Ada 030218

Embed Size (px)

Citation preview

  • 8/13/2019 Ada 030218

    1/73

  • 8/13/2019 Ada 030218

    2/73

    OFFICER-IN-CHARGE CARDEROCK 05

    SYSTEMSDEVELOPMENT DEPARTMENT 111

    SHIPPERFORMANCE DEPARTMENT15

    S RUCTURESDEPARTMENT 1?

    S H S PACOUSTICS DEPARTMENT 19

    MATERIALSDEPARTMENT 28

    OFF ICERIN-CHARGEANNAPOLIS 04

    AVIATIONAND SURFACEEFFECTS DEPARTMENT 1 6

    COMPUTATIONANDMATHEMATICSDEPARTMENT1{

    PROPULSIONANDJAUXILIARYSYSTEMS

    OEPARTMrVT21CENTRAL IN S TYUMEN TATi ON DEPARTMENT 29

    -' .

  • 8/13/2019 Ada 030218

    3/73

    UNCLASSIFIED SECURITYCLASSIFICATIONOFHISPAGEWhanDataF.nfr.dREPORTDOCUMENTATIONPAGE

    SfPolffNUMBER76-0068 2.GOVTCCESSIONNO

    -TTLEandSubtm.)THEORETICALDETERMINATIONOFPORPOISING INSTABILITYOFHIGH-SPEEDPLANINGTSJ^TMOHf;Miltot/Marti

    ==- =?%/.. .r rcw roHMiNq-owo.WCTORTUMBER

    PERFORMINGORGANIZATIONNAMENDADDRESSDavidW .TaylorNavalShipResearchan dDeve lopmentCenter,Bethesda,Maryland 20084

    II. CONTROLLINGOFFICEMENDADDRESS

    1 MONITORINGGENCYNAME 1 AOGRESSffdUtotanlro mControllingOlllca)NavalSeaSystemsCommand Washington,D .C . 20362

    READNSTRUCTIONSBEFORECOMPLETINGFORM 1. RECIPIENT'SCATALOGNUMBERS. TYPEOFEPORTERIODCOVEREOrTtnnmm9 9*9.WWOWTNUMBER

    (rsfi0aS-01-0l]1 0 .PROGRAM ELEMENT. PROJECT, TASKRE aWORKUNIT NUMBERS

    orkUni t1-1562-002

    mnrJB. SECURITYCLASS. rgTtM-rtjl/UNCLASSIFIED 04 -Ma. OECLASSIFICATION/DOWNGRADINGSCHEDULE

    IS. DISTRIBUTIONSTATEMENTalMtRopott)APPROVEDFORPUBLICRELEASE: DISTRIBUTIONUNLIMITED

    17 . DISTRIBUTIONSTATEMENTatnoaettractenfrodInBlock30,IdlllormnlramRopcrl)

    II SUPPLEMENTARY NOTES DC It KEYTOROSContinuenororaeId*Inotoommrranddentityyblocknumber)

    PlaningCrafteakeepingStabilityleasureCraftPorpoisingonmilitaryApplication l f 0 ABBfRAC ContinuenreveriemldoInoceeearyandIdentityaylocknumber)Aheoreticalmethodsderivedorpredictingrimanglean dpeedoeff i c ienttheinceptionofporpoisingofprismaticplaninghulls. Althoughequationsarederivedorth esurge,pitch,andheavedegreesoffreedom,tsseenhatheef fectofsurgessmallatordinaryoperatingtrimangles. Comparisonsoftheoreticalpredictionswithexisting experimentaldataoncoupledpitchan dheaveporpoisingshoweasonablygoodagreementfo rawideangeofspeedoefficients ,oadoefficients ,an ddeadriseangles. Thetheory(Cont inuedonreverseside)DD iA"] 1473 EDITIONOF NOVS SSOBSOLETE

    S/N -it'.' > 4->n UNCLASSIFIED SECURITYCLASSIFICATIONOFTHISPAGEWhenDatonieted)I I - - -

  • 8/13/2019 Ada 030218

    4/73

    IINfl.ASSlFIFD-n-UHITYCLASSIFICATIONOFHISPAGEfW)DmlEnfnd(Block20cont inued)

    mayalsobeusedorestimatingth enaturalrequenciesan ddampingcharacteristicsofprismatichullsinhestable,high-speedplaningrange.

    .* .mttmmmt

    niTtiNnaminium*mm'M M . n&mJwwmiT

    UNCLASSIFIED StruMiTvi. jsiricATIONorHISpotfniD.I.m.r.j

  • 8/13/2019 Ada 030218

    5/73

    TABLEOFCONTENTSPageABSTRACT

    ADMINISTRATIVEINFORMATIONINTRODUCTIONSTABILITYEQUATIONSDETERMINATIONOFPORPOISINGCONDITIONSCOMPARISONSWITHEXPERIMENTSONPRISMATICHULLSCOMPARISONSWITHEXPERIMENTSONNONPRISMAT1CHULLS1 CONCLUSIONS 3ACKNOWLEDGEMENTS 4APPENDIXA-DERIVATIONOFPORPOISINGSTABILITYEQUATIONS5 APPENDIX-ESTIMATESOFEFFECTOFWINDAGEANDCHINE RADIUSONSTABILITYDERIVATIVES 5REFERENCES 0

    L ISTOFF IGURES

    1CoordinateSystem 36 2 VariationofLeastStableRealRootan dTrimAnglewithPositionofCenterofGravity 37 3VariationofStabilityRootwithTrimAngleor VariousValuesofSpeed,Coeff i c ient ,DeadriseAngleof0Degree ,LoadVoet f ic ientof 0.72.v...38 4 ComparisonofTheoreticalan dMeasuredPorpoising - Boundariesfo rDeadriseof0Degree 39 -5 ComparisonofTheoreticalan dMeasuredPorpoising BoundariesorDeadriseof10.5Degrees406 ComparisonofTheoreticalan dMeasuredPorpoising Boundariesfo rDeadriseof20.5Degrees 41

    in

  • 8/13/2019 Ada 030218

    6/73

  • 8/13/2019 Ada 030218

    7/73

    L ISTOFTABLESPage

    1 omparisonBetweenCalculatedan dMeasuredValuesofX g can dmc,UsingComputedCriticalTrimAnglean dMethodofReference5orMeasuredPorpoising ConditionsofReference 122 rossFlowDragCoeff ic ient 2 1

  • 8/13/2019 Ada 030218

    8/73

    NOTATIONaalue satransversep lanehroughboatcenterofgravityBobyleffsunctionofdeadrise;seeEquation54beamofboatCDcrosslowdragcoefficient;seeTable2C fydrodynamicrictioncoefficientCjjjoatiftcoefficient,ondimensionalizedbyhebeam2C^/Cy2Cypeedcoefficient,U/>/ibC^oa dcoefficient,A/pgb3e,. .oordinatemeasuredparallelokeelromransomoftowpointandresultantofwindorce,respectivelyFBSteadystatebuoyancyorceFDynamicpartofhydrodynamicnormalorceonhu l lFDSteadystatepartofFDFp;teadystatehullrictionorceFwsteadystatewinddrag^kn.en)ondimensionalmomentarmabouthecenterofgravityoftoworcen= n dwindorcen=2f(0)eadriseunctionofWagner ;eeEquation53gccelerationofgravity tven^egativeofderivativeoff(kn,n)withrespectorimangleTh(T)eeEquation96)Litchmomentofnertiaabouth eboatcenterofgravity kj,k2oordinatemeasurenormalokeeloftowpointan dresultantwindorce,respectivelykadiusofgyrationofboatwithrespectocenterofgravity LC Gistanceromransomoboatcenterofgravity,measuredparallelokee l1am easLC Glkengthofwettedportionofkee lMydrodynamicpitchmomentelativeocenterofgravity MBSt eadystatepitchmomentdueobuoyancyMpynamicpartofhydrodynamicpitchmomentonhu l lMDSteadystatepartofMD vi ^T ,

  • 8/13/2019 Ada 030218

    9/73

    MpSteadystatehu l lrictionpitchmomentMgotalsteadystatepitchmomentactingonhullMTSitchmomentaboutcenterofgravitydueoowingorceMwsitchmomentaboutcenterofgravitydueowindorceMrM^,Mg,etc.artialderivativeofpitchmomentwithrespecttomotionariables,z.0,etc.,respectivelymas sofboatPeeEquation78)QeeEquation(78)soordinatemeasuredalongkeelromoremostmmersedstationofkeel;seeFigure20scleeEquation73)an dF igure20sc2eeEquations(76)an d77)andF igure20TsteadystateowingorcetimeUteadyreferencespeedofboatneetpersecondu .erturbationurgevelocityan daccelerationWoatweightXydrodynamicorcecomponentndirectionofpositivexXDynamicpartofhydrodynamicX-forceXsteadystatepartofX Xy,X^,,Xj,etc.artialderivativeofX-forcewithespectomotionariablesu , ,z,etc.,respectivelyxorizontalcoordinatendirectionofU ZydrodynamicorcecomponentndirectionofpositiveZDynamicpartofhydrodynamicZ-forceZsteadytatepartofZ ZvZ- z,Zg,etc.artialderivativewithrespectomotionariablesz,z,,etc..respectivelyzerticalcoordinate,positivedowneadriseangle;seeFigure20Aoa tweight,W AFDimedependentpartofFDAMDimedependentpartofMDATSimedependentpartoftowingforce

    v ii

  • 8/13/2019 Ada 030218

    10/73

    AXpim edependentpartofXDAZpim edependentpartofZD{ ,fomponents ,normaloth ekeel ,ofhullvelocityan dacceleration,respect ively6oatpitchangleperturbation,positivebowupXe a nwettedlength-to-beamratioX cengthofwettedchine-to-beamratioX cjondimensionalvalueofscl,scl/ X c2ondimensionalvalueofsc2,sc2/b XondimensionalvalueLCG,LCG/bXalueofX.atinceptionofporpoising X vondimensionalvalueoflk,1 ^ / b X mcalueofXatinceptionofporpoising X yondimensionalvalueofnormaldistanceofcenterofgravityromkeelj uotalsectionaladdedmassM aontributionosectionaladdedmassM sectionaladdedmassa ttransomvinematicviscosityoat-dampingratiopa s sdensityofwaterotabilityroot;se eEquation(22)Tteadytaterimanglemeasuredromkeellinetocalmwaterfreesurfacea teferencespeedU r calueofratinceptionofporpoising 0(X)hree-dimensionaloraspectratiocorrection;seeFigure217olumeofwaL.isplacedtest,utTheprime(' )symbo lsgenerallyusedodenotequantitiesinnondimens iona lorm. Factorsusedfo rnondimensional izingth epreviouslydescribedquantitiesarep ,U ,b. Typicalxamplesaregivenasfollows:

    FM-Fgg/d pU2)2)d=sc lM BSM BS/(l/2pU2b3)'=p/l/2pb2M 'M/(l/2pb5)'=ob/Ut'-tU/bviii

  • 8/13/2019 Ada 030218

    11/73

    ABSTRACTAheoreticalmethodsderivedorredictingtrimnglendspeedoeffi-

    cientthenceptionofporpoisingofprismaticplaninghulls.Althoughequationsar eerivedorthesurge,pitch,andheaveegreesoffreedom,t? seenhatheffectofsurgeissmalltrdinaryoperatingtrimngles.Comparisonsoftheoreticalredictionswithxistingexperimentaldatancoupleditchndheaveorpoisingshoweasonablyoo dagreementorawideangeofspeedoefficients,loadoefficients,ndeadriseangles.Th e theorymayls oesedorestimatingtheaturalrequenciesandamping characteristicsofprismatichullsinhetable,igh-speedlaningrange.ADMINISTRATIVENFORMATION

    ThisinvestigationwasauthorizedandundedyheNavaleaSystemsCommand \035)i562-002. (SEA35 )underheGeneralHydrodynamicsResearchProgram,SR-023-0101,WorkUnit

    Pernng ,W.Ci.A.ndI .Clauert ."StabilityonheWatofaSeaplanenhePlaningCondit ion,"AeronauticalResearchCounci l ,KVol .423e p1933). Aompleteut ingofreferencessgivenonpages60an d61.Lutowskl ,R.N. ."AComputerProgramfo rVariousPerformanceAspectsofPlaningCraf l ."Thesi ssubmittedtoStevensInstitute ofTechno logy .CastlePoint.Hoboken ,N.J.(1973).Payne.P.R. ."Coup l edPitchan dHeavePorptisingInstabilityinHydrodynamicPlaning,"JournalofHydro.iautict ,Vol .8,No .(Apr1974) .Day ,J.P.an dR.J.llasg,"PlaningBoatPorpoising"Thesi sSubmit tedtoW;bbInstituteofNavalArchitecture.GlenCove .LongIsland,N.Y.(May19S2).

    INTRODUCTIONPorpoisingisannstabilitynitchndheavexperiencedylaningcraftravelingat

    highpeedsonalmwater. Itha see nnownoleadosuchviolentmotionsasoause manyeriousboatingaccidents.Withonstantlyncreasingboatpeeds,hi sphenomenons becomingmorean dmoreofaroblemolaning-boatesigners.

    PerhapsheirstattemptatreatingthisroblemnalyticallywismadeyPerring,' ho developedaheoryorporpoisingbasedonow-aspect-ratiowingtheory.Theracticalapplicationofthistheorywa sunsuccessfulsinceheheorywa soversimplified.Sincehen,greatea lofexperimentalworkasee ndoneoncerningporpoisingforwater-basedircraftandlaningboats,andmoreecentlydditionalattempts2,3tdevelopingaheoreticalreat-mentav emetwitharyingdegreesofsuccess. Perhapstheonlysystematicexperimentalinvestigationfo rplaningboatswa sdonebyDa yandHaag onprismaticbodies.hesebodies comprisedawiderangeofdesignparameters.heresultsofthisworkhavebeenwidelyusedas

    .in i iimu m il lw-teaWiMBi

  • 8/13/2019 Ada 030218

    12/73

    aguideinestimatingtheporpoisinglimitsofplaninghulls. Althoughthisisareasonableempiricalapproach,itdoesnotcontributemuchoagoodtheoreticalunderstandingoftheproblem.Suchannderstandingisrequiredtodetermineheeffectsofvariationsinhullparametersofpracticalboatraswellastoevaluateinnovativeideasforpreventionofporpoising. Furthermore,itsimportantfo rprovidingatoolforestimatingtheeffectsofdesignarametersonnaturaloscillationfrequenciesanddampingcharacterisesoftheoat,sincethesecharacteristicsplayadominantroleindynamicbehaviorinaseaway. Inact,thetheoreticalapproachderivedhereinhasbeensedndevelopmentofalinearizedheoryforpredictingthemotionsofplaningboatsofarbitrarydeadriseangleinwaves.

    Althoughtheheoryhasbeendevelopedforprismaticplaninghulls,itappearstobesuitableasaguideforpredictingeffectsofparametervariationonorpoisingofpracticalplaning-boatconfigurations. Furthermore,hemethodsusedlendthemselvestodirectextensionoaheoryfornonprismatichulls.

    STABIL ITYEQUATIONSStabilityequationsforthelongitudinalmotionsinsurge,pitch,andheavearederivedin

    AppendixA.Tomakecomparisonswiththelargequantityofexistingporpoisingdatafrom towedmodels,rovisionwasmadetoincludetheeffectofthetoworce. Sincethemodels werefowedatconstantspeed,thesurgeequationlayednoroleindeterminationoftheboatmodelstability;onlyhecoupledpitchandheaveequationswereneededoinvestigatetheproblem.However,itisbelievedha theresultsobtainedinthismanneraregenerallyapplicabletoboatswithallhreedegreesoffreedom,since,asshownnAppendixA,themagnitudeofthestabilityderivativesinthesurgeequationreconsiderablysmallerthanhoseinthepitchandheaveequationsformostcasesofinterest.W ethereforeusedhefollowingnondimensional*inearizedstabilityequationsforthedynamicheaveorceanditchmoment equilibrium,respectively.**

    ^svitaky.[).,"Hydrodyn im i cDesignofPlaningHulls."MarineTechnology(Oct964).''Martin.M. ,"TheoreticalDeterminat ionofMotionofHigh-SpeedPlaningrutnWives"OTNSROCReport76-0069(Apr976) .

    'Theprimesymbol ,no:mallyusedtodenoteanondimensionalqual i ty ,isomittedto rconvenience . "Theeffectofth esurgedegreeoffreedomisreadilydeterminedfromth estabilityequat ionsfo rsurge,pitch,an dheaveas derivedinAppendixA.

  • 8/13/2019 Ada 030218

    13/73

    (ZJ;-m)'z+Z^ z+Z2z+Zd+ Z Q6+ Zd*01) M j jZ +M ^ z +M zz+ (Mg-ly)+M 0+M 0*02)

    Theseequationsdescribehemotionrelativeofixedhorizontalandverticalaxes,0xand0 z, alongandatrightanglestohedirectionofmotion;seeigure.Theorigin0wastakenat theoa tcenterofgravityandroveswithheonstantreferencespeedUoftheboat.ThesymbolsZandrepresenttheverucalforceanddisplacement,respectively,at0,positive inthedowndirection. ThesymbolsM an d0rehepitchmomentandangulardisplacement perturbation,respectively,withrespectoheorigin0,positiveinhesenseofbowup.Thecoefficientsofthevariablesz,z,z,0,9,and0rehestabilityderivatives;e.g.,Z sthe nondimensionalinearizedrateofincreaseofverticalorceZwithondimensionalangularacceleration0. ThestabilityderivativeshaveeenerivedorconstantdeadriseplaninghullsinAppendixAinermsofthegeometricandoperationalcharacteristicsoftheboat.Theywerederivedon theassumptionha thecraftcouldereatedasaslenderbodywithanmpiricalhree-dimensionJorrection. Becauseofthehighroudenumberrangeofoperationandthelow aspectatio,wavemakingandnsteadylifteffectswereassumedegligible.

    Thevelocityandccelerationerivatives(AppendixA)areZt-*>(X)cos2rju'ds 3) Zi-2v?(X)*is'cos3T 4)Z f l* ( X )cosrlp (a-s '):ds ' 7)M^VKXJCCK2 Vds'-Xg/VJ 8)M e= -*{\)JM'(a'"s')2d ' 9)M y= -2*(X)cos rh/$'X g2+y/(a'-s ')ds'j10)

    where= equilibriumtrimangleX =meanwettedlength-to-beamratio0(X)=three-dimensional correctionfactory . nondimensionalsectionaladdedmass Ht -nondimensionalsectionaladdedmassattransom

  • 8/13/2019 Ada 030218

    14/73

    X nondimens iona ldistancefromtransomtocenterofgravityDs' =nondimens iona ldistancefromforemostwettedpointonkeelto an yboatsection;se eFigure20

    a' =valueofs'atboatcenterofgravity Theintegrations havebeentakenoverth ewettedlengthofth eboat .xpressionsfo rth esectionaladdedmassdistributionarederivedinAppendixA.

    Theso-calledstaticderivativesareobtaineddirectlyromheexpressionsfo rth esteadystateZg'orcean dM . 'moment . Sincebothreunct ionsofXan dT,an dX=X(z,T),we have

    leJIi ^l2) 3r 3X or0 or d\ 3T

    Th eteadytateZg'orcewhichisth enegativeofth eliftforce(AppendixA)isZc=-ip(X)psinTCOS2+ X 2sinrCOST-XCfsinr/cos15)where=deadriseangle CvU/ \ /gb"=speedcoeffic ient C f =skinrictioncoef f i c ient

    Theirstermsth edynamicif tonhehull,th esecondermsth ehydrostaticlift,an dhelastermsth everticalomponentofth eskinrictionorce,assumedoac tparallelohe keeline.

    ThexpressionorheteadytatemomentMsaboutheboatenterofgravity (AppendixA)isMs'^XHinrcmr^'d^^^

    C f X(X v " 'Ts f(k,,ei)+ F w S f(k2,e2)16)COS ]

  • 8/13/2019 Ada 030218

    15/73

    wheregnondimensionaltowingforce=dragFws=nondimensionalaerodynamicdragf(kj,ej)=momentarmoftowingforce

    f(k2,e2)=momentarmof aerodynamicforceTheequationforTgEquation(90)ofAppendixA)is

    X CfTc'=-Zo'tanT+FW< /17)sOSpCOST waTheirsttermnEquation16)isthehydrodynamicmoment,thesecondtermsthehydro-staticmomentandthethirdtermsthemomentdueoskinfriction.Thelasttwotermsare themomentdu etothetowforceandtheaerodynamicdrag.ThesteadystatevaluesofXandrusedinEquations(3 )through04)aredetermined fromthefollowingequations ofplaningequilibrium.

    W'+Zs=0 18 )M s=0 19 )

    TheseequationsaresolvedbyaniterationrocessdescribedinAppendixA.ThesolutionoEquations(1 )and(2 )are

    z '=Z j +z2e +20) o.Y

  • 8/13/2019 Ada 030218

    16/73

    Ineneral,acomplexpairofrootsrepresentsanoscillatorymode ,e .g. ,orth eoo tpaira'-oR' ioj',hez'e sponseis

    _.iz'=eRlC ,osaj't'+C2sinOj't')whereC jndC2reea lonstantswhicharedeterminedbyhenitialconditions. Themagnitudeofth eimaginarypartofth eoo tj 'sth enondimensionalnaturalrequencyofth emodalmotion . Indimensionalormhenaturalrequencyan dperiodre

    O j=O j 'ad/sec 24)T=ec 25)I

    Thef fectofth eea lpartofth eoo toR'maybeillustratedbyomputingth eim eora disturbanceoeitherhalveordoubleitselfinmagni tude . Thus ,ifoRsnegative ,he envelopeofth edisturbancewillbehalvedwhen

    e =e =1/2Itollowsthatheim efo rhedisturbancemotionofeachmodeohalveordoubletselfis

    *l/2or* 2=0-69/oRec 26)Anotherusefulmeasureofdampingofoscillatorymodesisth edampingratio,whichsdirectlyelatedoth eateofdecayofdisturbanceoscillations. I tsgivenby

    ,R z -~iT27)I nheicinityofth eesonantencounterfrequencynwaves,hedampingratiosalsoinverselyelatedoheamplificationatioofth eboatesponse . Valuesofbetween0. 6an d1. 0areusuallyonsideredogivewell -dampedmodes . Valueslessthanabout0. 4aregenerally consideiedoproduceunderdampedmodes . Althoughheorgoingmayprovideaough indicationofth everticalplanedynamiccharacteristicsofth eboat,adynamicmotionsanalysisisrequiredoran ydetailedtudy .

  • 8/13/2019 Ada 030218

    17/73

    DETERMINATIONOFPORPOIS INGCONDITIONS Perhapstheonlysystematicexperimentalinvestigationofporpoisingwascarriedou tin

    1952byDa yandHaag.4Measurementbyotherinvestigators7,8,9avegenerallybeenincidentaltoabroaderprogramrimarilyconcernedwithesistance.TheexperimentsofDayandHaagwerecarriedoutwith3.8-inch-beam,prismaticwoodmodelstowedbyalightlinefromapointslightlyforwardofan dabovethecenterofgravity.Deadriseanglesof0,C.6,and0.5degreeswereinvestigated.Theloadcoefficientswere0.36,0.48,and0.72.Foreachspeedtheboatcenterof gravitywasgraduallymovedaftuntiltheboatporpoised.hetrimatwhichthisoccurreddefinedthecriticaltrimangleandrovidedapointnthetrimangleversusspeedtabilityoundary.Valuesofthemassan dmomentofinertiaforpracticallyall themodelsatporpoisingwereprovided.Thus,itwaspossibletomakeatheoreticalcalculationforeaches tcondition.mallallowancesforaerodynamiceffectsandhinecornerradius weremade.ThesearedescribedinAppendix.

    Calculationsofeachoftheou rstabilityrootsforeachtestconditionwereobtainedrom Equation(22). Inhevicinityofporpoising,theleaststablerootwascomplexineachcase,indicatingthatheresponsetoadisturbancewouldalwaysbeoscillatory. Figuresaypicalplotofthevariationoftherealar toftheleaststableroota 'withhenondimensional longitudinalistanceX Rofthecenterofgravityromhetransomorthreeofthees tspeeds with 10.6degreesandC^=0.48. Itisseenthatthestabilityrootsbecomenegative(stable)orvaluesofX lessthanbout0.20andgreaterthanabout0.85orthecasesshown.0W enoteha tnhestableregion,correspondingtothesmallX range,heequilibriumrim anglesaremuchhigherthaninhestableregionofthehighX range.Also,themagnitudeof thestabilityootinhemallX rangeisusuallyquitesmall,sothatthedampingoftheboatoscillationsma ysuallybeexpectedobeoor.Takinganexampleromheigure,weind fromEquation(26)thatthetimeforadisturbanceodamptohalfamplitudeatCy .67 wouldemorethan5econdsforaboatwitha5-fcoteam,andR1'=-0.01.This wouldbeintolerableinhepresenceofevenverysmalldisturbances.Ontheotherhand,itis seenromthesameigureha tmovingthecenterofgravityorwardoftheuppervalueat whichheootecomesnegativeresultsinincreasinglyegativevaluesofthestabilityrootand.Iridsma,G. ,"A SyitemtticStudyofRough-WaterPerformanceofPlaningBoats,"DavidsonLaboratory,StevensInstituteofTechnology,Hoboken ,N.J. .Report27 5(Nov1969).

    aC l ement .F.P,an dD .Blount,"Resistance Tests o lSystematicSeriesofPlaningHullForms ,"Transact ions SocietyofNavalArchi tectsandMarineEngineers ,Vol .7 1,pp .491-S611963).9Dav idon ,K.S.M.an dA.Suarez,"Tests ofTwen tyRelatedModelsofV-BottomMotorBoats-EMB Series50,"DavidTaylor ModelBasinReportR-47(1949).

    mmmmmmmmm

  • 8/13/2019 Ada 030218

    18/73

    therefore,considerablyigherdampingforthismode. Forexample,forthesamespeedan d\=.5,wefindoR1'=0.3,andthetimeforadisturbancetodamptohalfamplitudeisoftheorderofonlyne-halfsecond.Sincethecalculatedvalueofo..'atthisconditionsabout0.5,thedampingratioromEquation(27)sfoundtobeapproximately0.50;whereas,forthe previousconditionitwa sonlyabout0.02.

    AnalternativeplotoFigureshowingthevariationofthecalculatedR1' withrim angle,foracompleterangeoftestspeeds,with0=0degreesandC =0.72,sshowninFigure3.Thisplotstypicalofthoseusedtodeterminethecriticaltrimangleasafunctionofthespeedcoefficient.Wheretw otrimanglesatzerorootcrossingareshown,thesmallertrimanglesareaken.Theporpoisingboundariesthusdeterminedarediscussedinthenextsection.

    COMPARISONSWITHEXPER IMENTS ONPRISMATICHULLSFigure4showsthevariation,withhespeedcoefficientCy,ofthecriticaltrimangleof

    aprismaticplaningconfiguration,withadeadriseangleofzerodegrees,orthreevaluesofloadcoefficientTheointsintheigureepresenttheexperimentaldata.4Thecurveswereobtainedfromthepresenttheory. Itisseenthatthetheorygreesreasonablywellwithhe experimentsforC =0.36and0.72.FortheintermediateloadcoefficientC^=0.48,thetheorygivesintermediatevaluesofcriticaltrimangle;whereas,thedataforthisconditionare closeothoseobtainedatC =0.36.

    Figureisasimilarsetofgraphsfortheprismatichullwithadeadriseangleof10.6degrees.Here,theagreementbetweenheheoryndtheexperimentalresultsoverthewholespeedrangeisquitegoodforC^=0.48and0.72. However,orC =0.36.thetheoryends tounderpredicthecriticalrimangleaboutegreeatthehigherspeeds.Partofthis discrepancysdu eoheactha thechineecamenwettedattheransom,andthetheorydoesnotaccountforthis.*Thediscrepancyendstobegreatestatthehigh-stspeedsandfor thelowestloadingconditions.Theregionwherethewholechineisou tofthewaterisindi-catedapproximatelyyheashedportionoftheurve.

    Figure6sasimilarcomparisonforahullwitheadriseangleof20.5egrees. Herehe theoreticalcurvetendstofallslightlylowerthanthedata,atthelowerspeeds,andunderpre-dictsthecriticalrimangleyaboutonedegreeathehigherspeeds. Inthiscasehechinebecameunwettedsoonerthanfortheboatwitha0.6degreedeadriseangle.Theapproxi-materegionofoccurrenceisindicatedbythedashedportionofthecurves.Anattemptwas Thetheorysbe ingmodi f i edtoinc ludetheseeffects

  • 8/13/2019 Ada 030218

    19/73

    madeoetermineheffectfmodifyinghe agnitudefheowerimitfntegrationinpartoftheaddedmassntegralsdiscussednAppendixA.ThishadheeffectoffurtherimprovinghepredictionsshownbyhebrokenurvesnFigure.Thislightalterationoiheheoryhadpracticallynoeffectonhepredictedporpoisingboundariesorhehullshaving0-and0.6-degreedeadrisengles.

    D ayndHaagoundhatbyplottinghemeasuredrimnglegainst(CJJ,/2)''2 r/C /Cy,heeparateurvesoreachoadcoefficientollapsedntonarrowband.Thisresultwaslsooundromheheoreticalcalculations.Figures hrough9howcomparisonsbetweenheexperimentaldataandhecalculationsplottednhismanner. Exceptsnotedearlier,tseenhatheoverallgreementbetweenheheoryndhedataseasonablygoodforal lofhedeadriseconditionsnvestigated.

    ForachriticalrimngleC,heorrespondingcriticalpositionoftheboatcenterofgravity mustatisfyheteadytatequilibriumequations.ThushedegreeofagreementbetweenhemeasuredandpredictedmagnitudeofXs ,npartateast,measureoftheaccuracyoftheteadytateequations. Figure0howscomparisonwithheoryofthemeasuredvariationofX withpeedcoefficientoreachoftheconditionsnvestigatedby5 *DayndHaag.tsseenhathebestoverallagreementwasobtainedorhehullwithzerodeadrisengleorhedeadrisenglesof0.6nd20.5degrees,healculationswereabout10o5ercentowerhanhemeasurements.

    ThisesulteemsoeconsistentwithheendencyoftheteadytateEquations(18)and19)ounderestimateheteadyrimngle,husequiringamoreftpositionofthecenterofgravityoobtain ivenrimngle.ComparisonwithheteadytaterimdatanRelerenceofaimilarormulationecentlyroposedby rown exhibitsheameend-encyoapproximatelyheamedegree. However,hempiricalormulationresentedbySavitsky5oesnothowhisendencyndives,onheverage,betteragreementwithmeasuredteadytaterimngles. Aswilleeenater,heuseofthisormulationgenerallygivesargervaluesofX for ivenvalueofr.*

    AnothernterestingeatureofFigure0shatheeffectofloadoefficientppearsobemall.Thissmainlydueoheacthathemorehighlyoadedonfigurationsofthe D aynd aagmodelshadmalleradiiofgyration. Aswilleeenater,heheoryhowsthathesewoeffectsregenerallycompensatorynheireffectonheriticalcenterofgravityosition. Itslsoworthmentioninghatheheoreticalvaluesoftheocationofthe

    Brown,P.W.,"Anhx perimen l Ian dTheoreticalStudyofPlaningSurfacewithTrimlaps."David ionLaboratory,StevensInstituteofTechnology .Hoboken .N.J . ,Report1463(Apr1971) . Thereasonsfo rthisdi screpancyarebein:investigated.

  • 8/13/2019 Ada 030218

    20/73

    hydrodynamiccenterofpressurean denterofgravitywerewithinpercentofeachotherin nearlyal lases.sonemightexpect,hiswa shecasehroughouthetableoperatingrangtaswell.Figure1salo toftheheoreticalnondimensionalmeanwettedengthoftheboatatporpoisingagainstpeedoefficientorheariousconditionsinvestigated.Unfortunately,DayndHaagdidnotmeasurehewettedengthoftheirmodels ,oodirectomparisonwithhedataispossible. Averagealuesofobservedwettedengthsofthespraysheetthe chine,whichidnotarymuchwithpeed,rehownoraoughomparison.Ason emightexpectheprayheetengthelativechemeanwettedlengthecomessmallerwithncreas-ingdeadriseangle.

    Foraypicalonfiguration,igures2nd3ho wheeparateffectofnondimensiona;loadingC^ndadiusofgyrationc/bonhemagnitudeoftheriticalrimngleCs determinedro mheheory. ItsseenhatQecomessmallerwithbothncreasingradiusofgyrationndoa doefficient. However,heeffectsnotlarge -especiallyorsmallvaluesof^Lb* '*w' eeca"edthathehighertheloadingthesmallerwa siheradiusofgyrationorthemodelsinvestigatedyDayndHaag.Thiseffectalsocontributed,osomeextent,ocollapseoftheirdataordifferentloadonditions.Aimilareffect,houghmorepronounced,ma yehownoholdwithespectoheriticalondimensiou? alueoftheongitudinalcenteiofgravityositionndmeanwettedength. Figures4hrough6showhathealueoi andmcncreaseswithbothncreasingC^ndncreasingky/b. HereheseeffectsaccountalmostntirelyortheendencyoftheX versusCvurves(Figure0)an dhe XmcersusCvurves(Figure1)tocollapseintoanarrowandorthevariousloadings shown.

    Although,healculatedvaluesofX tendoeow .igures4nd5evertheless illustratesomenterestingtrends. ItsseenhathevalueofX ha sanncreasingtendencytoreachalimitwithincreasingdeadriseangleanddecreasingloadcoefficient. ls othevalueofX becomessmallerwithdecreasingnondimensionalradiusofgyrationan dincreasingdeadrise angle.tthusappearsthathighdeadriseangle,lowloading,an dasmallradius ofgyrationpermitamoreaftlocationofthecriticalcenterofgravity.urthermore,itappearsthatthetendencyforthecurvetoturndownatthehigherdeadriseanglesmayexplaintheobservationbyStolz and othersthat"deadrisesurfaceswhichar eno tdeepintotheporpoisingrangeoftenregainstabilityatigherspeeds."

    RelativelyecentlyFridsma'eportedatherlimitedmountofexperimentaldataon theorpoisingofprismaticullswitheadriseaiiglesof0,0,an d30degreesandwith 'Theoryan dexper imenthow,however ,thatnaturalfrequencyofoscil latorymotiondecreaaessignificantlywithncreasing momen tofinertia.

    10

  • 8/13/2019 Ada 030218

    21/73

    variousloadoefficients.Experimentsforthe0degreeeadriseas ewerecarriedoutwith modelsoflength-to-beamatioof4,,an dsothatdifferentvaluesoflc,/bwereobtainedfo rthesameC^nom ecases. Figures(17a)nd(17b)showomparisonofmeasuredvaluesofcriticalrimanglemadeyr idsmawithhosecomputedro mheheory.The theoreticalurvesareasicallyrossplotsofcurvessuchsthosenigure2orvariousload coefficients.Theyrovideaonvenientmethodofindicatingtheeffectofvariationsinky/b,separatelyro mCndC^onhemagnitudeofT C.tmayeseenro mheigurehathe theoryredictsT_uitewellnmostasesbuthatherearensufficientdataoverifyhe cvariationwithc,/bpredictedbyheheory.

    ThealculatedvaluesofX or ,ndXmrnheseaseswereabout8and5percentlower, respectively,thanhemeasuredvalues.Th eormerismorehantwicethedifferencecomputedforheDayndHaagexperiments. Asnotedearlier,hi swasel ttobeuemainlyohe facthatheteadytatequationstendounderpredictteadytaterimangle.ValuesofX werehe necalculatedoreachoftheheoreticalvaluesofrcro mheollowingsteady statequations,adaptedromReference.

    X=0.75Xi-*X28)F5.21Cv2/X 2)+.39 * vwhereXmcsdefinedbyheollowingequationsCrc'-'(0.0120xJ/20.0055\J2ICyhCLbCLo -0065Cj>*

    an dX _stheondimensionalistanceofthecenterofpressureorwardoftheransom.Th e assumptionhatheenterofpressurendcenterofgravityreoincidentwasfoundro m theheoryobevalidowithinewpercentnearlyllases. Theus eoftheaboveequationsresultedinbettergreementwithheexperimentalvalueswhenheheoreticalvalues ofT(weresubstituted.Table howsacomparisonofX thusobtainedwithhemeasuredvalues. Alsoshownrecomparisonswithhemeasuredmeanwettedlengths. Itsseenhatthealculatedaluesarewithinaewpercentofthemeasurementsinnearlyllases.

    COMPARISONS WITHXPERIMENTS ONNONPRISMATIC HULLSAlthoughheheorynddatapresentedhu sfa rareorprismatichullorms,he yho w

    trendswhichrecloseothoseobservedonavarietyofnonprismaticmodels.Twoprinciplesetsofdata8,9reavailableorcomparison.Th eDTMBSeries62modelsofClementnd Blount8reur emonohedranhullswitharansom-to-beamatioetween0.64an d0.80an d constantfteadrisengleof2.5egrees.ThoseofDavidsonndSuare/ havelowhine

    II

  • 8/13/2019 Ada 030218

    22/73

    TABLE-COMPARISONBETWEENCALCULATEDANDMEASURED VALUESOFX cANDXmc,USINGCOMPUTEDCRITICALTRIM ANGLEANDMETHODOFREFERENCE 5FORMEASURED PORPOISINGCONDITIONSOFREFERENCE7

    Deadrise 0deg Load Coefficient Speed Coefficient cv

    X opCalculated X .Measured XmcCalculadXmMeasured mc

    10

    20

    30

    0.912 0.6080.3040.3040.6080.6080.3040.3040.6090.912

    3.833.003.33 2.00 3.89 2.73 2.662.98 2.73 3.85

    0.860.900.930.94 1.07 1.031.00 1.02 1.021.07

    0.94 0.991.06 1.001.170.97 1.12 1.000.951.00

    linendwarpedbottomwithtransom-to-beamatioof0.88ndameaneadriseanglebetween4.0and.3degrees. Inviewoftheapproximatenatureofthecomparisonitwas felthatexistingcalculationsorthe0.6-degreedeadriseonfigurationswouldgiveasuffi-cientlyoo drepresentationoftherendsmeasurednhereviouslymentioneddata.

    Th eorpoisingboundaryescribedyClementandBlountwa spresentedsalo tofC,b/X versusthevolumetricFroudeumberFywhere

    Cu, CA/CV2Fv U/ CV/(CA)1/6

    Itsseenhatheriticalrimngleoe sno tppearanywhere,an dheorpoisingboundaryisexpressedmainlynermsofthecriticalositionoftheenterofgravity.Thismethodofplottingwa sanapparentattemptocollapsehemeasuredvaluesofX forthewideangeofloadoefficientsnvestigated. Figure8howsaomparisonoftheheoreticalalculatis withheSeries62data.Theheoreticalcurvesar econstructedfromhecalculatedcurvesofFigure0for0=0.6degreesan dCA=0.36.0.48,an d0.72.TheC^valuesar enhe approximateangeofmostoftheata.Th evaluesofCLb/X gcivennReferencewerenondimensionalizedwithespectoheea mtheenterofgravity,whilehoseshownnFigure8haveee nasedonhemeanofthemaximumea mndheea mtheransom inordertoprovideamorerealisticomparisonwithheonstantea mcase. Itsseenhattheheoreticalurveollowshesamerendasthedatautsabout0to5percentigher.

    1 2

  • 8/13/2019 Ada 030218

    23/73

    theoryoncludemoregeneral-typehullonfigurations. CONCLUSIONS

    A theoreticalmethodhasbeenderivedforpredictingtheonditionsleadingtoporpoising inhesurge,itch,andheavedegreesoffreedomofprismatichullswitharbitrarydeadriseangle.Comparisonsofthetheorywithheporpoisingboundariesmeasuredonowedmodels

    Agnelli.I.C.,"Kvaluilionofth eTrimof iPlaningBoattInceptionofPor^'iising."presentedatSpringMeetingcfSocietyofNivalArchitectsandMarineFnginecrs,LakeHm-'uVista ,I'll.(Apr1973).

    1 3

    ThissmainlyreflectionofthedifferencebetweenredictedandmeasuredvaluesofX _ showninigure0. Itma ybeseenhathepointsfordifferentloadingconditionswillall onseparateinesandha thetrendwithloadingforeachmodelisclosetothatgivenbythetheory;e.g.,compareConditions3,4,andwithhetrendsshowninigure5.

    Itseasyoshewthatthemeasuredeffectofradiusofgyrationxhibitsthesametrends asthathownyheheory;seeFigure4.Althoughheradiusofgyration/bofthe modelswasno tmeasured,itsreasonableoassumethatitwasincreasinglylargerforthe modelswithargerlength-to-mean-beamratioLp/Bp^. Bycomparingthetrendsofthedatafordifferentmodelswithpproximatelyhesameoadoefficient(Conditionswith ndwith)weseeha thevalueofA followsthetrendswithkbpredictedbyhetheory.

    GementandBlountfoundthattheslopeofastraightlinethroughthedatapointswas about-2.5.Thisimpliesthat,foragivenvalueofCA

    -sinceCy, C /Cy Fromigure0itsseenha thepreviouslyescribedquationwouldfitheheoryndexperimentaldatafortheprismauchullsquitewell. Althoughheequationmayeagoodapproximationorthedatashown,itsseenromheheoreticalurvesof Figures4and5orkbconstantha ttsnotsafeoassumeha thisstruenallcases.

    ThedataofDavidsonndSuarez9remostonvenientlyomparedinheormfa porpoisingboundaryresentedyAgnelli.1 Thissshowninigure9asaplotofmeasured valuesofthecriticaltrimangleT Qagainst2/(Cljbf ) .ncludedalsoarehedataointsforthe Series62ulls.ThesewereecentlybtainedbyheauthorfromMr.Blountandareot quitethesameasthoseshownnhelotfReference1. Shownorcomparisonwithhe trendspredictedyheoryrestraightinesdrawnhroughointsobtainedromhealculatedcurvesofFiguresnd0forhecaseof0=0.6degreesandCA 0.36.0.48,and.72.Althoughmanyfheointsdonotallnhelines,tsclearthatherendsarepredicted.Moreetailedcomparisonswithheindividualmodelsmustwaiturtherextensionofthe

  • 8/13/2019 Ada 030218

    24/73

    withreedomonlyinitchandheaveshowedreasonablygoodagreement.Sincenoporpoisingdatawithallhreedegreesoffreedomareavailable,itwasno tpossibletocheckthetheoryor thiscase.However,fromacomparisonoftherelativemagnitudesofthecoefficientsinthe surgeequationtappearsthatthiseffectissmall. Inanycasethismayeadilybeinvestigated inmoredetailwiththethreedegreeoffreedomstabilityequationsinAppendixA.

    Thestabilityootsobtainedromhecharacteristicequationrovideestimatesofthe dynamicbehaviour,suchsoscillationaturalfrequenciesanddampingcharacteristicsoftheboatnhestableregion.

    Althoughheheorywasdevelopedorprismatichullforms,itappearstobesuitableas aguidenestimatingtheorpoisinglimitsanddynamiccharacteristicsofmoreconventional- typeplaninghulls,aswellastheeffectsofvariationsinseveraloftheparameters. Itselt thatynextensionoftheanalyticalmethodsusedinhepresentanalysisevencloseragree-mentwithataonrismatichullsandconventionalboatscouldbeachieved,andtooluitableforinvestigatingtheeffectsofdetaileddesignmodificationscouldbeobtained.

    ACKNOWLEDGMENTSIwishoexpressmyeepgratitudetoMr.JacquesB .Hadler,underwhosesupervision

    theresentworkwasstarted,andoMr.GrantR.Hagen,HeadShipDynamicsDivision,or theircontinuingencouragementandnterestnhepresenteffort. MyppreciationsalsoextendedtoDr.William.Cummins,HeadShipPerformanceDepartmentandtoMr.VincentJ.Monacellafortheirvaluableassistanceandsupport. Furthermore,specialhanksaredueto M s .NadineHubble,whodevelopedhecomputerprogramandcarriedou tllofthecalcula-tionswithhercharacteristicskillndefficiency.

    1 4

  • 8/13/2019 Ada 030218

    25/73

    APPENDIXADERIVAT IONOFPORPOIS INGSTABIL ITYQUATIONS

    Itsas sumedhathelaningcraftasarismatichullofconstanteadrise,ismovingatconstantpeedaralleloaal mwatersurface,ndsreeoperformmallperturbationmotionsinitch,heave,ndurgeabouttssteadyquilibriumattitude.Sinceheheorys concernedmainlywithheigh-speed,ow-aspectatiocondition,itsassumedhatheraftma yereatedsaslenderbodywithnempiricalhree-dimensionalorrection,ndunsteadyeffectsar esmall.Theindofanalysistobesedwasfirstsedn924byMunk' ndaterbyJones inonnectionwithheanalysisofairshipsandlenderwings,respectively.Morerecentlyhi smethodha see neneralizedyBryson1 fo rcompletelyubmergedlender- finnedmissiles. Itasalsobeenppliedoheroblemofpureranslationalmpactofsea-planesncalmwatersurfaceyMayo1 ndothers.16,

    FORCESDUETOPERTURBATIONS INVELOCITYANDACCELERATIONTh elowve rtheul lsassumedooccurinransverselaneswhichreixednpace

    andorientedormaloheeel;seeigure0. Themomentumofeachayerofwaterrans-verseoheee ls/ifds,where(ishewo-dimensionalddedmassoftheectionoftheul latoint,nteractingwithheectionofth elowlaneoflengths ,ndsthecomponentoftheelocityoftheodyormaloheeelthatoint.Theoordinateismeasured fromheoremostmmersedtationlongtheeel. Theormalorcenheectionsoftheul lstheim eateofchangeofthemomentumoftheayerofwaterdsat.

    '"Muni. .M.M.."TheAerodynamicForce*on AirshipHull."NationalAdvisoryCommitteefo rAeronauticsReport184(1924).Jones ,R.T. ,"PropertiesofLow-Aspect-RatioWingsatSpeedsBelowan dAboveth eSpeed sofSound,"NationalAdvisory Commit t e efo rAeronauticsRepor '53(1946).Bryion,A.E . ,Jr.,"StabilityDerivativ. raSlenderMissilewithApplicationtoaWing-BodyVerticalTrailConf iguration ,"JournalofAeronauticalSciences .Vol . No .S,pp .29'/308(I9Sj).Mayo,W.L.,"Aiul>s i an dModif icationofTheoryfo rImpactofSeaplaneson Water,"NationalAdvisoryCommitteefo rAeronauticsReport810(1945).Milwitzky,t"AGeneralizedTheoreticalan dExper imentalInvestigationofth eMotionsan dHydrodynamicLoadsExper iencedhyV-Bottom SeaplanesDuringStep-LandingImpacts,"NationalAdvisoryCommitteeorAeronautics TN1516(1948).Schni tzer .E .,"TheoryndProcedurefo rDeterminingLoadsan dMotionsinChine-ImmersedHydrodynamicImpactsofPrismaticBodies,"NationalAdvisoryCommitteefo rAeronauticsReport152(1053).

    1 5

    n* nmn fmm mmmmmmmmummmmmmmmmmmmmm*- .- -w

  • 8/13/2019 Ada 030218

    26/73

    dFD= inds 29) Bothnandfwillineneralbefunctionsofthelongitudinalpositionoordinateandime.Theimederivativeistherefore

    dtx dt whereisthesteadystatespeed.ThenormalhydrodynamicforceovertheentirehullisobtainedbyintegratingEquatior. (29)alongthewettedlengthofthehullkndmultiplyingbyacorrectionactor0(X)to accountforthethree-dimensionalityoftheflow.

    rckF r >*(*)/ -r:(Mr)ds 31 )D V . T ,whereX sthemeanwettedlengthividedyhebeam. Aplotof< p ( \ )obtainedempirically byabst1 i sshownonigure1.Theintegralmayeexpressedasthesumfavelocitytermandanaccelerationerm.

    Theongitudinalandheaveerturbationelocitiesandaccelerationsarc,espectively,denotedby,,z,z .Thepitchangleerturbationsare0,0. Fromiguresnd0we obtainheollowingrelationships:

    =-cosT 33)dx =~sinT 34 )3x

    3tr-=us inr+zcosT0(a-s)35 )otf0 36)

    whererstheequilibriumtrimngleoftheboat,andaisthevalueofsathetranverselow-planethroughtheboatcenterofgravity.romheseequationsandEquation(30)wehaveto theirstordernheperturbations18Pibit,W.,"LandingImpactofSeapbutei ,"NationalAdvisoryCommi t t eeT o tAeronautic TM624(1931).

    16

  • 8/13/2019 Ada 030218

    27/73

    f=Us in inr+zosT0(a-s )f=U0os+us in zcosr-0(a-s )

    dp_dfi_sdndt 9f 3s

    (37)(38)(39)

    OnubstitutingtheseequationsintoEquation32),droppingthecondorderperturba-tionterms,andntegrating,weobtain

    (40)D=FDS+AFDwhere

    FDS=i f i C K )p2inTcosrA Fn=(2 Fn./U)(u+zco tr+ 0C/sinT) D D S I'

    +

  • 8/13/2019 Ada 030218

    28/73

    2MDS AMD-u cot)(X)2UcosTMsg2 P(a-s)ds

    +ip(X)(uin osT) p.(a-s)dsV .I L(\)0I ju(a-srdso (46)

    TheirstermMpgsheteadytatehydrodynamicmomentabouthecenterofgravityoftheoat.heemainingermsAMQreheinearizedcontributionsofheurge,pitch,ndheaveperturbationsnvelocityndacceleration.

    VELOCITYANDACCELERATIONSTABILITYDERIVATIVESTheverticalndhorizontalomponentsoftheorcetabilityderivativeswithespecto

    thevelocityndccelerationerturbationsrehecoefficientsoftheperturbationermsn theverticalndhorizontalcomponentsoftheperturbationorceAFDnEquation42).W ewriteheseequationsinnondimensionalorm*bydividinghroughby/2pU Thustheverticalomponentoftheperturbationorceequationecomeswithpositivedown

    AZD 2FDS'osr(u'z'cosT6 Xsin)* 5 < X ) (uincos :cos2r)fVds'+9fV(a's')ds'

    where FDS'p(\)* ss inco sT

    6 0b/U tc,

    (47)

    (48)

    'Nondin*ns ionalquant irsKepresentedbyaprimetymbol .

    IS

  • 8/13/2019 Ada 030218

    29/73

    LikewisethehorizontalcomponentwithXpositiveforwardbecomesAXD' AZD tanT (49)

    Theorrespondingnondimensionalstabilityderivativesorthemomentequationareobtained inananalogousmannerfromthenondimensionalformofEquation(46)as

    AMD'=2MDS'(u'+z 'cotT)

    where

    -*(X)2cosTS'g2+/V(a '-s ')ds '8+ (X) (u 's inr+i cosT)I fi d -s ')ds '

    -*>(X)0'/(a'-s')2ds ' rXjjM DS'= (X)/ n'(a'-s')2d '

    (50)

    (51)

    Typicalotationforthenondimensionalstabilityderivativesareshownasfollows z '-2FD SgcotT K=zu 'tn'M ->p(\)J V(a'-s')2ds '

    ZJ--

  • 8/13/2019 Ada 030218

    30/73

    SECTIONALADDEDMASSDISTRIBUTIONThenextstepstofindanexpressionorthedistributionftheboatsectionaladded

    massasafunctionofs .A generalheoreticalexpressionorthisquantityisno tavailable,evenforprismatichullswithconstantdeadrise. However,relativelysimpleapproximateexpressionsforaddedmasshavebeensedsuccessfullyinthepastintheanalysisofhydrody- namicimpactofprismaticodies. 1 Forthesectionsofthatportionofthebodywithhe ;hinesabovethewatersurface,thesectionalddedmasswasestimatedbyhpfollowingequation

    ,-pm 52> where

    f(0)=-l 53 )=deadriseangleinadians

    ThisexpressionsbasedonheworkofWagner.'9Thequantityf f(0)stheradiusofthe semicircularcylinderrepresentingtheaddedmassofthesection. Forthesectionsofthehullwithhehinesubmerged,theollowingexpressionwasused.

    M=-~f(0)tan0)2B|b(f-rc)54 )wheresaunctionftheangleofdeadrise,andsthebeateam. TheirstermsthecontributionoftheV-shapedottomaloneathenstantofchineimm.rsion.ThisisobtainedfromEquation(52)byuttingf=fc /2an . Thesecondermsanestimateofthe effectfhineepthssuggestedySchnitzer1 andsasedonheheoryofBobylefP^ fornfinitemmersion. TheBobylefffunctionsshownnigure2.

    ThexpressionsorngivenyEquations(52)and54 )willesednEquations(40)and(44)todetermineheormalorceQndmomentM Q. However,itsfirstecessaryodefineherangeofkeelengthverwhichachcontributionopsvalid. Itsclearthatno singlelocation,suchssuggestedyEquations(52)and(54),existsatwhichheeffectof chinemmersiontarts,sincehelowsmuchmorecomplexhanheseequationssuggest.Thissespeciallyruenheicinityofchineimmersion. However,aracticalsolutionothisproblemhasbeenmadeossibleymakingtheheoryorthesteadyar tfthenormal forceandmomentonsistentwithhelargeamountfexistingsteadytatedata.19 Wagner,H. ,"ThePhenomenaofImpactan dPlaningonWater."NationalAdvisoryCommitteeforAeronautic Translation1366,ZAMMBd2.Heft4.pp.93 -15(Aug1932).Lamb.H."Hydrodynamics,"SixthEdition.CambridgeUniversityPress.England(1932).

    20

  • 8/13/2019 Ada 030218

    31/73

    Byssumingthathelaninghullormalorceatighpeedswa smadepoftheum oflow-aspect-ratiowingliftndarosslowdragerm,Shuford21rrivedtheasicor m ofanexpressionwhichewa sableoiterywellodataobtainedymanyinvestigators.

    Thesedatacoveraangeoftrimanglesbetweenand30degrees,wettedlengthsfrom onetoseveneams,anddeadriseanglesbetv/een0and0degrees.Hisexpressionorthenormalorcesgiveny

    rADS=>>S[^A)2 sinrcosT1-sin

    where +CD sin^oszos

    Cpc rosslowdragcoefficientS=lanformareaofthewettedportionofthehullorX b2A-aspectratioofS,i.e.

    A=b2/S=/X

    (55)

    (56)Th ealuesofCD andhedependencyondeadriseanglewereobtainedyaitohedata.Th erossflowdragcoefficientswereoundohavethealuesshowninTable.

    TABLE2-CROSSFLOWDRAGCOEFFICIENT 21vD. c1.33SectionhapeV-bottom,onstanteadriseV-bottom,horizontalhinelare.330.01470 V-bottom.verticalhinestrips1.60+0.0147Wewillowdefineheariouscontributionsu aohesectionalddedmassalongthehullyheollowingequations,whichreomewhatlessrestrictiveha nEquations(52)nd (54).

    Bln*a2fU 2an2r

    BbtanTs-sc2)

    o

  • 8/13/2019 Ada 030218

    32/73

    wherewehavemadethesubstitutionf=stan 60)Thesectionalddedmassn tanyectionssimplyhes umofth econtributionsathatsection.

    Therincipledifferencero mEquations(52)and(54)ishatsclndsc2av enotee nassumedobenownnadvance. Equations(57)and(58)areheontributionsfromhebottomofthehullohehine.Thequantityclsthealueofsathepointwherehechineseffectivelymmersed. Equation(59)isthecontributioncorrespondingtoheseconjtermnEquation(54),andc2shealueof atwhichhisbeginstogrow.

    FromEquations(5 7hrough9)wereadilyindhat(61)M ,yf(0)sclan)2+Bbanr(fifcsc2)

    r^k air / 2 \ o ^ksc2'J Mds=i~(f(0)sclanr)2 -yc]j+-|Bbtanr62)oSubstitutingEquation61 )ntoEquation(41)gives FDS~-^()n(({)sclan)2inosr+ (X)Bbsin2T(Kk-2)] 63)

    ThisequationecomesidenticalwithheormulationofShufordnEquation55)rovided* ,x ' =rn vh* >

    y(f()sc,anr)2 -1s in0)65)*p{\)B=CDcos2cosj3 66)

    B ksc2 b 67)Thehree-dimensionalorrectionactorofEquation64)ha sarendimilartoheesultobtainedyabstsshownyigure1. AlsohevariationofBwithdeadriseanglesseentoeproportionaloosinigure2.

    IfweubstituteEquations(64)hrough(67)ntoEquation(63)andondimensionalize, weobtain

    FDS'r-r = s inTosr(1s in ) +CD Xs in2cos2cos68)

    22

  • 8/13/2019 Ada 030218

    33/73

    LikewisefweubstituteEquations(61)hrough67)intoEquation45)anddividey1/2pU2b3weobtainheondimensionaldynamicmomentaboutheenterofgravity

    MDS'=fTxsnrcosT(1"sn)(X k3xc i-\)+CDc in2os 2os(--X g) 69)

    whered cl/b\l=c2/bX g -g/bX k =Ck/b

    DETERMINATIONOFXcl,Xc2,kBecauseofwaveis eonmpact,heeffectivedepthoftheV-bottomsgreaterthanhe

    depthelativeothealmwaterfreesurface.Wagner19oundhateforehineimmersion, theffectivedepthwasgreaterbyaactorofir/2.Thereforeheeffectiveradiuscofthe semicircularcylinderofwaterrepresentingM(S)stakenas

    (70)irV tanta nCombining with Equation(57)gives

    M(s) it '[(-ifftan22 fors

  • 8/13/2019 Ada 030218

    34/73

    Anexpressionforthemeanwettedlength-to-beamratioXhasbeenobtainedbyBrown1fromextensivephotographicobservationsas

    X=0.5X kX c)+0.03 74)whereX c,theratioofthewettedlengthofchinetobeam,is

    (75)c=X k-(0.57+0.001) (tan0/(2tanr)-0.0060)providedX c>.ThelastterminEquation(74)isanallowancefo rstagnationlinecurvature.Wethenfindfromthepreviousequationsthat

    X c20.5(0.57+0.001)(tan0/(2tanT )-0.0060)-0.0376) sinceaccordingtoEquation(67) Xk X+Xc2 77)

    Equations(73),(76),an d(77)completelydefinetherangesofthesectionaladdedmass distributionsintermsof0 ,X ,andr.othXandTreobtainedfromthesteadystateequili-briumconditionstobediscussedinalatersection.

    ItisnotedthatthevalueofXc2sdefinedbyEquations(59)and(76)issmallerthanX j,X cwhichorrespondstothelowerlimitofintegrationatwhichf=fcntherepresenta-tionofthesecondtermoftheaddedmassinEquation(54). Althoughitappearsmorereasonabletous e -X corthelowerlimitofintegration,thebestfittothedata10equiresthatweseheX 0fEquation(76). Inthenumericalanalysis,theeffectofusingX vX.i nlaceofXwasfoundtobeinsignificantexceptforthe0-degree-deadrisecase.CalculationsofrsingX k-X creshownbyhebrokencurvesinFigure6whereitisseentoproduceasmallmprovementinthefittothedata.ADDEDMASSFUNCTIONS

    Theaddedmassfunctionsusednevaluatingthestabilityerivativesma ynowbe expressedintermsofthehullgeometryandtheintegrationlimitsX cl,X c2,and\.

    Thenondimensionalsectionaladdedmassatthestern,includingthethree-dimensionaleffectsisreadilybtainedfromEquations(61)and(64)through(67)as *(X)M$'2(PQ) 78)

    where

    24

  • 8/13/2019 Ada 030218

    35/73

    Q = r X sinrcosrco sTh enondimensionaladdedmassi nheaveis,romEquation(62)

    where

  • 8/13/2019 Ada 030218

    36/73

    mayeestimatedbymeansofexistingtechniques,22,23ndwillnotbeconsideredfurtherhere.However,theeffectofatowingforcean dmomentwillbeincludedinordertofacilitatecomparisonwithowedmodeldata.Th eontributionsdueoperturbationsinpitchan dheavedisplacementmayeadilye obtainedfromheompleteexpressionsforthesteadytateorceandmoment.hedditionaltermsrequiredoompletethesexpressionsareescribedasfollows. BUOYANCYFORCEANDMOMENT

    Wewillconsideronlyhecasesfo rspeedcoefficientCygreaterthan0.5,wherehewater breaksclearoftheransom,thusfullyventilatingthebacksideoftheboattotheatmosphere.Forthiscasethehydrostaticorcema yes sumedtoac tnormaltothekeel.Theollowing expressionwa sfoundtoitthedatareasonablywell.10'24

    FgS'KX 2inrjQyj (82)whereKsanempiricalcorrectionfactorwhichaccountsforventilationeffectsonthestaticpressure.Ontheasisofpreliminaryanalysisofplaningboattestdata,avalueofKof0.7 wa stentativelyuggestedbyHsu. However,ro mecentextensiveexperimentswith 0-degreeeadriserismaticplaninghull,Brown'0obtainedhebestagreementwiththedataby putting

    K=0.624 83)andassumingthattactsaton ehirdofthemeanwettedlengthfromhestern.incehe presentnalysisdealswithrisr.iatichullsEquation(83)willbeusedinheollowing.he momentbouthecenterofgravityisclearly

    MB S FWih\) (84)SKINRICTION

    Theontributiondu etoskinfrictionsas sumedoacttangentialohebottomandmid-wa yetweenheee indchinelines. Itsgivennermsofthemeanwettedareaby Savitsky5

    2324

    "Uadler,J.B. ,"ThePredictionofPowerPerformanceon PlaningCraft ."Trantact ioniSocietyof NavalArchitectan dMarineIng inee ii.Vol.74.pp .563 6 0 (1966).Rtbner.U.S. ,"PropellerinYaw."NationalAdvitoryCommittee fo rAeronaut i c iReport820(194V).Htu.C .C . ,"Onth eMotionscfHighSpeedPlaningCraft ,"HydronautktRepor tMl VIMt*1967) .

    26

  • 8/13/2019 Ada 030218

    37/73

    FFS '=X Cf/cos0 85)whereth efrictionoeffic ientCfisgivenby

    0.2427q"lo g10hmasaunctionofReynoldsnumber . Themomentaboutth ecenterofgravitysclearlyMR-F FS(\-S) 86)

    TOWINGANDAERODYNAMICFORCESTermssimilartoth eaboveEquation(86)maybewrittenorth eowingan daerodynamic

    forcean dmomentontributions. Theseareassumedhereoac tnain eparalleloheteady partofth etraightlinemotion.* Themoment saboutheenterofgravity,du etoth eow forceTg 'an dwindorceF^',respective ly,are

    MT S *-Tjf0c,,e,) 87)

    where

    steadytateorcean dmomentequations. Theforceequationsresolvedn toavertical(lift)componentan dahorizontal(drag)component . Theif tequationisreadilyobtainedbyetting th eboatweightW equalohesumofth everticalomponentofth evariousorcecontribu-tionsde f inedearlier. Thusinnondimensionalormwehave

    W--Zj(Fjjg'4 -FK)cosr-FFSsinr89)ITmii foodMunipiionforthemodelexperimentducuiardkter.

    2 7

    MWSFWS(k2-e2} 88)f(kn,en)=(X^X v)cosT+(XCTX g)sinr\\ \\=nondimensionaloordinatesofth eowpointwithespectto

    keelathestern;se eFigure23Nc2* e2 oordinatesofth eesultantwindforceNperpendiculardistanceromhekeeloth eenterofgravity

    STEADYSTATEEQUILIBRIUMThesteadytaterimangleran dmeanwettedlengthXbarereadilydeterminedfromhe

    rfrni

  • 8/13/2019 Ada 030218

    38/73

    whereZ 'sth enondimensionalhydrodynamiclift,positivedown .imilarlyth enond imen-sionalowforceFTS 'sse tequalohedragorhorizontalcomponen tofth eorcecontribu-tions. V=-Xs=(FDS+FM)sin+FFS 'osrFws'

    =-Zsan+FFS'/cosr+Fws'=Ds90)whereDs isth enondimens ionaldragofth eboat. Themomentequationsobtainedby summingth eomponents

    Ms=MDS'+MBS'+MFS'+MTS'+Mws 091)whereheomponentmomentsaregivenwithespecttoth eenterofgravity.

    Ifwesubsti tuteEquations(68),(82),an d(85)intoEquation(89)weobtaininallyor th esteadytateif tequation W'=-ZP'=5rTsincos2(1-sin)+Cn.X sin2cos3os1+A 2 ,t

    0.624 2^+X^inTcosT-XCfsinT/COSp (92)Ifwemultiplyhisequationby+XweobtainheollowingformofEquation(92)asacubicequationinX .

    whereDX3+(C+D+E)X2+(B+C-E-W)X-W 0

    B-^ s inTcos21-sin)CC JJ in2cos 3cos

    (93)

    D 0.624sinrcosr/CvE=-CfsinT/COS0 94 )

    Subst itut ingEquations(69),(77),(84),(86),(87),(88),an d(90)intoEquation(91)yields

    , ir sin2r(l-s in XMS=4X0.624

    (z s

    1*M(X+h(r)-X g) CDc(sin2r)2co tj i-X,) -XCrJf(k,,e,)+Fwsf(k2,e2)=0an -FWo'cosTcosp wa (95)

    28

  • 8/13/2019 Ada 030218

    39/73

    whereh(r)=X c2--cl (Q6)

    Equations(93)and(95)mustbesolvedorX andTbyaniterativerocedureinwhichsuccessivevaluesofrreassumed. Equation(93)issolvedorXoreachassumedvalueof T. SuccessivepairsofXandThu sdeterminedaresubstitutedintoEquation(95)untilts magnitudebecomesequalozerowithinsomeprespecifiedamount. Inheresentnalysis thiswastakenas0.002/Cv2.

    STATICSTABIL ITYDER IVATIVESAsnotedeafertheorceandmomentstabilityerivativeswithretnectoheheaveand

    pitchvelocityandaccelerationerturbationsarereadilyobtainedromEquations(47)and(50).Thereonlyemainstheas kofobtainingthederivativeswithrespectoheheaveandpitch angledisplacementerturbations.ThesearereadilyobtainedwithheaidoftheexpressionsforZsndMg'inEquations(92)an d(95). Since,oragivendeadriseandspeed,heyare functionsonlyfX(z\T)ndwehaveforthederivativeswithespectotheheaveandpitcherturbations

    a zd z

    a x 'a _5 73 Z30

    *3 03M30

    3X3Xs3X3Ms3X

    T

    3XsdrM

    3 z

    3Xa? 3X?

    hbJ* 3 X3 XT3 Xs3 X3 M

    3XT

    S3X

    ( 9 7 )

    ( 9 8 )

    ( 9 9 )

    ( 1 0 0 )

    ( 1 0 1 )

    ( 1 0 1 )dr 3X 3rwhereallotationsarewithrespectohecenterofgravity;z '= z/bandz equalsperturbationinheavedisplacement,ositivedown. FromEquations (90),(92),and(95)wer:adilyind

    &

  • 8/13/2019 Ada 030218

    40/73

    3X

    3T

    where

    3X 3X 3T

    3X

    . /cosr\2-Gs in -- -Hs iniCOSJ-2JinosT+Cfs inT/COS-G-co s3 s in2COST) -HX(2s inTos4-3os 2ts in3)- X-osTC j -XosT/COS3ZS'FFS' 3ZS':-rr-an -rr-rr-an3XX cosr 3\

    Zo ' Fccan 3ZS's ta n3TOC-3Z S'S ^ FS_tanT+y-+ 77o"os T Gs inosT K m ) 2 ( X +h(r)-X g)+h]+Hin2cos2X-X g)+JinX(X-2X g)

    3Ms* 3r

    1

    ta n cos2r(X+h(r)-X g)(0.1570.00025)

    &&-0 (-- afe)'*-T*l['+HXXg)sin2rcos2r+JX 2Xgjc/3ZS's CfXtnA+ ( , anT+ snr^/fk, ,e i- stanr-Tf-Fws) -

    g(kn.f)=X kn-X v)sinr-(Xen-g)COST G=ir(lsin0)/2H-CDccos?J 624/Cv2

    30

    (103)

    (104)(105)

    (106)

    (107)

    e,)-Fws'g(k2.e)108)(109)

  • 8/13/2019 Ada 030218

    41/73

    AlsowithheaidofEquations(76)an d( 7 7 )an dFigure20itseasyoshowhat 3z ' sir.T g=_(X 1 +X v)+( 0 . 5 7 0 . 0 0 1f )JSLLr \anr v/sin2f (110)(111)

    STABIL ITYEQUATIONSTheotalnondimens ionalforcean dmomentequationsmaynowbewrittenas

    (D 3z ' 30' u '= T s '+X s'+A X D ' +0+|f+A T sm'z'=W'+ZsAZD '+ p-z * 80

    whereV* . ' *+ f

    m'-=nondimens ionalmassofth eboatpb3

    Iy1 ' =nondimens ionalpitchmomentofinertiaabouthe 2penterofgravity ATS'- ATcIpU^b2 =perturbationnoworce

    FromhetaticequilibriumEquations(89)hrough(91)weequirehat V+*S=0w+V=0Ms =0

    (112)

    (113)

    (114)

    (115)Ifth ebodysfreeosurgehenATS'szero. Ifih ebodysrestrainednurgeu'an d'areero,an dhepitchan dheavemotionsareuncoupledromsurge.

    Assumingthathebodysre etosurge,hestabilityquationsatheequilibriumlying conditionsareobtainedSyputt ingATS qualozeroan dsubstitutingEquations(47),(49),(50),an d(115)intoEquations(112)through(114). Thisleadstoth eollowingequat ions

    3 1 "

  • 8/13/2019 Ada 030218

    42/73

    wheretheprimeshavebeenomittedorconvenience.(X y-m) +\u+X ^z+X zz+X zz+XQ6XQ6X00Z ^ +Zuu+(Z~m)z+Zzz+Zzz+ZQ Z 6 Zd=0M+MuuMz+Mzz+Mzz+(M g-Iy)0MgM90

    whereheorcederivativesareZ=- f i C K )s inTcosrJn ds'Zu=-*>(X)M$'inrcos2Z-z-- < p ( X )cos2/ ds ' Zi-2

  • 8/13/2019 Ada 030218

    43/73

    Thentegrationsarerom0toX k.heevaluationoftheaddedmasstermsareeadilyobtainedwiththeaidofEquations(78)through(81).hestaticderivativesaregivenbyEquations(97)through(108).TheexpressionsforFDS andD< j aregivenyEquations(68)and(69).

    ItsseenromEquation(119)thatorsmallrimanglesthederivativesoftheX-equation areconsiderablysmallerthanthoseoftheZ-equation.Undertheseconditionsitisreasonable toexpectha thenfluenceofthesurgedegreeoffreedomonheorpoisingstabilitywouldbesmallenoughothatheX-equationcouldbeomitted. Inanyase,iftheboatisbeingtowedtonstantspeed,then,aspreviouslynoted,valuesofuandinEquations(117)and(118)arezero.Thiseffectivelyncouplesthesurgedegreeoffreedom,andhestabilitymaybedeterminedromhepitchandheaveequationsalone. Inheresentinvestigation,allof thedataavailableforcheckingtheheorywerebtainedbyusingplaningboatmodelstowedatonstantspeed. Forthesereasonsnumericalalculationshavebeenmadeusingonlythe pitchandheavestabilityquations.

    3 3

  • 8/13/2019 Ada 030218

    44/73

    APPEND IXBESTIMATES OFEFFECTOFWINDAGEANDCHINEADIUSONSTABIL ITYDER IVATIVES

    AhighmetalrameworkwasattachedohemodelsofDayan dHaag.4 Itspurposewas tosupportscribeorrecordingth emotionafterth eboatstartedoporpoise . Thisintroduced asmallaerodynamicdragan dmomentonhemodel . Theollowingestimatedvaluesfo rthisdragwereusednheomputat ions

    Fws=O.O32X e2=.3\k2=2.6

    Shuford21oundhatasmalladiusonhechinewillaccountoraeductionnliftof5o0percent-correspondingtoa1/64-an d1/16-inchadius,respectively ,on4-inch-beam,f lat-bottom,planingsurface. Onhebasisofchineradiusmeasurementsobtainedromatypicalwoodmodel ,twasestimatedhathemodelsusedbyD ayan dHaaghadaboutapercentos sindynamicift. Theheoreticalalculationswerehereforemodifiedoak ehis intoaccount. Thisamountedoreducingth emagnitudeofPan d0inEquations(78)through (81)an dGan dHnEquations(103)hrough108)bypercent .

    35 HtSCEDINPi

    **""' ' * IHI I

  • 8/13/2019 Ada 030218

    45/73

    M,0,0.0

    Z,Z,2,2Figure-CoordinateSystem

    36

  • 8/13/2019 Ada 030218

    46/73

    0.31

    0.2

    0. 1a .>

  • 8/13/2019 Ada 030218

    47/73

    82n* O

    VUJUio r >O 5 2uJC M U M" o t> o osU J

  • 8/13/2019 Ada 030218

    48/73

  • 8/13/2019 Ada 030218

    49/73

    14

    12

    10c/jLLUe r oLU QLU-IUZ

  • 8/13/2019 Ada 030218

    50/73

    THEORYS E E.4)OAD MEASUREMENTS

    0=0.5

    REGIMEOFPORPO I S ING

    REG IMEOFSTABLE PLANING13

    S P E E DCOEFFICIENT,CvFigure6-Compar i sonofTheoret ica la ndMeasuredPorpois ingBoundar iesfo readriseo f20.5egrees

    4

    im

  • 8/13/2019 Ada 030218

    51/73

    16

    14-

    12-C O U iU JU J OUI1 8 0.48

    CA=0.36rv

    /kA

    yDREG IMEIFSTABLEPLANING

    - So A 0AEASUREMENTS0 A

    4-

    0. 1 0.2 0.3 0 .4LOADSPEEDACTOR,VcT/2Figure-VariationofCriticalTrimAnglewithLoadSpeedFactorfo rVariousLoadings.DeadriseAngleof0Degrees

    42

    *M*

  • 8/13/2019 Ada 030218

    52/73

    16

    14

    12C OUlL U cUlD 10KUJ-ICz

  • 8/13/2019 Ada 030218

    53/73

    16

    14

    12V ) UJ UJ o coUJQut>

    U J-IZ

  • 8/13/2019 Ada 030218

    54/73

    1 .5

    O 1 .0

  • 8/13/2019 Ada 030218

    55/73

    2.0E

  • 8/13/2019 Ada 030218

    56/73

    Figure2-VariationofCriticalTrimAnglewithLoadSpeed Factoran dRadiusofGyration-BeamRatio

    47

    12

    1 0

    Vu iU Jtr 8(3U IQUJ_JZ 6

  • 8/13/2019 Ada 030218

    57/73

    0. 1 0.2.3LOADS P E EDACTOR,^CLb/2 0. 4Figure3-VariationofCriticalTrimAnglewithLoadSpeedFactoran dLoadCoef f i c i ent

    48

  • 8/13/2019 Ada 030218

    58/73

    1.5

    0. 51. 5

    2.

  • 8/13/2019 Ada 030218

    59/73

    1 .5

    2 1 .0

  • 8/13/2019 Ada 030218

    60/73

    2.4

    2.0

    1 .6

    : 1 .2

  • 8/13/2019 Ada 030218

    61/73

    Figure7-ComparisonofTheoreticalValuesofCriticalTrim AngleswithDavidsonLaboratoryMeasurements12.0

    10.0-

    o mQ

    L U-Ioz

  • 8/13/2019 Ada 030218

    62/73

    12.0,v/p0.286

    10.0

    COUJL UD C C 3 LUQ

    ut.LL I-Jo z

  • 8/13/2019 Ada 030218

    63/73

    0.40

    0.30

    0.20

    It* V 0.100 .08h0 .060 .050 .040 .03-0 .02-

    I iCONDITION

    I PROJECTEDCHINEENGTHCA MODEL MEANCHINEBEAM

    1 2 0A 0.38 4665 )> 2.360.24 4665 3 f c > 0.35 4666

    0 v 4 D 0.50 4666 3.69_ _ 5 o 0.80 4666 /6 V 0.86 466/1 5.007 t > 1.33 4668 6.72N \

    HULLS ,=10.6.3 6 UNSTABLE\A .0.48

    2.5\-0.72 \ mm 1 A\ - STABLE\ > [ C O

    I I I1567890VOLUMETRICFROUDEUMBER ,U>/gV1/FigureH-Compar i sonofApprox imateEst imatesofPorpois ingBoundarieso fReference8withTMBSeries62ModelData

    54

    mtrnti

  • 8/13/2019 Ada 030218

    64/73

    r

    o00

    o3 fto~O -Iu

    _o

    I _o00 otoI

    oin ooe n?v oto oin o c s i o

    * '310NVwiaiivouiao

    s .za50 S QZcoS :/ ;^=0Sao IS 'S0 1I ~

    8 >rtOC *S.2'7" -I* a*e MeeS IIa1U g

    a cM

    S5

    JU

  • 8/13/2019 Ada 030218

    65/73

    30e '( 7 5>.

    c /5 ^ =i .'J E

    8g3S OII

    56mmwmwiftw

  • 8/13/2019 Ada 030218

    66/73

    {\

  • 8/13/2019 Ada 030218

    67/73

    i jJ < > z /U J /o c /tu /"- /U J /

    //c a . ;/C O //O //

    /7/ -////i ff

    oCO

    00d

    o

    s8

    -3

    -8oCM

    01 SOc

  • 8/13/2019 Ada 030218

    68/73

    FwsWINDORCETsOWINGORCE

    Figure ^-CoordinatesofTowPointandCenterofWindForce

    59

    --

  • 8/13/2019 Ada 030218

    69/73

    REFERENCES1 .erring,W.G.A.an dH.dauert,"StabilityntheWaterofaSeaplaneinthePlaningCondition,"AeronauticalRssearchCouncil,TRVol.42(Sep933).2.utowski,R.N.,"AComputerProgramorVariousPerformanceAspectsofPlaning Craft,"ThesissubmittedtoStevensInstituteofTechnology,CastlePoint,Hoboken,N.J.1973).3.ayne,.R.,CoupleditchndHeavePorpoisingInstabilityinHydrodynamicPlaning,"JournalofHydronautics,Vol.,No .(Apr974).4.ay ,.P .ndR.J.Haag,PlaningBoatPorpoising"ThesisSubmittedoWebbInstituteofNavalArchitecture,GlenCove,LongIsland,N.Y.May952).5.avitsky,D.,"HydrodynamicDesignofPlaningHulls,"MarineTechnology,(Oct964).6.artin,M.,"TheoreticalDeterminationofMotionofHigh-SpeedPlaningCraftin

    Waves."DTNSRDCReport6-0069(Apr976).7.r idsma,G.,ASystematicStudyofRough-WaterPerformanceofPlaningBoats,"DavidsonLaboratory,StevensnstituteofTechnology,Hoboken,N.J.,Report27 5Nov969).8.lement,E.P.ndD.Blount,ResistanceTestsofSystematicSeriesofPlaningHullForms."TransactionsSocietyofNavalArchitectsandMarineEngineers,Vol.1,p.491-561 (1963).9.avidson,K.S.M.ndA.Suarez,"TestsofTwentyRelatedModelsofV-Bottorr.MotorBoats-EM BSeries50,"DavidTaylorModelBasinReportRA1(1949).

    10.rown,P.W.,"AnExperimentalan dTheoreticalStudyofPlaningSurfaceswithTrim Flaps."DavidsonLaboratory.StevensnstituteofTechnology,Hoboken,N.J.,Report463 (Apr971).

    11.gnelli,J.C.,EvaluationoftheTrimofaPlaningBoattnceptionofPorpoising," presentedtSpringMeetingofSocietyofNavalArchitectsandMarineEngineers,LnkeBuenaVista.ia .Apr973).12.unk,M.,"TheAerodynamicForcesonAirshipHulls"NationalAdvisoryCommitteeforAeronauticsReport84(1924).13.ones,R.T.,"PropertiesofLow-Aspect-RatioWingsatSpeedsBelowndAbovethe SpeedofSound,"NationalAdvisoryCommitteeorAeronauticsReport351946).14.ryson,A.E.,Jr.,"StabilityDerivativesforaSlenderMissilewithApplicationtoa Wing-BodyVerticalTailConfiguration,"JournalofAeronauticalSciences,Vol.0,No .,pp .297-308(1953).15.ayo,W.L..Analysisan dModificationofTheoryorImpactofSeaplanesonWater,"NationalAdvisoryCommitteeorAeronauticsReport10(1945).

    60

    Ml

  • 8/13/2019 Ada 030218

    70/73

    16.ilwitzky,B.,"AGeneralizedTheoret icalan dExperimentalnvestigationofth eMotionsan dHydrodynamicLoadsExper iencedbyV-Bot tomSeaplanesDuringStep-LandingImpacts,"NationalAdvisoryCommit teeorAeronauticsTN1516(1948).17 .chnitzer,E .,"Theoryan dProcedureforDetermin ingLoadsan dMotionsinChine -ImmersedHydrodynamicImpactsofPrismaticBodies ,"NationalAdvisoryCommit teeforAeronauticsReport15 2(1953).18.abst,W.,"LandingImpactofSeaplanes,"NationalAdvisoryCommit teeorAeronauticsTM624(1931).19.agner,H. ,"ThePhenomenaofImpactan dPlaningonWater,"NationalAdvisory Commit teeorAeronauticsTranslation1366,ZAMMBd12,Heft4,pp.93-215Aug1932).20.amb,H. ,"Hydrodynamics,"SixthEdit ion ,CambridgeUniversityPress,England

    (1932).21 .huford ,C.L. ,Jr.,"ATheoret icalan dExperimentalStudyofPlaningSurfacesIncludingEffect sofCrossSectionan dPlanForm,"NationalAdvisoryCommit teeor AeionauticsReport13551957).22.adler,J.B.,"ThePredictiono i* PowerPerformanceonPlaningCraft,"TransactionsSocietyofNavalArchitectsan dMarineEngineers,Vol .4,pp .563-610(1966).23 .ibner,H.S.,"PropellersinYaw,"NationalAdvisoryCommitteeorAeronautics Report820(1949).24.su ,C.C . ,"OnheMotionsofHighSpeedPlaningCraft,"HydronauticsReport603-1May967).

    6 1 ....

  • 8/13/2019 Ada 030218

    71/73

    INITIALnSTRIBUTIONCopies

    1 WE S1 CHONR /43 8 Cooper2 NR L

    1 Code20271 Code2629

    1 ONR/Boston1 ON R/Chicago1 ONR/Pasadena1 NORDA4 USNA

    1 Techib1 Na vSysngDept1 B .Johnson1 Bhattacheryya

    3 NAVPGSCOL1 Libra ry1 T.Sarpkaya1 J .Miller

    1 NADC1 NELC / L i b3 NUC,Saniego

    1 L ibra ry1 Fabula1 Hoy t

    1 NCSL / 7 12 D.umphreys1 NCEL /Code311 NSWC.ahlgren1 NUSC/L i b7 NAVSEA

    1 S EA03221 SEA0331 S EA03512/Peirce1 SEA0373 S EA09G32

    Copies1AVFAC/Code032C1AVSHIPYDPTSMH/Lib1AVSH I PYDPHILA/Lib1AVSH I PYDNORVA/Lib1AVSH I PYDCHASN /L i b1AVSH I PYDBEACH/L ib2AVSH I PYDMARE

    1 Libra ry1 Code250

    1 NAVSH I PYDREM /L i b1 NAVSH I PYDPEARL /Code202.328 NAVSECSEC034BSEC1 1 0SEC114HSEC1 20SEC1 36SEC140BSEC144GSEC1 48

    1AVSEC ,ORVA/6660 .03 Blount12 DDC

    AFOSR /NAMAFFOL/FYS,J.OlsenNSF/EngibLC/Sci&TechDOT/L ib TAD-491.1

    2MA1 Cap tMcCready1 Libra ry

    1 U.o frklgeport /E.Uram

    63H O TUHSD

    mTti

  • 8/13/2019 Ada 030218

    72/73

    Cop i e s4

    Cop ies U.ofCal/Depta v a lArch,erkely

    1 ibrary1 Webste r1 Pau l l ing1 Weh a u se nU.ofa l,a ni ego

    1 A.T.llis1 Scr ippsos tLibCIT

    1e roib1.Y.Wu1.cost aCityol lege,WaveHill/PiersonCatho l icU.o fAmer./Civil MechngCo lo r adota teU./Enges CenU.fConnecticut/ScottronCornel l. / S e a r sFloridaAtlantic.

    1 TechLib1 S .unneHarvardU.

    1 G .a r r i e r1 GordonMcKayibU.ofawa i i /Bre tschne ide rU.ofllinois/J.obe r t s onU.fow a

    1 L i b r a r y1 L andwebe r1 KennedyJohnsopk insU./PhilhpsKansa sSta teU./NesmithU.ofan s a s / C i v i lngLibLehighLUFrlt?-gLabLib

    MITLibrary LeeheyMandelAbkowitzNewman

    U. ofMinn/St.AnthonyFallsSilberman Schiebe

    1 WetzelSong

    u .ofMich/NAMELibrary OgilivieHammittu .ofNotreDameEngLib Strandhagen

    NewYorkUVCourantns t1 A.eters1 J.tokerPennState/Arl/B.arkinPr incetonU./MellorSIT

    111 11

    ibraryBrestinSav i t skyP .W.rownFridsma

    U.fexas/ArlibUtahta te. / JeppsonSou thwes tesns t

    1 Appl i edMechev1 Abr amsonStanfordU.

    1 E ngib1 R.St ree t

    64

  • 8/13/2019 Ada 030218

    73/73

    Copies Copies1 Stanfordesnst /L ib 1 RobertTaggart1 U.ofWashington/ArlTechib 1 Tracor3 Webbns t

    1 L ibrary CENTER1 Lewis1 Ward Copies CodeWoodsHole/OceanngWorchesterPl /TechibSNAME/TechibBethlehemSteel/FarrowsPointBethlehemSteel /NewYork /L ibBolt,eranek ewman/L ibExxon ,Y/Designiv ,Tankep tGeneralynamics,B/BoatwrightGibbs&Cox/TechnfoHydronaut icsLibra ryE .MillerA.GoodmanV.Johnson

    C.C.Hs uLockheed,Sunnyvale/WaidMcDonnellouglas.ongeach

    1 J .e s s1 T.CebeciNewportew sShipbui lding/LibNielsenng&e sOceanic*Rockwellnternational /B.UjiharaSperryand/Techib

    10

    30

    1500 W..Cummins1504 V.J.Monacella1506 M.K.Ochi1507 D.Cieslowski1512 J..Hadler1520 R .Wermter1521 P .Pien1524 Y.T.Shen1524 W.C.in1532 G .obay1532 R .oddy1540 W..Morgan1552 J.McCarthy1552 N.Salvesen1560 G .Hagen1560 N.Hubble1562 M.Martin1564 J.eldman1568 G .Cox1572 M..Ochi1572 E .Zarnick1572 C.M.ee1576 W.E .Smith5214.1 ReportsDistr ibut ion5221nclassifiedibraryC)5222nclassifiedibraryA)