Failure 2010

    70/87

    Diaphragmatic OrientationDiaphragmatic Orientation

    Di h ti O i t tiDi h ti O i t ti

  • 8/8/2019 Acute Respiratory Failure 2010

    71/87

    Diaphragmatic OrientationDiaphragmatic Orientation

    fW k f B thi

  • 8/8/2019 Acute Respiratory Failure 2010

    72/87

    Work of BreathingWork of Breathing

    Force required to move air into and out of alveoli

    per unit time

    Determinants

    Compliance of the lung

    Resistance of the airways

    Minute ventilation

    Frequency and tidal volume

    I i t M l St thI i t M l St th

  • 8/8/2019 Acute Respiratory Failure 2010

    73/87

    Inspiratory Muscle StrengthInspiratory Muscle Strength

    AtrophyNeuromuscular disease

    Nutritional status

    Oxygen deliveryLung volume

    M h i l I di t i COPDM h i l I di t i COPD

  • 8/8/2019 Acute Respiratory Failure 2010

    74/87

    Mechanical Impediments in COPDMechanical Impediments in COPD

    Thoracic cage

    elastic recoil

    directed inwards

    Shortened

    muscle fibers

    Decreased

    diaphragmatic

    curvature

    Medial orientation

    of diaphragmatic fibers

    Decreased zone

    of apposition

    Horizontal ribs

    L Pl LL Pl L

  • 8/8/2019 Acute Respiratory Failure 2010

    75/87

    LaPlaces LawLaPlaces Law

    P=2Tr

    Where:

    P = pressure

    T = tension

    r = radius of curvature

    P ti I dP ti I d

  • 8/8/2019 Acute Respiratory Failure 2010

    76/87

    Pressure-time IndexPressure-time Index

    0

    0.5

    1

    0 10.5

    Fatigue

    Criticalzone

    Duratio

    n

    (TI

    /T

    tot

    )

    Force (Pdi / Pdi max )

    TI = Inspiratory time

    Ttot = Inspiratory + expiratory timePdi = Pressure generated by diaphragm

    Pdimax = Maximum pressure diaphragm can generate

    DD

  • 8/8/2019 Acute Respiratory Failure 2010

    77/87

    DyspneaDyspnea

    An uncomfortable awareness of breathing

    Corresponds to several factors

    increased ventilatory drive

    length-tension inappropriateness

    pulmonary arterial or venous hypertension

    hypoxemia and hypercapnea

    cortical influences including depression and anxiety

    fF t I fl i D

  • 8/8/2019 Acute Respiratory Failure 2010

    78/87

    DYSPNEA

    Cortical influences

    (depression, anxiety)

    Length-tension

    inappropriateness

    Respiratory

    drive

    Vagal

    reflexes

    Pulmonary edema

    Pulmonary

    hypertension

    Ventilatorydrive

    PaO2

    PaCO2 pH

    Respiratory muscle

    weakness or fatigue

    Neuromuscular

    disease

    Malnutrition

    Impediment to

    breathing

    Hyperinflation

    Airway

    obstruction

    COPDAsthma

    Factors Influencing DyspneaFactors Influencing Dyspnea

    Chronic COChronic CO RetentionRetention

  • 8/8/2019 Acute Respiratory Failure 2010

    79/87

    Chronic COChronic CO22 RetentionRetention

    Seen most commonly in patients with high

    inspiratory work loads (chronic bronchitis or

    obesity)

    May help reduce the work of breathing and

    prevent acute diaphragmatic fatigue

    Chronic COChronic CO RetentionRetention

  • 8/8/2019 Acute Respiratory Failure 2010

    80/87

    Chronic COChronic CO22 RetentionRetention

    In order to maintain a constant level of arterial PCO2, a

    person must excrete the same amount of carbon dioxide

    as the body produces each minute

    The amount of carbon dioxide excreted is determined by

    the amount delivered to the alveolus by the blood vs. thealveolar ventilation

    Blood with elevated PCO2delivers more CO

    2to the

    alveolus so each breath can excrete more at the same

    alveolar ventilation

    Chronic COChronic CO RetentionRetention

  • 8/8/2019 Acute Respiratory Failure 2010

    81/87

    Chronic COChronic CO22 RetentionRetention

    Drawbacks

    worsening hypoxemia through decrease in alveolar

    oxygen tensions

    acidosis (will have renal compensation)

    Response of Respiratory Drive to COResponse of Respiratory Drive to CO

  • 8/8/2019 Acute Respiratory Failure 2010

    82/87

    Response of Respiratory Drive to COResponse of Respiratory Drive to CO22

    40 50 60 70 80 90

    10

    20

    PaCO2

    P0.1

    (mm

    Hg

    )

    Normocapnic COPD

    Normal

    Hypercapnic COPD

    Ch i H d OCh i H d O

  • 8/8/2019 Acute Respiratory Failure 2010

    83/87

    Chronic Hypercapnea and OxygenChronic Hypercapnea and Oxygen

    TherapyTherapy Patients with chronic hypercapnea and hypoxemia will

    often have further increases in arterial PCO2when given

    supplemental oxygen

    Etiologies decreased minute ventilation

    increased V/Q mismatch

    Haldane effect

    . .

    D d Mi t V til tiDecreased Minute Ventilation

  • 8/8/2019 Acute Respiratory Failure 2010

    84/87

    Decreased Minute VentilationDecreased Minute Ventilation

    Long postulated that patients are dependent onhypoxic drive to maintain ventilation

    Supplemental oxygen felt to improve hypoxemia,

    decreasing driveStudies have not confirmed this to be a factor

    .. ..V/Q Mi t h

  • 8/8/2019 Acute Respiratory Failure 2010

    85/87

    Increases in alveolar PO2from the supplemental

    oxygen decrease hypoxic vasoconstriction of

    vessels supplying poorly ventilated alveoli

    Increases in perfusion to alveolus are initially not

    matched by increases in ventilation causingworsening V/Q ratios

    V/Q MismatchV/Q Mismatch

    ..

    /QV/Q Mi t h. .

  • 8/8/2019 Acute Respiratory Failure 2010

    86/87

    V/Q MismatchV/Q Mismatch

    Decreasing V/Q ratio increases the PCO2of the

    blood leaving the alveolocapillary unit

    Normal individuals compensate for this increase

    by increasing minute ventilation

    Patients with preexisting hypercapnea do not

    increase their ventilation to compensate

    . .

  • 8/8/2019 Acute Respiratory Failure 2010

    87/87