12
Coptight Q IFAC Artificial Intelligence in RealTime Control, Valencia, Spain, 1994 NEURAL NETWORK BASED ADAPTIVE CONTROL E.F. CAMACHO and M.R. ARAHAL. Dpto. Ingenieria de Sistemas y Autombtica, Univ. of Seville, Spain. Abstract.This paper presents differents ways of using artificial neural networks in adap- tive control. A classification of architectures for control using neural networks is pre- sented, showing the existing paralelism with Adaptive Control techniques. Key Words- Adaptive control; Automatic control; Neural nets; Nonlinear control systems. 1. INTRODUCTION The Control Theory for linear processes has for some time been considered a well established scientific discipline with powerful techniques for analyzing and designing controllers. The main problems in process control when applying the Linear Control Theory are caused by the fact that: a) A linear mathematical model of the plant is needed and finding one is not a trivial problem in many cases. b) Mathematical models of real processes can- not take all aspect of reality into account. Sim- plifying assumptions have to be made and mod- els are only approximations of reality. c) Most processes are non linear, having non- linear dynamics and nonlinearities caused by actuators that have a limited range of action and a limited slew rate, as in the, case of con- trol valves, which are limited by fully closed and fully open positions and a maximum slew rate. Constructive and/or safety reasons, as well as sensor ranges, cause limits in process variables, as in the case of tank levels, pipe flows and pres- sures in deposits. d) Because of changing environmental condi- tions, such as ambient temperature, humidity etc., most processes are not time invariant. These problems have been extensively treated 13 in literature and some new disciplines have ap- peared to address them. Some of the dis- ciplines have evolved around the Linear Sys- tems Control Community, as is the case of Robust or Adaptive Control while other disci- plines have developed around the Artificial In- telligence Control Community, as is the case of expert, fuzzy, or Neural Control. In Robust Control the process is usually mod- eled by a linear model and some of the prob- lems mentioned above are treated by consider- ing uncertainties about the model. The main assumption in most cases is that the underlay- ing process is linear. In Adaptive Control the main idea is that by an appropriate adapta- tion mechanism, the controller and/o1 model of the process, linear in most cases, will cope with unknown, changing and possibly nonlinear dy- namics. Advanced control strategies, normally based on an exact cancellation of the nonlin- ear dynamics (Craig, 1988) have to be used for nonlinear processes such as robots. The uncer- tainties on the dynamic parameters of the pro- cesses, such as inertias and payload conditions in robots, have motivated the design of adap- tive controllers (Slotine and Li, 1990; Kelly, Carelli and Ortega, 1989; Ortega and Spong, 1988). This type of controller is designed as- suming an exact knowledge of the model struc- ture and does not include aspects, such as non- linear frictions, elasticity in the joints and links, backlash and torque perturbations, which can be found in robots.

Adaptive 1994 Nn Ad Con Camacho

Embed Size (px)

DESCRIPTION

Adaptive 1994 Nn Ad Con Camacho

Citation preview

Coptight Q IFAC ArtificialIntelligencein RealTime Control,Valencia, Spain, 1994 NEURALNETWORKBASED ADAPTIVECONTROL E.F.CAMACHOandM.R.ARAHAL. Dpto.IngenieriadeSistemasyAutombtica,Univ.ofSeville,Spain. Abstract.Thispaperpresentsdifferentswaysof usingartificialneuralnetworksinadap- tivecontrol.Aclassificationofarchitecturesforcontrolusingneuralnetworksispre- sented,showingtheexistingparalelismwithAdaptiveControltechniques. KeyWords-Adaptivecontrol;Automaticcontrol;Neuralnets;Nonlinearcontrolsystems. 1.INTRODUCTION TheControlTheoryforlinearprocesseshasfor sometimebeenconsideredawellestablished scientificdisciplinewithpowerfultechniquesfor analyzinganddesigningcontrollers.Themain problemsinprocesscontrolwhenapplyingthe LinearControlTheoryarecausedbythefact that: a)Alinearmathematicalmodeloftheplantis neededandfindingoneisnotatrivialproblem inmanycases. b)Mathematicalmodelsofrealprocessescan- nottakeallaspectofrealityintoaccount.Sim- plifyingassumptionshavetobemadeandmod- elsareonlyapproximationsofreality. c)Mostprocessesarenonlinear,havingnon- lineardynamicsandnonlinearitiescausedby actuatorsthathavealimitedrangeofaction andalimitedslewrate,asinthe,caseofcon- trolvalves,whicharelimitedbyfullyclosedand fullyopenpositionsandamaximumslewrate. Constructiveand/orsafetyreasons,aswellas sensorranges,causelimitsinprocessvariables, asinthecaseoftanklevels,pipeflowsandpres- suresindeposits. d)Becauseofchangingenvironmentalcondi- tions,suchasambienttemperature,humidity etc.,mostprocessesarenottimeinvariant. Theseproblemshavebeenextensivelytreated 13 inliteratureandsomenewdisciplineshaveap- pearedtoaddressthem.Someofthedis- ciplineshaveevolvedaroundtheLinearSys- temsControlCommunity,asisthecaseof RobustorAdaptiveControlwhileotherdisci- plineshavedevelopedaroundtheArtificialIn- telligenceControlCommunity,asisthecaseof expert,fuzzy,orNeuralControl. InRobustControltheprocessisusuallymod- eledbyalinearmodelandsomeoftheprob- lemsmentionedabovearetreatedbyconsider- inguncertaintiesaboutthemodel.Themain assumptioninmostcasesisthattheunderlay- ingprocessislinear.InAdaptiveControlthe mainideaisthatbyanappropriateadapta- tionmechanism,thecontrollerand/o1modelof theprocess,linearinmostcases,willcopewith unknown,changingandpossiblynonlineardy- namics.Advancedcontrolstrategies,normally basedonanexactcancellationofthenonlin- eardynamics(Craig,1988)havetobeusedfor nonlinearprocessessuchasrobots.Theuncer- taintiesonthedynamicparametersofthepro- cesses,suchasinertiasandpayloadconditions inrobots,havemotivatedthedesignofadap- tivecontrollers(SlotineandLi,1990;Kelly, CarelliandOrtega,1989;OrtegaandSpong, 1988).Thistypeofcontrollerisdesignedas- suminganexactknowledgeofthemodelstruc- tureanddoesnotincludeaspects,suchasnon- linearfrictions,elasticityinthejointsandlinks, backlashandtorqueperturbations,whichcan befoundinrobots. TheAItypeofapproachestrysomehowtore- producethebehaviorofhzlmancontrollersthat areabletousenaturalintelligencetocontrol processesexhibitingalltheproblemsdescribed. Afurtherdifferenceinbothapproacheshas beenthatwhiletheLinearControlCommu- nityapproachseemedtobemoreinterestedin demonstratingresultsaboutstabilityofpro- posedcontrolschemes,theAIControlCom- munityseemedmoreinterestedinshowingthat thetechniqueworkedonparticularprocesses. Thisishoweverchanginglatelyandthereare anumberofworksrelatingbothtypesofdisci- plines.Stabilityanalysisisoneoftheconverg- ingfieldsandsomeresultshaveappearedin Iiteratureestablishingconditionstoensurethe stabilityofAIcontrollers(Aracil,Olleroand Garcia-Cerezo,1989).AdaptiveControlisan- otherfieldwherethereisastrongconfluence withAIcontrollers.Theideaofadaptationis stronglylinkedtotheideaoflearningwhichis fundamentaltoNN. NeuralNetworkbasedcontrollershavereceived muchattentioninrecentyears.Thistype ofcontrollerexploitsthepossibilitiesofneu- ralnetworksforlearningnonlinearfunctions and/orthepossibilitiesofneuralnetworksto solvecertaintypeofproblemswheremassive parallelcomputationisrequired.Thelearn- ingcapabilityofNNisusedtomakethecon- trollermapacertainfunction,highlynonlin- earmostofthetime,representingdirectdy- namics,inversedynamicsoranyothercharac- teristicsoftheprocess.Thisisusuallydone duringa,normallylong,trainingperiodwhen commissioningthecontrollerinasupervisedor unsupervisedmanner(Psaltis,SiderisandYa- mura,1988).Ifthelearningcapabilityofthe NNisnotswitchedoffafterthetrainingpe- riod,oncethecontrolleriscommissioned,the NNbasedcontrollerworksasanadaptivecon- troller.TheabilityofNNforparallelcompu- tationhasbeenexploitedtoimplementcon- trollerswhichrequireasubstantialamountof computation,suchaslongrangepredictivecon- trollerswhereaquadraticoptimizationprob- lemhastobesolved(QueroandCamacho, 1990). ThispaperdealswithadaptiveNNcontrollers fornonlinearprocesses.Neuralnetworks,as wasmentionedbefore,havetheabilityoflearn- inganonlinearmodelwithoutapriorknowl- edgeofitsstructure(LightbodyandIrwing, 1992)andareadequateforworkinginrealtime becauseofitshighparallelism.NNseemstobe analternativewayofsolvingsomeoftheprob- lemsmentionedabove.Thatis,nonlinearpro- cesseswithnonecessarilyknownand/orchang- ingdynamics.Themainobjectiveofthispaper istoshowhowNeuralNetworkscanbeusedfor adaptivecontrolandtoexploretheparallelism foundinNeuralNetworkControlandAdaptive Control. 2.NEURALNETWORKBASEDCONTROL ThehistoryofNNcanbetracedbacktothe 40swiththefirstmodelsofbiologicalneural cells.Afirststepinconnection&twasdoneby McCullochandPitts(1943)thatmodeledan artificialneuronandstudiedthepropertiesof theresultingnetwork.Hebbobservedthata strengtheningoftheconnectionsbetweenneu- ronsoccurswhenonecellstimulatesanother whenthelatterisfiring.Thisobservationwas usedbyGrossberginthe60stomodelneu- rallearning.Hebbiantypeofrulesforlearning wereusedbyRosenblattsPerceptron(1958) thatwaslaterstudiedindepthbyMinskyand Papert(1969).Agradientdescentmethod calledthedeltarulewasusedbyWidrow andHoff(1960)totrainaNNwhosenodesare calledADALINE(AdaptiveLinearElement). Thebackpropagationtrainingalgorithmdevel- opedinthe70sand80sisanothermilestonein thehistoryofartificialNN.Itallowedfornet- workswithhiddenlayerstobetrained,over- comingtheproblemsthatperceptronhadof representingcertaintypeoffunctionssuchas theexclusive-ORfunction(MinskyandPapert, 1969).TheintroductionoffeedbackinNNpro- duceddynamicalsystemswithvariousequilib- riumpointsthatwereusedasassociativemem- ories:Hopfield(1982)devisedadynamicstruc- turethathasbeenwidelyusedforthesolving ofoptimizationproblems. NNabilitiesweresoonappliedtochallenging controlproblems.Barto,SuttonandAnder- son(1983)solvedthewell-knownproblemof balancingapoleinacart.Theydiscussedan importantaspectoftrainingNN:thecreditas- signmentproblem.Backpropagationruleneed tobetoldtheerrormadeatanytime,but insomecasesitisonlyknownthatanerror hasbeenmade.NguyenandWidrow(1990) exploitedtheabilityofNNtolearnnonlinear functionsintheproblemofthedockandthe trailertruck.Backingatrailertrucktoaload- ingdock,isahardtaskevenforhumans.The controisignalwasgeneratedbyaNNprevi- ouslytrainedusingbackpropagationwiththe helpofanemulator.Theemulatorconsists ofanotherNNthatidentifiestheplant,ithas thesameinputsastheplantplusthestateof 14 theplant.Theoutputofthenetisanestima- tionoftheplantsnextstate(usingadiscrete- timerepresentation).Backpropagatingtheer- rormadeintheprediction,thenetlearnsthe behavioroftheplant.Oncetheemulator knowstheplantsdynamicswithacertainac- curacy,thetrainingofthecontrollerbegins.It iscommissionedbyusingb~ckpropagationof erroratthefinalstate,Theaimistofindthe weightsthatminimizeameasureofthestates errorateachtimestep.But,astheerrorisonly availableinthefinalstate,ithastobeback- propagatedthroughtheplantemulatorinorder toestimatethecontrollerserrorateachstep. Fromtrialtotrial,eachonehavingdifferentini- tialconditions,thecontrollerisdrivenbythe emulatortogivethecorrectcontrollaw.The factthattherealplantcarmotbeusedtoback- propagatetheerrorsmadebythecontrollerex- plainstheneedforanemulator. AnotherwayofviewingNNincontrolisas look-uptables.TheNNstorescontrolsignals, giventhestateoftheplantandthenext-step desiredstate.In(KraftandCampagna,1990)a NNwasusedtocontrolthreetypesofsystems: linear,linear+noiseandnonlinear.Theper- formanceoftheNNcontrollerwascompared withacoupleofadaptivecontrollers:STRand MRACshowinggoodcharacteristics. In1990thefirstnumberofthenewmag- azineIEEETransactionsonNeuralNetwork appeared,anditsfirstpaper(Narendraand ~arth~arathy~1990)wasdedicatedtotheap- plicationofNNtocontrolandidentificationof nonlinearsystems.Theysuggestedstructures foridentificationandcontrolofnonlinearsys- temswithunknowndynamicsusingNN.Based onsimpleoperations:1)timedelay,2)summa- tionandmultiplicationbyaconstantand3) thenonlinearactivationfunction,theytreated recurrentandmultilayernetworksinaunified fashion.Theyusedtheterm~~~er~~~~e~NNto namethenetsresultingfromthecombination oftheabovelistedbuildingblocks.Amethod thatallowstheparametersoftheNNtobe dynamicallychangedwaspresentedasanex- tensionofstaticbackpropagation.Bysimula- tionstudiestheyrevealedtheeffectivenessof suchstructurestoidentifyandcontrolnonlin- earplantswithunkno~v~structureandparam- eters. SannerandSlotine(1992)proposedanewar- chitectureforadaptivecontrolusingGaussian NN.AGaussianNetworkusesGaussianradial basisfunctions(RBF)initsnodestoapproxi- mateanonlinearfunction,Providedthatsuch afunctionhassomedegreeofsmoothness,it wasshownthatthesystemformedbytheplant andacontrollerusingtheNN,isstableandthat thetrackingerrorwillconvergetoaneighbor- hoodofzero.Theaimoftheauthorswasto developstableadaptivearchitecturescapable ofexploitinganalogdesignsforthecontrolof continuous-timenonlineardynamicsystems. Letsconsideraplantwhosedynamicshavea nonlinearexpressionrelatingthen-thderiva- tiveofthestatewiththestateanditsn-1 firstderivatives.TheroleoftheNN,consist- inginasinglelayerofnodespossessingradial Gaussiancharacteristics,istoprovideanesti- mationofsuchafunctionatanytime.Thatis, thenethastouniformlyapproximateacontin- uousfunctionwithaprespecifiedaccuracyon acompactsubsetofRusingafinitenumberof nodes.Itisnecessarytoprovethatsuchafunc- tioncanberepresentedasalinearcombination ofasetofcontinuous,knownbasisfunctions. SannerandSlotineshowedthatthisapproxi- mationcanbedoneusingGaussianradialba- sisfunctions.Theresultingsystemadjuststhe networksweightswhilecontrollingtheplant. Nopriorlearningisneeded.Aslidingmode controlissetuptopreventthetrackingfrom degradingwhenthestateoftheplantisoutside theregioninwhichtheNNhasgoodperfor- mance. NNhavebeenusedtodesigncontrollersfor highlynonlinearprocessessuchasrobotma- nipulators(Kawatoetal.,1987).Adaptive feedbackcontrollerhasbeenproposedbyGuez andBar-Kana(1990) NNhavealsobeenusedtoimplementlong rangerecedinghorizonpredictivecontrollers. Long-rangepredictivecontrollers(LRPC),or ModelPredictiveControllers(MPC)asthey arecalledinthedomainoftheprocessindus- try,havereceivedalotofattentioninrecent years.Al1 thesecontrollersarebasedonthefact thattheprocessoutputcanbepredictedover ahorizonfromthepastprocessinputandout- putandthepotentialfuturecontrolsequence ifasuitableparameterizedmodelofthesys- temisknown.Thenameofthesetypesof controllerscomesfromthewayinwhichthe controllawiscomputed:atthepresenttime tthefuturesequenceofmanipulatedvariables isselectedinsuchawaythatthepredictedre- sponseoftheprocesshascertaindesirablechar- acteristics.Onlythefirstcomputedmanipula- blevariableisimplementedandtheprocessis repeatedattimet+1 .Therehavebeenmany LRPCorMPCalgorithmsproposedinlitera- ture(Garcia,PrettandMorari,1989;Tanand 15 DeKeyser,1993;CutlerandRamaker,1980), ModelAlgorithmicControl(MAC)(Rouhani andMehra,1982).G eneralizedPredictiveCon- trol(GPC)(Clarke,MohtadiandTu&,1987a and1987b)canbementionedamongthemost popular.ThebasicideaofGPCistocalcu- lateasequenceoffuturecontrolsignalswhich minimizesamultistagecostfunctiondefined overarecedingcontrolhorizon.Theindexto beoptimizedistheexpectationofaquadratic functionmeasuringthecontroleffortandthe distancebetweenthepredictedsystemoutput andsomepredictedreferencesequenceoverthe recedinghorizon.TheGPCinvolvestheso- lutionofanunconstrainedquadraticproblem (QP)withNvariableswhichcaneasilybeob- tainedbyusinganystandardmethodforun- constrainedQPoptimization.Thesemethods cannot,however,solvetheconstrainedprob- lemandalthoughtheamountofcomputation neededisnotveryhigh,itcanbeadrawback forrealtimeapplications.Whenprocessvari- ablesarebounded,aQPproblemwithlinear constraintshastobesolved(Camacho,1993) whichrequiresasubstantialamountofcom- putationforrealtimeproblems.HopfieldNN havebeenusedtoimplementGPCforpro- cesseswithunbounded(QueroandCamacho, 1990)andboundedsignals(Quero,Camacho andFranquelo,1993). Whentheprocessisnonlineartheproblemgets morecomplexastheimplementationofaGPC requirestheoptimizationofa nonlinearfunc- tion,NNhavealsobeenusedinthiscontextto implementGPC.G6mez-OrtegaandCamacho (1994)useNNtoimplementaGPCforpath trackingofmobilerobots.TheNNistrained inasupervisedwayinanoff-linemannerand usingtheoutputofanumericaloptimizational- gorithmthatcomputedthebestcontrolaction. TanandDeKeyser(1993)useaNNpredictor toimplementGPCfornonlinearprocesses.An interestingfastlearningalgorithmisalsopro- posedbytheseauthors. 3.LEARNINGANDADAPTATION Learningandadaptationarefundamentalcon-PersistentExcitation.Theconceptofpersis- ceptsassociatedtoNNandadaptivecontroltentexcitationiscrucialtoadaptivecontrol,it thatalthoughrelatedarenotquitethesame.Itreferstotheneedforusingasignalforiden- canbeconsideredthatwiththeadaptivemech-tificationpurposeswhichisdynamicallyrepre- anism,anadaptivecontrollerlearnstheprocesssentativeoftheentireclassofinputthatthe parametersorasetofadequatecontrollerpa-processmaybesubjectedto.Letusconsider rameters.Ontheotherhandthelearningphaseaprocesswithatransferfunctioncharacter- ofaNNcanbeconsideredastheadaptationofizedbyasetoftrueparameter5.Considerthe theNNweightstoadequatevalues.Thereare,setofadjustableparameteroandanappropri- however,somedifferenceswhenconsideringtheateidentificationalgorithm.A signalispersis- wayinwhichtheadaptationmechanismworks inadaptivecontrolandhowthelearningmech- anismoperateswhenaNNislearning.These differencesareillustratedbyFig.1. time bFIG.1. Adaptation(a)andlearning(b)processes. Inadaptivecontrol,theadaptationisper- formedinasingletrajectory.Normallyatthe beginningofthetrajectory,whilethecontroller isnotproperlytuned,theprocesstrajectory differssubstantiallyfromthereferencetrajec- tory.Oncetheparametersareproperlytuned, theprocessfollowsthedesiredtrajectorywith greateraccuracy. LearningisperformedbymodifyingtheNNpa- rametersduringrepeatedperformancetrialsof thedesiredtrajectory.Itislikepracticingthe samestrokeof,letssaytennis,anumberof timesuntilsuccesshasbeenachieved.This ideaisillustratedbyfigurelbwherethedif- ferenttrajectoriesobtainedatdifferentlearn- ingstagesareshown.Itcanbeseenthatpro- cesstrajectoriesreproducethereferencetrajec- torywithmoreaccuracywhenlearningpro- gresses.Apracticestrategyhasbeensuggested whichinsteadofusingthereferencetrajectory ineachlearningperiodasequenceoftrajecto- riesisused.Thefirstelementofthesequenceis apreviouslylearnedtrajectoryandthelastel- ementisthedesiredtrajectory.Thisapproach couldsolvesomeproblemsfoundinNNlearn- ingwhenthedesiredtrajectoryisfarfromany ofthepreviouslylearnedones. Thetrainingsignalsusedforadaptationand learningareofgreatimportanceandsomepar- allelismcanbeestablishedbetweenNNlearn- ingandadaptivecontrolregardingthisissue. 16 tentlyexcitingif0+5whentheerrorbetween processandmodeltendstozeroasymptotically. WhenusingNNfortheidentificationorcontrol ofnonlinearprocesses,asimilartypeofconcept wouldbeofgreatinterestforansweringques- tionssuchas:Isthechosentrainingsetade- quate??Whatsortoftrainingpatternshould beusedtotraintheNN?.Whatwearelooking foraresignalswhicharedynamicallyrepresen- tativeoftheentireclassofinputsandtech- niquestodeterminethis.Unfortunately,there arenotknownmethodstogenerateapersis- tentlyexcitingsignalforNNtrainingandonly goodjudgmentcanbeusedforthispurposeat present. ~~~~~~~~o~Speed.Oneofthefundament~ problemsofadaptivecontrolistheadaptation speedofthecontroller.Inselftuningcontrol theory,twodifferenttimescalesareassumed forprocessdynamicsandforprocessparame- terchanges.Inpractice,althoughprocesspa- rameterstendtochangemoreslowlythanpro- cessvariables,thetimescalesarenotsofar apartandaquicktuningisrequiredinmost cases.Inadaptivecontroltherearetwofac- torsthatdetermineadaptationspeed.Thefirst oneistheelectionofappropriateadaptation gainsorforgettingfactorsandthesecondone isthenumberofparametersbeingidentified oradjusted.Smalladaptationgainwillresult inaslowadaptationspeedwhilehighadapta- tiongaintendtoproduceoscillationsandcon- vergenceproblems.Theadaptationspeedde- creasesconsiderablywiththenumberofparam- eterschosen. WhenNNareusedforadaptation,thesame factorsdominatethelearningoradaptation speed.E&twhileinadaptivecontrollerthe numberofadaptingparameterstendtobekept small,whenusingNNthereareasubstantial numberofparametersifalltheweightsareto beadapted.Somemechanismstoobtainfaster adaptationspeedforNNbasedadaptivecon- trollershavebeenproposedinliterature(Tan andDeKeyser,1993;Care&Camachoand Patiiro,1993,1994). 4.NNBASEDADAPTIVECUNT~OLLERS CLASSIFICATION Manycontrollershavebeenproposedinclud- ingNNasapartofthem,Mostofthemare neuralversionsofclassicaladaptivecontrollers (&t&mandWittenmark,1989).Thewaythe NNisincorporatedinthesystemdiffersfrom onetotheothers.Mostfrequentlyusedar- chitectureswillbeclassifiedaccordingtothe roleplayedbythenetwork. 4.1.NNII$acontroller. &ec6inverseCani ?rokAnadaptivecontrol schemeusingdirectinversecontrolisshownin Fig.2.IftheNNistrainedtoproducethe signaluffitispossibletosubstitutethefeed- forwardcontrollerwiththeNN.Inthisway, theNNproducestheinversedynamicsofthe plant,whilethefeedbackcontrollercountsfor non-perfectlearningandperturbations.Clas- sicadaptivecontrollersmakeuseoftwoele- ments:theadaptivecontrollerandtheadap- tationlaw.Intheneuralcontextthecontroller isperformedbyaNNandtheadaptationlaw istheruleusedtoadjusttheparametersof thenet(usuallyconnectionweights).Kawatos proposalforrobotcontrol(Kawato,Uno,Isobe andSuzuki,1987)matchesthisstructure.The NNistrainedtomakethefeedbackcontrolsig- nalzero.Inthefirststagesofthetrainingof theNNthesystemisstablethankstothefeed- backcontroller. Feed Forwnrd controller h uff I L---.-_____________: I FIG.2.Controllerfora nonlinearplant. In(SannerandSlotine,1992)aRadialBasis FunctionNNisusedtoprovidetheinversedy- namicsofanonlinearplant.Thecontrollerin- corporatesslidingmodecontrolandadaptive controlblendedthroughamodulationfunction. Therearemanyotherarchitecturesthatmake useofthelearningcapabilityofNNtoidentify theinversedynamicsofaplant.Noticethatan inverseoftheprocessdynamicsmustexistfor thisschemetowork. ModelRejkrenceAdaptiveCo&-d.C&i&c MRACcanbeextendedtotheneuralcase.In (NarendraandParthasarathy,1990)aNNis usedtoidentifytheplantwhileanotherNN producestheinputtotheplant.Theobjec- tiveistotracktheoutputofareferencemodel. InFig.3networkNihastobepreviously trainedtoidentifytheinput-o~~tputbehavior oftheplant.Laterthecontrollersparameters canbeadjustedbybackpropagatingthetrack- 17 ingerrorsthroughtheplantidentifier.Adi- rectadaptationofthecontrollerisnotpossible sincetheplant,whosedynamicsareunknown, liesbetweenthecontrollerandthetrackinger- TOT. Rd. MGi-j ym FIG.3.Indirectadaptivecontrol. InFig.3,theTDLblocksrepresenttappedde- laylineswhosefunctionistoprovidedelayed valuesoftheplantsinputsandoutputs. Othermodels.Toovercometheproblemofthe lackofpreviousinformationabouttheplant alearningmethodhasbeenusedthatenables onetocontrolprocesseswithouttheidentifica- tionstage.Reinforcementlearning(RL)usesa W&Cinsteadofa~te~che~.Thecriticgets ameasurementoftheperformanceofthesys- temfromtheenvironment.Theobjectiveofthe adaptationsystemistoimprovethereinforce- mentsignalproducedbythecritic.Examples ofthistypeofarchitecturesarefoundin(Barto, SuttonandAnderson,1983)andin(Zomaya, 1994)* /l~I/ IJI II FIG.4.AssociativeandcriticelementsinaRL architecture. Thefirstexampledealswithbalancingapole inacartthatcanmovebetweentwostops.The goalofthecontrolleristomovethecartin suchawayastokeepthepolevertical.An errorismadewhenthepalefallsorthecart hitthetracksbounds.Tosolvethisproblem twoadaptiveelementswereused(seeFig.4): 1)Theassociativesearchelement(ASE)has asinputacodificationofthestateoftheplant, andgivesasoutputacontrolsignaldepend- ingonthatstate(i.e.positionandvelocityof thecartandpole).2)Theadaptivecriticel- ement(ACE)predictsreinforcementfromthe environmentthatcorrespondstothecontrolac- tiongeneratedbytheassociativeelement.Both elementsneedtobeadjusted.Theassocia- tivesearchelementisconstantlymodifyingits weightsthankstoasignalgeneratedbythe criticelement.Thismeansthatthecriticdrives thedecisionthattheASEhastotakebymeans ofaainternalreinforcement.Thecriticlearns fromtrialtotrialtopredictthefutureactionof thepoleintermsofreinforcement.Itreceives thereinforcementsignalsuppliedfromtheexte- rior.Theresultsshowedabetterperformance oftheASE-ACEsystemthantheclassicalbox system. Insomestructures,theNNisgiventhetaskof generatingasmallpartofthecontrolsignal.In thesecasesthenetworkcountsforstructured andnon-structureduncertaintiesofamodel. Themainpartofthecommandsignalispro- ducedbyaconventionalcontrollerbasedonthe model.Examplescanbefoundin(Iiguni,Sakai andTokumaru,1991)and(Zomaya,1993). 4.2.NNasestimator, InternalModelControl.TheInternalModel Controlschemeproposedin(Economou, MorariandPalsson,1986)usesasystemfor- wardandaninversemodel.Thesystem modelsoutputiscomparedtotheplantsout- putandthedifferenceisfedbacktoacon- troller,ThisstructurecanincorporateNNfor theidentificationofnonlinearplants(Huntand Sbarbaro,1991). PredictiveControl.Apredictivecontrollerpro- ducesacommandsignalthatminimizesthe squarederrorbetweenthepredictedoutputof theplantandthereferenceover a certaintem- poralhorizonateverytimestepk.Apredic- tiancanbecomputedforlinearplantsbyus- ingaDiophantineequation(Clarke,Mohtadi andTuffs,1987).Toextendtheideatonon- linearplantsapredictorhastobedeveloped. In(Takahashi,1993)aNNisusedtoproduce apredictionofanonlinearplantsoutput. InferentialControl.Insomeindustrialpro- cessescontrolisdifficultduetothefactthatthe plantsoutputisnonmeasurableataproper frequency.Thisisthecaseofqualitymeasure- mentsinchemicalprocesses.Inferentialcontrol usessecondarymeasurementstoestimatethe plantsoutput.Themappingfromsecondary 18 toprimaryvariablescanbenonlinearanddiffi- culttodetermine,soaNNislikelytoproduce goodresults.Inferentialnonlinearcontrolwas studiedbyMorariandFung(1982)andbyPar- rishandBrosilow(1988).Animplementation ofNNtoinferentialcontrolisgivenin(Luo, ShaoandZhang,1993). 4.3.NNusu~~ustme~telement. ANNcanbeusedtoadjust a classiccontroller. Mostcontrollerscurrentlyonuseinindustry arePIDduetoitssimplicityandrobustness. However,thetuningofthist*ypeofcontroller isoftenaburdensometask.In(Akhyarand Qmatu,1993)aNNisusedtoautomatically tuneaPID(Fig.5).TheNNsoutputarethe parametersofthePID.TheNNusesagradient descentalgorithmtolearntheadequatemap- pingusingthecontrolerror. r FIG.5. TheneuralnetadjuststhePIDcontroller. 5s NNADAPTIVECONTROLWITHFAST ADAPTATIONSPEED Thissectiondescribesastructureforthe adaptivecontrolofmanipulatorsproposedby Carelli,CamachoandPatifio,(1993,1994) whichdoesnotrequirealongadaptationperiod {seeFig.6).Althoughthecontrolstructure hasbeendesignedforrobotmanipulatoritcan beappliedtoanynonlinearprocessthatcanbe reparameterizedinthewaydescribed.Thecon- trollerusesasetoffixedfeedforwardNNwhich aretrainedinanoff-linemanner.Thisstruc- tureallowstheadaptationofthecontrollerto dealwithdynamicuncertainties,suchaslink inertiasorpayloads,minimizingtheamountof computationthathastobeperformedon-line. Asthenumberofparameterstobeadaptedis small,theadaptationtochangesinrobotpa- rametersisfasterthanwhenusingthelearning capabilitiesoftheNNtoadapt. 5.1.NNInverseRobotDynmmics. Theinversedynamicsofarobotcanbeex- FIG. 6. Adaptivecontrollerusingfixed feedforwardN N , pressedas? r(t)=~(~)~+C(%4)Fi +~(~)(5-I) Thedynamicstructurecanbeexpressed (KhodaandKanade,1935)asalinearfunc- tionofasuitableselectedsetofrobotandload parameters: IthasbeenshownbyFunahashi{1989),Cy- benko(1989),Horniketal.(1989)thattwo layerNNcanapproximateanywell-behaved nonlinearfunctiontoanydesiredaccuracy. Consideraset{ipi)ofNneuralnetworks,each representingtheinverserobotdynamicsfora determinedpayloadconditioncharacterizedby a value Bi of theparameters.Ifwetakeintoac- countthelinearparameterizationpropertyof therobotmodelandassumethateachelement oftheNNsetrepresentstheinverserobotdy- namicsforeachloadcondition, (5.3) where,Bi=[et,@,,I I., OrIT,withi=5 1,2, * * ,Nandz=[q,i,ilT Nowconsideraparticularrobotpayloadcondi- tioncharacterizedbyavalueoftheparameter0 andassumethatitcanbeexpressedasalinear combinationofthevaluesBi, 6=nlei+a?zBz +1 4 +ap$arJ (5.4) Theinverserobotdynamicsforapayloadcon- ditioncharacterizedby0canbeexpressedas, 19 Thus,theinverserobotdynamiccanbeapprox- imatedtoanypayloadconditionby, =al@&)+a&(z)+.a.+WV%+$(5.6) Equation(5.4)canbewrittenas, (54 IfN=nand0isnonsingular,thereisa uniquesolutiongivenby: Ifthecolumnsof0donotformabasis,be- causeN%d(t>+ m(t)%l(t) (6.22) wherez+,b isapd-likecontrolterm,aadisan adaptivecomponentprovidedbythenetwork tocountforthenonlinearfunctionsand2~~1(t}is thecontributionoftheslidingmodecontroller. Noticethatm(t)isa modulationfunctionthat mixesadaptiveandslidingcontrolmodesde- pendinguponthesituationofthestateofthe plantinthesetA.Whentheoperatingpoint isnexttotheboFder,theslidingcomponentis preferred;sothat,thestateisdrivenbackto thesetA. Theresultingsystem(seeFig.7)adjuststhe networksweightswhilecontrollingtheplant. Nopriorlearningisneeded.Itispossible toprovethatallstatesinthesystemremain boundedandthetrackingerrorsasymptotically convergetoaneighborhoodofzeFo.See(San- nerandSlotine(1992)~foracompleteproof. 7.IMPLEMENTATIONS MostofthecontrolapplicationsofNNareim- plementedbyprogramsindigitalcomputers whichsimulatethebehavioroftheneuralnets. OneofthepotentialadvantagesofNNwhichis theinherentpardelismisthereforelost.Hard- wareimplementationsareconsequentlyconve- nientinOFdeFtouseNNtoitsfullpotential, InordertouseNNforadaptivecontrol,imple- mentationsmustperformsomekindofparam- eteradjustment.Thisismoreeasilyachieved whenusingsometypesofcircuitsbutatthe costofbiggersiliconsurfaces.Implementations ofNNcanbeclassifiedinthefollowingcate gories: 7.1.NeurralProcessors. Theyexhibitaflexibilitywhichisanadvantage overothertypes.Feildand~avlakh~(1988) proposedanarchitectureconsistingintwoIN- MOSboardshavingfivetransputersconnected toaIB~/XTcomputer.Beynon(1988)devel- opedanetworkoftransputerstosimulatethe BPtrainingalgorithm.Inthefieldofpattern recognitionwefindtheGraphSearchMachine (Glinskietal.,1987). Digitalimplementationsaremorerobustthan analogonesagainstdispersioninthecharac- teristicsofthecomponents.R,asureetal. designedafeedforwardnetthatwasableto classifyhand-writtendigits.A3-Dstructure ofNETSIMboardswasproposedin(Garth, 1987).Eachboardcontainscommunication buses,controlcircuitsandneuralcoprocessors. Toreducethesurfaceneededindigitalcircuits synchronousstochasticimplementationscanbe used(Janer,1994;Janer,QueroandFranquelo, 1993). 7.3.SpecificAn&gCirct~i~s. Theyuselesssurfacethantheothertypesof implementationbutneedamorecarefuldesign. InCaltechagroupofresearchersdirectedby Meadhavedevelopedanumberofimplementa- tionsthatusearchitecturesbasedonbiological models(MeadandMahowald,1988). 7.4.~~~~~~~~le~entu~~o~. Theuseofhybrid(digital-analog)circuitsaims atobtainingamixofthegoodtraitsofboth t,ypesofimplementationswhileavoidingthe badones.Murraysgrouphaspublishedmany papersdealingwiththistypeofimplementa- tions(MurrayetaI.,1987). 8.CONCLUSIONS Neuralnetworkshavetheabilityoflearninga nonlinearmodelwithoutapriorknowledgeof itsstructureandareadequateforworkingin realtimebecauseofthehighparallelism.The useofNNseemsthereforetobeawayofim- plementingadaptivecontrollersforprocesses wherestandardadaptivecontrolisnotade- quate,hatis,nonlinearprocesseswithnonec- essarilyknownmodelstructureand/orchang- ingdynamics. AlthoughthepotentialsofNNforadaptivecon- trolhavebeendemonstratedinliteraturewith differentprocesses,therearestillanumberof openresearchissuesinthefieldsuchasstabil- ity,characterizationofpersistentexcitingpat- terns,adaptationspeedandhardwareimple- mentationofNNwithprogrammableweights. ACKNOWLEDGEMENT TheauthorswouldliketoacknowledgeCICYT forfundingtheworkundergrantTAP93-0804 andprojectCYTED-D. Akhyar,S.andS.Omatu(1993).Neuromor- phicself-tuningPIDcontroller.InIEEE InternationalJointConferenceonNeu- ral Networks,IJCNN93,pp.552-557. Aracil,J.,A.OlleroandA.Garcia-Cerezo (1989).Stabilityindicesfortheglobal analysisofexpertcontrolsystems.IEEE Trans.onSystem,Manid~~&e~e~ics, 19,998-1007. Astrom,K.J.andB.Wittenmark(1989). A&p&eGon&ol.Add~on-Wesley,New York. Barto,A.G.,R.S.SuttonandG.W.An- derson(1983).Neuronlikeadaptiveel- ementsthatcansolvedifficultlearning controlproblems.IEEETrans.onSys- tem,ManandC~~e~et~c$,13,834-846. Beynon,T.(1988)Aparallelimplementation ofthebackpropagationalgorithmona neuralnetworkoftransputers.IEEEb- ternationalConfeferenceonNeuralNet- works. CamachoE-F.(1993).Constrainedgeneralized predictivecontrol.IEEETrans.onAut. Control,30,327-332. CamachoE.F.andJ.M.Quero(1991).Precom- putationofgenemlizedpredictivecon- trollers.IEEETrans.onAut.Control, 36,852-859. Care&R.,E.F,Carnacho,andD.Patiiio (1993).Neuralnetworkbasedadaptive controlforrobots.ProcQR the2ndEW ropeanControlConference,Groningen 475-480. Carelli,R.,E,F.CamachoandD.Patifio (1994).Aneuralnetworkbasedadap- tivecontrollerforrobots.IEEETbs. onSMCToappear. Clarke,D.W.,C.MohtadiandP.S.Tuffs (1987a).Generalizedpredictivecontrol. PartIThebasicalgorithm.A~to~ut~~~ 23,137-148. 22 Clarke,D.W., C.MohtadiandP.S.Tuffs (1987b).Generalizedpredictivecontrol. PartIIExtensionsandInterpretations. Automatica23,149-160. Clarke,D.W.andC.Mohtadi(1989).Prop- ertiesofgeneralizedpredictivecontrol. Automatica25,859-875. Craig,J.J.(1988).AdaptiveControlofMe- chanicalManipulatorsAddison-Wesley PublishingCo. Cutler,C.R.andB.L.Ramaker(1980).Dy- namicmatrixcontrol.Acomputercon- t,rolalgorithm.Proc.JACC80. Cybenko,G.(1989).Approximationbysuper- positionsofsigmoidalfunction.Math,. ControtSignalSystem.s,2,303-314. Economou,C.G.,M.MorariandB.0.Palsson (1986).Internalmodelcontrol.5.Ex- tensiontononlinearsystems.Ind.Eng. Chem.ProcessDes.Den.,25,403-411. Feild,W.B.,andJ.K.Navlakha(1988). TransputerimplementationofHopfield NN.IEEEInt.Conf.on,NN.ICNN88. Funahashi,K.I.(1989).Ont,heapproximate realizationofcontinuousmappingsby neuralnetworks.New&Netloo&,2, 183-192. Garcia,C.E.,D.M.PrettandM.Morari(1989). Modelpredictivecontrol:theoryand practice-asurvey.Automatica25,335- 348. Garth,S(1987).Achipsetforhighspeedsimu- lationofneuralnetworksystems.IEEE Int.Conf.on, NN.ICNN87443-452. Glinski,S.,T.Lalumia,D.Cassiday,T.Koh, C.Gerveshi,G.WilsonandJ.Kumar (1987).Thegraphsearchmachine:A VLSIarchitectureforconnectedword speechrecognitionandotherapplica- tions.Proc.IEEE,75,1172-1184. G6mez-Ortega,J.andE.F.Camacho(1994) NeuralnetworkGPCformobilerobots pathtracking.EURISCON9.j,Toap- pear. G6mez-Ortega,J.,E.F.CamachoandJ.Quero (1994)Neuralnetworklocalnavigation ofmobilerobotsinamovingobstacles environment.PreprinGsof -Intelligent Componen,tsandInstrum,entsforCon- trolApplicationsSICICA94.263-268. GuezA.andI.Bar-Kana(1990).Two-degree- of-freedomrobotneurocontroller.Proc. 2gfhConferenceonDecisionandCon- trol,pp3260-3264. Hopfield,J.J.(1982)NeuralNetworksand physicalsystemswithemergentcollec- tivecomputationalabilities.Proc.of theNationalAcademyofSciences,79, 2554-2558. Hornik,K.,M.StinchcombeandH.White (1989).Multilayerfeedforwardnetworks areuniversalapproximators. Networks,2,359-366. Neural Hunt,K.J.andD.Sbarbaro(1991).Neural networksfornon-linearinternalmodel control.Proc.IEEPt.D,138,431-438. Kelly,R.,R.CarelliandR.Ortega(1989). Adaptivemotioncontroldesignofrobot manipulators:Aninput-outputap- proach.Int.J.Control,50,2563-2581. Iiguni,Y.,H.SakaiandH.Tokumaru(1991). Anonlinearregulatordesigninthepres- enceofsystemuncertaintiesusingmul- tilayeredneuralnetworks.IEEETrans. onNN,2,410-417. Janer,C.L.(1994).Paralellstochasticarchi- tecturesforthemicroelectronicimple- mentationofneuralnetworks,(inspan- ish).Ph.D.Thesis,Universityof Seville,Spain. Janer,C.L.,J.QueroandL.G.Franquelo (1993)FullyParallelsummationinanew stochasticneuralnetworkarchitecture. IEEEInt.ConfonNeuralNetworks ICNN93,1498-1503. KawatoM.,Y.Uno,M.IsobeandR.Suzuki (1987).Ahierarchicalmodelforvol- untarymovementanditsapplicationto robotics.Proc.IEEEControlSystems Magazine,8,8-17. Kraft,L.G.andD.P.Campagna(1990).A comparisonbetweenCMACneuralnet- workandtwotraditionaladaptivecon- trolsystems.IEEEControbSystems Magazine,pp.36-43. LigtbodyG.andG.Irwing(1992).Neural networksfornonlinearadaptivecontrol IFACWorkshoponAlgorithmsandAr- &tecturesforRentTimeControt,pp.l- 13. Luo,R.F.,H.H.ShaoandZ.J.Zhang(1993). Fuzzyneuralnetsbasedinferen&&con- trolforahighpuritydistillationcolumn AutomaticaToappear. Mead,C.A.andM.A.Mahowald(1988)A siliconmodelofearlyvisualprocessing. NeuralNetworks,1,91-97. McCulloch,W.S.andW.Pitts(1943).Ana- logicalcalculusoftheideasinmanentin nervousactivity.BulletinofMathemati- cal Biophysics,9,127-147. Minsky,M.L.andS.A.Papert(1969).Per- ceptrons.TheMITPress,Cambridge, MA. Morari,A.J.andK.W.Fung(1982).Nonlin- earinferentialcontrol.Comput.Chem. Eng.,6,271-281. Murray,A.F.,D.DelCorsoandL.Tarassenko (1991)Pulse-streamVLSIneuralnet- worksmixinganaloganddigitaltech- niques.IEEETransactionsonNeural Networks,2. 23 Namndra,K.S.andA.M.Ann~w~y(1989). StableAaTqthe&&ems.Prentice-Ha& EnglewoodCliffs,NJ. Narendra,K.S.andK.Parthasarathy(1990). Identificationandcontrolofdynamical systemsusingneuralnetworks.IEEE TransactionsonNeuralNetworks,1,4- 27. Nguyen,D.H.andB.Widrow(1990).Neu- ralnetworksforself-learningcontrolsys- tems.1X&XCon&.Syst.Msg.,10, 1% 23. Ollero,A.,J.Aracil,A.Garcia-CerezoandA. Barreiro(1993).StabilityofFuzzyCon- trolSystems.InA.DriankovandH. Hellendoorn(Eds),I ntroductiontoFuzzy Cantrol.Springer-Verlag,Berlin. Ortega,R.andM.Spong(1988).AdaptiveMo- tionControlofRigidRobot:ATutorial. Automat~ca,25,8?7-888. Parrish,J.R.andC.B.Brosilow(1988).Non- linearinferentialcontrol,AIChEJ .,34, 633-644. P&isD.,A.SiderisandA.A.Yamura (1988).Amultilayeredneuralnetwork controller.I EEEControlSystemMaga- zine,8,17-21. Quero,J.MandE.F.Camacho(1990).Neural generalizedpredictiveself-tuningcon- trollers.PTOC.oftheI EEEI nternational ConferenceonSystemEngineering,160- 163. Quero,J.M,E.F.CamachoandL.G.Franquelo (1993).Neuralnetworkforconstrained predictivecontrol.!l+trzasectionsonCir- cuitsandSystems,40,621-626. Rosenblatt,F.(1958).Theperceptron:aprob- abilisticmodelforinformationstorage andorganizationinthebrain.phycho- logicalReview,65,386-408. Rouhani,R.andR.K.Mehra(1982).Model algorithmiccontrol:Basictheoreticper- spectives.Automatica,10,401-414. Saerens,M.,A.Soquet,J.-M.RendersandH. Bersini(1991).Somepreliminarycom- parisonsbetweenaneuraladaptivecon- trollerandamodelreferencecontroller. InG.A.BekeyandK.Y.Goldberg (Eds.),NN$nRobotics.131-146. Sanner,R.M.andJ.-J.E.Slotine(1992). Gaussiannetworksfordirectadaptive control.I EEE.Bans.onNeumlNet- works,3,833-863. Slotine,J.-J.E.andW.Li(1990).Adaptive manipulatorcontrol:AcasestudyI EEE Trans.onAutomaticControl,AC-33,. Takahashi,Y.(1993).Adaptivepredictivecon- trolofnonlineartime-varyingsystems nsingneuralnetworks.ht.J o&tCora- ferenceonNNI~CNN~~~,1464-1468. Tan,Y.andR.DeKeyser(1993).Neu- ralnetworkbasedadaptivepredictive control.CEG/ESPRI T/CI ME/CI DI G Conf.AdvancesinMBPC.77-88. Widrow,B.andM.E.Hoff(1960).Adaptive switchingcircuits.1960I REWESCON conventionRecord,NewYork:I RE,pp. 96- 104. Yabuta,T.andT.Yamada(1990).Possi- bilityofneuralnetworkscontrollerfor robotmanipuiators.Proc.I nt.Conf. RoboticsAutomat.,1686-1691. Zomaya,A.Y.(1994).Reinforcementlearning fortheadaptivecontrolofnonlinearsys- tems.I EEETrans.Syst.,Man,Cybern., 24,357-363. Zomaya,A.Y.andT,M,Nabhan(1993). Centralizedanddecentralizedneuro- adaptiverobotcontrollers.NeuralNet- works,6,223-244. 24