35
Adaptive Surrogate Modeling for Response Surface Approximations with Application to Bayesian Inference Serge Prudhomme a and C. Bryant b a Department of Mathematics, Ecole Polytechnique de Montr´ eal SRI Center for Uncertainty Quantification, KAUST b ICES, The University of Texas at Austin, USA Advances in UQ Methods, Algorithms, and Applications KAUST, Thuwal, Saudi Arabia January 6-9, 2015 S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 1 / 35

Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Adaptive Surrogate Modeling for Response SurfaceApproximations with Application to Bayesian Inference

Serge Prudhommea and C. Bryantb

aDepartment of Mathematics, Ecole Polytechnique de MontrealSRI Center for Uncertainty Quantification, KAUSTbICES, The University of Texas at Austin, USA

Advances in UQ Methods, Algorithms, and ApplicationsKAUST, Thuwal, Saudi Arabia

January 6-9, 2015

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 1 / 35

Page 2: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Outline

Outline

• Introduction.

• Error estimation for PDEs with uncertain coefficients.

• Adaptive scheme.

• Numerical examples.

• Application to Bayesian Inference.

“. . . It is not possible to decide (a) between h or p refinement and(b) whether one should enrich the approximation space Vh or Sh

. . . better approaches, yet to be conceived, are consequently needed.”

Spectral Methods for Uncertainty Quantification,Le Maıtre & Knio 2010

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 2 / 35

Page 3: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Introduction

Introduction

A(λ;u) = f(λ) → Q(u(λ))︸ ︷︷ ︸M(λ)=Q(u)

λ1

λ 2

QN

(u)

Surrogate modelMN

M≈MN (λ) = Q(uN )

Ah(λ;uh) = fh(λ) → Q(uh(λ))︸ ︷︷ ︸Mh(λ)=Q(uh)

λ1

λ 2

Qh,N

(u)

Surrogate modelMh,N

Mh ≈Mh,N (λ) = Q(uh,N )

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 3 / 35

Page 4: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Introduction

References

Le Maıtre et al., 2007, 2010I Polynomial chaos, Stochastic Galerkin, Burger’s equation

Almeida and Oden, 2010I convection-diffusion, sparse grid collocation

Butler, Dawson, and Wildey, 2011I Stochastic Galerkin, PC representation of the discretization error

(ignore truncation error)

Butler, Constantine, and Wildey, 2012I Ignore physical discretization error, pseudo-spectral projection,

improved linear functional

. . .

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 4 / 35

Page 5: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Model Problem

Model Problem and Discretization

Model Problem: A(λ;u) = f(λ), ∀x ∈ DAssume: λ = Λ(θ) =

∑k∈IN λkΨk(ξ(θ))

Non-intrusive approach (“pseudo-spectral projection method”):

u(x, ξ) ≈∑k∈IN

uk(x)Ψk(ξ) ≈∑k∈IN

umk (x)Ψk(ξ) := uN (x, ξ)

withuk(x) = 〈u(x, ·),Ψk〉 :=

∫Ωu(x, ξ)Ψk(ξ) ρ(ξ) dξ

≈m(N)∑j=1

u(x, ξj) Ψk(ξj) wj := umk (x)

Pros: fast convergence, sampling-like u(x, ξj), choice of ξj

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 5 / 35

Page 6: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Model Problem

Model Problem and Discretization

Gaussian quadrature:

• select quadrature rule ξj , wjm(N)j=1 according to ρξ

• integrand (uNΨN ) is at least of order 2N in each dimensionm(N) ≥ (N + 1)n

Parameterized discrete solution (the surrogate model):

Solve for uh(x, ξj) → uh,mk (x) =∑m(N)

j=1 uh(x, ξj) Ψk(ξj) wj

uh,N (x, ξ) =∑k∈IN

uh,mk (x)Ψk(ξ)

Evaluate:

Qξ(u)−Qξ

(uh,N

)S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 6 / 35

Page 7: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Goal-oriented error estimation

Goal-oriented error estimationWeak formulation of A(λ(ξ);u) = f(ξ)

Find u(ξ) ∈ V such thatBξ(u, v) = Fξ(v) ∀v ∈ V

Find uh(ξ) ∈ V h ⊂ V such thatBξ(uh, vh) = Fξ(vh) ∀vh ∈ V h

Quantity of interest (QoI):

Qξ(u) =

∫Dq(x)u(x, ξ) dx

Adjoint problem:

Find p(·, ξ) ∈ V such thatBξ(v, p) = Qξ(v) ∀v ∈ V

Error representation

Qξ(u)−Qξ(uh) = Fξ(p)−Bξ(uh, p) := Rξ(uh; p)[Note: Qξ(u)−Qξ(uh) = Rξ(uh; p) + ∆B ≈ Rξ(uh; p)

]S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 7 / 35

Page 8: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Goal-oriented error estimation

Goal-oriented error estimation

Error estimator:

Qξ(u)−Qξ(uh) = Rξ(uh; p) ≈ η(ξ)

Orthogonality property: If ph ∈ V h then Rξ(uh; ph) = 0

Higher-order approximation of adjoint solution:Compute p+(ξ) ∈ V +, V h ⊂ V + ⊂ V and

η(ξ) = Rξ(uh; p+)

Other choices

• Local interpolation: Rξ(uh; p) ≈ Rξ(uh;π+ph − ph)

• Residual based: Rξ(uh; p) = Bξ(eu, ep) ≈∑ηu(ξ)ηp(ξ)

1Becker & Rannacher 2001, Oden & Prudhomme, 2001S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 8 / 35

Page 9: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Goal-oriented error estimation

Case with Uncertain Parameters

Since uh,N (·, ξ) ∈ V h ⊂ V , the adjoint equation still holds

(uh,N , p

)= Qξ

(uh,N

)New error representation:

(u)−Qξ

(uh,N

)= Rξ

(uh,N ; p

)= Rξ

(uh,N ; p+

)+Rξ

(uh,N ; p− p+

)= Rξ

(uh,N ; p+,N

)+Rξ

(uh,N ; p+ − p+,N

)+Rξ

(uh,N ; p− p+

)Total Error Estimate:

(u)−Qξ

(uh,N

)≈ Rξ

(uh,N ; p+,N

)1Butler et al., 2012, Almeida and Oden, 2010S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 9 / 35

Page 10: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Goal-oriented error estimation

Proposed error decomposition

(u)−Qξ

(uh,N

)= Qξ

(u− uh

)︸ ︷︷ ︸error due to

physical discretization

+Qξ

(uh − uh,N

)︸ ︷︷ ︸error due to approxin parameter space

[+ ∆Qξ

]

Total error:

(u)−Qξ

(uh,N

)≈ Rξ

(uh,N ; p+,N

):= E(ξ)

2× poly. eval1× inner product

Physical space discretization error:

(u)−Qξ

(uh)≈ Rξ

(uh; p+

):= ED(ξ)

2× pde solve1× inner product

Parameter space discretization error:

(uh − uh,N

)≈ Rξ

(uh,N ; p+,N

)−Rξ

(uh; p+

):= EΩ(ξ)

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 10 / 35

Page 11: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Goal-oriented error estimation

Summary of the procedure• Solve forward and adjoint problems at quadrature points,

uh(x, ξj)m(N)

j=1

p+(x, ξj)m(N)j=1

→ Rξj

(uh; p+

)• Construct fully discrete solutions and PC expansion for ED

uh,N (x, ξ) =∑

k∈IN uh,mk (x)Ψk(ξ)

p+,N (x, ξ) =∑

k∈IN p+,mk (x)Ψk(ξ)

ED(ξ) =∑k∈IN

eDk Ψk(ξ)

• Construct E and EΩ

E(ξ) =∑k∈IM

ekΨk(ξ) EΩ(ξ) = E(ξ)− ED(ξ)

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 11 / 35

Page 12: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Adaptive Strategy

Adaptivity Strategy

if∥∥ED∥∥ > ∥∥EΩ

∥∥Refine physical approximation space V h (h← h

2 )

elseRefine random approximation space SN (N ← N + 1)

end

• for a given physical mesh, refine approximation in Ω to the level ofphysical discretization error

• use error indicator to guide h refinement in parameter space

• anisotropic p-refinement in higher dimensions

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 12 / 35

Page 13: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Numerical results

Example 1: Smooth response surface in 2D

Convection-diffusion problem in 2D:

−∇ · (2∇u) +

[10 sin

(π2 ξ1

)10 cos (πξ2)

]· ∇u = f(ξ) in D = (0, 1)2

u = 0 on ∂D

Loading f is chosen such that, with ξ1, ξ2 ∼ U(0, 1):

u(x, y, ξ) = 400[ξ1(x− x2)e

− 20ξ1

(x−ξ1)2][ξ2(y − y2)e

− 20ξ2

(y−ξ2)2]

Quantity of interest:

Q(u(·, ξ)) =1

4

∫ 1

0.5

∫ 1

0.5u(x, y, ξ) dxdy ≈

∫Dq(x, y) u(x, y, ξ) dxdy

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 13 / 35

Page 14: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Numerical results

Example 1: Effectivity indices

‖EΩ‖L2Ω

‖ED‖L2Ω

‖E‖L2Ω

‖E‖L2

Ω

‖Q(u)−Q(uh,p,N )‖L2

Ω

5.12427e-01 3.28574e-03 4.34727e-01 .8511.79962e-01 3.48349e-03 1.95149e-01 .7825.23817e-02 6.59002e-03 4.25596e-02 .9212.30547e-02 3.77558e-03 2.85842e-02 .9496.17006e-03 5.77325e-03 8.41438e-03 .9982.21929e-03 4.48790e-03 7.25161e-03 .9872.20458e-03 3.98680e-04 2.80610e-03 .9847.00606e-04 4.31703e-04 9.24221e-04 .9903.58282e-04 4.13817e-04 8.06397e-04 1.013.58118e-04 1.47612e-04 5.17592e-04 1.031.38497e-04 1.49756e-04 2.71081e-04 1.118.78811e-05 2.61145e-05 1.06502e-04 1.025.10997e-05 2.59334e-05 7.73100e-05 1.001.34534e-05 2.59640e-05 3.87553e-05 .9851.33674e-05 1.22096e-05 2.57607e-05 .981

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 14 / 35

Page 15: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Numerical results

Example 2: Response surface with discontinuity

Convection-diffusion model in 2D:

−2∆u+

[sin(3π

2 ξ1)4bξ2 − ξ1c

]· ∇u = f(ξ) in D = (0, 1)2

u = 0 on ∂D

Loading f is chosen so that

u(x, y, ξ) = 10 sin(3π

2ξ1

)(4bξ2 − ξ1c

)· (x− x2)(y − y2)

where

bξ2 − ξ1c =

0 ξ1 ≤ ξ2

−1 ξ1 > ξ2

with ξ1, ξ2 ∼ U(0, 1).

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 15 / 35

Page 16: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Numerical results

Example 2: Response surface with discontinuity

Q(u(·, ξ)) = u

(1

3,1

3, ξ

)≈∫Dq(x, y) u(x, y, ξ) dxdy

q(x, y) =100

πexp

(− 100(x− 1/3)2 − 100(y − 1/3)2

)

00.2

0.40.6

0.81

0

0.5

1

−2

−1

0

1

2

ξ1

ξ2

True response for QoI overparameter space.

Adaptive scheme:

If ‖EΩi‖L2Ωi

> 0.75 maxj∥∥EΩj

∥∥L2

Ωj

split Ωi into 2n new elementsby bisection in each stochasticdirection

end

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 16 / 35

Page 17: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Numerical results

Example 2: Response surface with discontinuity

Adaptive hΩ refinement

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total error

ξ1

ξ 2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Parameter space mesh

ξ1

ξ 2

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 17 / 35

Page 18: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Numerical results

Example 2: Convergence of true error

100 101 102 103 104

number of PDE solves

10−2

10−1

100tr

ueer

ror

||Q(u

(·,ξ)

)−

Q(U

(·,ξ)

)||L2 Ω

−12

−14

||ED||L2Ω

= O(10−3)

uniform h-refinementadaptive h-refinement

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 18 / 35

Page 19: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Numerical results

Example 3: Flow at low Reynolds numbers

Navier-Stokes equations:

−ν∆u+ u · ∇u+∇p = 0

∇ · u = 0

u = uin, x ∈ Γin

u = 0, x ∈ Γw ∪ Γcyl

σ · n = 0, x ∈ Γo

Parameterization of uncertainty: ν = ξ1

uin,x = ξ23

32(4− y2)

−2 −1 0 1 2 3 4 5 6−2

−1

0

1

2

Γw

Γw

Γi

Γo

Γcyl

QoI: Qξ (u) = ux (x0, ξ)

Let ξ1 ∼ U(0.01, 0.1), ξ2 ∼ U(1, 3)

s.t. Re =ξ2

8ξ1∈ [1.25, 37.5]

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 19 / 35

Page 20: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Numerical results

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 20 / 35

Page 21: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Numerical results

Example 3: Flow at low Reynolds numbers

104 105 106 107

Total Degrees of Freedom

10−4

10−3

10−2

10−1

||E|| L

2(Ξ

)

||Q|| L

2(Ξ

)

Ω and Ξ RefinementAdaptive RefinementΞ RefinementΩ Refinement

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 21 / 35

Page 22: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Efficient Bayesian inference - model selection for RANS

Adaptive Response Surface for Parameter Estimation

Objective

The main objective here is to develop a methodology based onresponse surface models and goal-oriented error estimation forefficient and reliable parameter estimation in turbulencemodeling.

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 22 / 35

Page 23: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Efficient Bayesian inference - model selection for RANS

Bayesian inference for RANS using surrogate models

Efficient Bayesian inference: Approximate response surface models canbe used to reduce the computational cost of the process.

• Ma and Zabaras, 2009.

• Li and Marzouk, 2014;Marzouk and Xiu, 2009;Marzouk and Najm, 2009.

UQ for RANS models: Uncertainty in the RANS model parameters is aknown issue in the turbulence community, but quantifying the effect of thisuncertainty is seldom analyzed in the computational fluid dynamicsliterature.

• Cheung et al., 2011.

• Oliver and Moser, 2011.

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 23 / 35

Page 24: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Efficient Bayesian inference - model selection for RANS

Fully developed incompressible channel flow

Mean flow equations: u = U + u′DUiDt

= −1

ρ

∂P

∂xi+

∂xj

(ν∂Ui∂xj− u′iu′j

)∇ ·U = 0

Eddy viscosity assumption:

u′iu′j = −νT (Ui,j + Uj,i)

Channel equations: assuming homogeneous turbulence in x

∂y

((ν + νT )

∂U

∂y

)= 1, y ∈ (0, H)

1Durbin and Petterson Reif, 2001; Pope, 2000S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 24 / 35

Page 25: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Efficient Bayesian inference - model selection for RANS

Spalart-Allmaras (SA) model

Eddy viscosity is given by:

νT = νfv1, fv1 = χ3/(χ3 + cv13), χ = ν/ν

where ν is governed by the transport equation

Dt= Pν(κ, cb1)− εν(κ, cb1, σSA, cw2)

+1

σSA

[∂

∂xj

((ν + ν)

∂ν

∂xj

)+ cb2

∂ν

∂xj

∂ν

∂xj

]with

• Pν = production term

• Dν = wall destruction term

Parameter Valuesκ 0.41 cb2 0.622cb1 0.1355 cv1 7.1σSA 2/3 cw2 0.3

1Allmaras, Johnson, and Spalart, 2012; Oliver and Darmofal, 2009S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 25 / 35

Page 26: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Efficient Bayesian inference - model selection for RANS

Forward model: Find U and ν such that1 =

∂y

((ν + νT (cv1))

∂U

∂y

)0 = Pν(κ, cb1)− εν(κ, cb1, σSA, cw2) +

1

σSA

∂y

[((ν + ν)

∂ν

∂y

)+ cb2

(∂ν

∂y

)2]

Boundary conditions:

U(0) = 0, ∂yU(H) = 0, ν(0) = 0, ∂yν(H) = 0

Weak formulation:

Find (U, ν) ∈ V s.t. B((U, ν); (V, µ)) = F(V, µ), ∀(V, µ) ∈ V

Quantity of interest and adjoint problem:

Find (Z, ζ) ∈ V s.t.

B′((U, ν); (Z, ζ), (V, µ)) = Q(V, µ) =∫ H

0 V dy ∀(V, µ) ∈ V

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 26 / 35

Page 27: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Efficient Bayesian inference - model selection for RANS

Adaptive Response Surface

• Uniform priors for all parameters with range (0.5, 1.5) times nominalvalue (e.g. κ ∼ U(0.205, 0.615))

• Adapted expansion order (after 17 iterations):

κ cb1 σSA cb2 cv1 cw2

6 3 3 1 2 2

100 101 102 103 104

Number of evaluations

10−3

10−2

10−1

100

101

102

||E|| L

2(Ξ

)

adaptiveuniform

10 20 30 40 50 60 70 80Q

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 surrogatefull model

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 27 / 35

Page 28: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Efficient Bayesian inference - model selection for RANS

Bayesian inference

Bayes rule:

p(ξ|q) =L(ξ|q) p(ξ)

p(q)where

q ∈ Rn = Calibration dataL(ξ|q) = Likelihoodp(ξ) = Priorp(ξ|q) = Posterior

Model selection:• Set of modelsM = M1,M2, . . . ,Mn• Posterior plausibility = p(Mi|q,M)

• Likelihood =E(Mi|q,M) := p(q|Mi,M) =

∫Ξp(q|ξ,Mi,M)p(ξ|Mi,M) dξ

p(Mi|q,M) ∝ E(Mi|q,M) p(Mi|M)

1Calvetti and Somersalo, 2007; Jaynes, 2003; Kaipio and Somersalo, 2005S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 28 / 35

Page 29: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Efficient Bayesian inference - model selection for RANS

Calibration data:• Data is obtained from direct numerical simulation (DNS) 1

• Mean velocity measurements were taken at Reτ = 944 andReτ = 2003

Uncertainty models:• Three multiplicative error models

〈u〉+ (z; ξ) = (1 + ε(z; ξ))U+(z; ξ)

I independent homogeneous covarianceI correlated homogeneous covarianceI correlated inhomogeneous covariance

• Reynolds stress model⟨u′iu

′j

⟩+(z; ξ) = T+(z; ξ)− ε(z; ξ)

1Del Alamo et al., 2004; Hoyas and Jimenez, 2006S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 29 / 35

Page 30: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Efficient Bayesian inference - model selection for RANS

Numerical Results

Independent homogeneous covariance:

〈u〉+ (z; ξ) = (1 + ε(z; ξ))U+(z; ξ)⟨ε(z)ε(z′)

⟩= σ2δ(z − z′)

0.85 0.9 0.95 1 1.050

5

10

15

20

25

κ

0.7 0.8 0.9 1 1.10

5

10

15

cv1

0.8 1 1.2 1.4 1.6 1.80

1

2

3

4

5

σ

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 30 / 35

Page 31: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Efficient Bayesian inference - model selection for RANS

Numerical Results

Correlated homogeneous covariance:

〈u〉+ (z; ξ) = (1 + ε(z; ξ))U+(z; ξ)⟨ε(z)ε(z′)

⟩= σ2 exp

(−1/2

(z − z′)2

l2

)

0.85 0.9 0.95 1 1.050

5

10

15

20

κ

0.7 0.8 0.9 1 1.10

2

4

6

8

10

12

cv1

0.5 1 1.5 20

1

2

3

4

σ

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 31 / 35

Page 32: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Efficient Bayesian inference - model selection for RANS

Numerical Results

Correlated inhomogeneous covariance:

〈u〉+ (z; ξ) = (1 + ε(z; ξ))U+(z; ξ)⟨ε(z)ε(z′)

⟩= σ2

(2l(z)l(z′)

l2(z) + l2(z′)

)1/2

exp

(− (z − z′)2

l2(z) + l2(z′)

)

0.8 1 1.2 1.4 1.60

2

4

6

8

κ

0.8 1 1.2 1.4 1.60

1

2

3

4

cv1

0 2 4 6 80

0.5

1

1.5

σ

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 32 / 35

Page 33: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Efficient Bayesian inference - model selection for RANS

Numerical Results

Reynolds stress uncertainty:⟨u′iu

′j

⟩+(z; ξ) = T+(z; ξ)− ε(z; ξ)⟨

ε(z)ε(z′)⟩

= kin(z, z′) + kout(z, z′)

where kin models the error near the walls and kout far from the walls.

0.9 1 1.1 1.2 1.30

5

10

15

20

25

κ

0.8 1 1.2 1.4 1.60

2

4

6

8

cv1

0 2 4 6 80

0.5

1

1.5

σin

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 33 / 35

Page 34: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Efficient Bayesian inference - model selection for RANS

Numerical Results: Model selection

Model evidence (log(E)):

Surrogate Full modelIndependent homogeneous -1.457 8.862Correlated homogeneous 1.963 8.045Correlated inhomogeneous 164.9 164.0Reynolds stress 164.8 169.0

Relative runtimes (in seconds):

Surrogate Full modelIndependent homogeneous 130 1720Correlated homogeneous 162 1906Correlated inhomogeneous 151 1735Reynolds stress 147 1743Cumulative 590 7104

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 34 / 35

Page 35: Adaptive Surrogate Modeling for Response Surface ... workshop... · I Ignore physical discretization error, pseudo-spectral projection, improved linear functional S. Prudhomme and

Conclusions

Concluding remarks and future work

• Error representation for the total error in surrogate models andcontributions from each approximation space.

• Development of adaptive refinement strategies based on errordecomposition.

• Extension to statistical QoI (sQoI), such as probabilities of failure.

• Methodology applied to parameter identification of turbulence modelswith some success.

S. Prudhomme and C. Bryant Adaptive Surrogate Modeling January 6-9, 2015 35 / 35