19
New Additional Mathematics Muhammad Hassan Nadeem 1. Sets A null or empty set is donated by { } or . P = Q if they have the same elements. P βŠ‡ Q, Q is subset of P. PβŠ†Q, P is subset of R. PβŠƒQ, Q is proper subset of P. PβŠ‚Q, P is proper subset of Q. PβŠ“Q, Intersection of P and Q. PβŠ”Q, union of P and Q. P’ compliment of P i.e. -P 2. Simultaneous Equations = βˆ’ Β± 2 βˆ’ 4 2 3. Logarithms and Indices Indices 1. 0 =1 2. βˆ’ = 1 3. 1 = 4. = 5. Γ— = + 6. = βˆ’ 7. = www.revision-notes.co.cc

Additional Mathematics guide for O Levels

Embed Size (px)

DESCRIPTION

This is a sort of cheat sheet to help O Levels students ace their CIE Additional Mathematics paper. It contains a lot of hints, short cuts and other stuff to make it possible for you the A*!

Citation preview

New Additional Mathematics

Muhammad Hassan Nadeem

1. Sets

A null or empty set is donated by { } or πœ™.

P = Q if they have the same elements.

P βŠ‡ Q, Q is subset of P.

PβŠ†Q, P is subset of R.

PβŠƒQ, Q is proper subset of P.

PβŠ‚Q, P is proper subset of Q.

PβŠ“Q, Intersection of P and Q.

PβŠ”Q, union of P and Q.

P’ compliment of P i.e. 𝓔-P

2. Simultaneous Equations

π‘₯ =βˆ’π‘ Β± 𝑏2 βˆ’ 4π‘Žπ‘

2π‘Ž

3. Logarithms and Indices

Indices

1. π‘Ž0 = 1

2. π‘Žβˆ’π‘ =1

π‘Žπ‘

3. π‘Ž1

𝑝 = π‘Žπ‘

4. π‘Žπ‘

π‘ž = π‘Žπ‘ž

𝑝

5. π‘Žπ‘š Γ— π‘Žπ‘› = π‘Žπ‘š+𝑛

6. π‘Žπ‘š

π‘Žπ‘› = π‘Žπ‘šβˆ’π‘›

7. π‘Žπ‘š 𝑛 = π‘Žπ‘šπ‘›

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

8. π‘Žπ‘› Γ— 𝑏𝑛 = π‘Žπ‘ 𝑛

9. π‘Žπ‘›

𝑏𝑛 = π‘Ž

𝑏

𝑛

Logarithms

1. π‘Žπ‘₯ = 𝑦 ≫ π‘₯ = π‘™π‘œπ‘”π‘Žπ‘¦

2. π‘™π‘œπ‘”π‘Ž 1 = 0

3. π‘™π‘œπ‘”π‘Žπ‘Ž = 1

4. π‘™π‘œπ‘”π‘Žπ‘₯𝑦 = π‘™π‘œπ‘”π‘Žπ‘₯ + π‘™π‘œπ‘”π‘Žπ‘¦

5. π‘™π‘œπ‘”π‘Ž π‘₯

𝑦= π‘™π‘œπ‘”π‘Žπ‘₯ βˆ’ π‘™π‘œπ‘”π‘Žπ‘¦

6. π‘™π‘œπ‘”π‘Žπ‘ =π‘™π‘œπ‘” 𝑐𝑏

π‘™π‘œπ‘” π‘π‘Ž

7. π‘™π‘œπ‘”π‘Žπ‘ =1

π‘™π‘œπ‘” π‘π‘Ž

8. π‘™π‘œπ‘”π‘Žπ‘₯𝑦 = π‘¦π‘™π‘œπ‘”π‘Žπ‘₯

9. π‘™π‘œπ‘”π‘Žπ‘ π‘₯ = π‘™π‘œπ‘”π‘Žπ‘₯1

𝑏

10. log𝑏π‘₯ = log𝑏𝑐log𝑐π‘₯ =log 𝑐π‘₯

log 𝑐𝑏

4. Quadratic Expressions and Equations

1. Sketching Graph

y-intercept

Put x=0

x-intercept

Put y=0

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

Turning point

Method 1

x-coordinate: π‘₯ =βˆ’π‘

2π‘Ž

y-coordinate: 𝑦 =4π‘Žπ‘βˆ’π‘2

4π‘Ž

Method 2 2 2

square. The turning point is 𝑕, π‘˜ .

2. Types of roots of π’‚π’™πŸ + 𝒃𝒙 + 𝒄 = 𝟎 𝑏2 βˆ’ 4π‘Žπ‘ β‰₯ 0 : real roots

𝑏2 βˆ’ 4π‘Žπ‘ < 0 : no real roots

𝑏2 βˆ’ 4π‘Žπ‘ > 0 : distinct real roots

𝑏2 βˆ’ 4π‘Žπ‘ = 0 : equal, coincident or repeated real roots

5. Remainder Factor Theorems

Polynomials

1. ax2 + bx + c is a polynomial of degree 2.

2. ax3 + bx + c is a polynomial of degree 3.

Identities

𝑃 π‘₯ ≑ 𝑄 π‘₯ ⟺ 𝑃 π‘₯ = 𝑄 π‘₯ For all values of x

To find unknowns either substitute values of x, or equate coefficients of like powers

of x.

Express 𝑦 = π‘Žπ‘₯ + 𝑏π‘₯ + 𝑐 as 𝑦 = π‘Ž π‘₯ βˆ’ 𝑕 + π‘˜ by completing the

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

Remainder theorem

Factor Theorem

(x-a) is a factor of f(x) then f(a) = 0

Solution of cubic Equation

I. Obtain one factor (x-a) by trail and error method.

II. Divide the cubic equation with a, by synthetic division to find the quadratic

equation.

III. Solve the quadratic equation to find remaining two factors of cubic equation.

For example:

I. The equation π‘₯3 + 2π‘₯2 βˆ’ 5π‘₯ βˆ’ 6 = 0 has (x-2) as one factor, found by trail

and error method.

II. Synthetic division will be done as follows:

III. The quadratics equation obtained is π‘₯2 + 4π‘₯ + 3 = 0.

IV. Equation is solved by quadratic formula, X=-1 and X=-3.

V. Answer would be (x-2)(x+1)(x+3).

6. Matrices

If a polynomial f(x) is divided by (x-a), the remainder is f(a)

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

1. Order of a matrix

Order if matrix is stated as its number of rows x number of columns. For

example, the matrix 5 6 2 has order 1 x 3.

2. Equality

Two matrices are equal if they are of the same order and if their

corresponding elements are equal.

3. Addition

To add two matrices, we add their corresponding elements.

For example, 6 βˆ’23 5

+ βˆ’4 24 1

= 2 07 6

.

4. Subtraction

To subtract two matrices, we subtract their corresponding elements.

For example, 6 3 59 14 βˆ’5

βˆ’ 2 7 5

βˆ’4 20 1 =

4 βˆ’4 012 βˆ’6 βˆ’6

.

5. Scalar multiplication

To multiply a matrix by k, we multiply each element by k.

For example, π‘˜ 2 43 βˆ’1

= 2π‘˜ 4π‘˜3π‘˜ βˆ’π‘˜

or 3 24 =

612

.

6. Matrix multiplication

To multiply two matrices, column of the first matrix must be equal to the row

of the second matrix. The product will have order row of first matrix X column

of second matrix.

For example: 2 41 32 βˆ’1

3 2 11 5 2

47 =

π‘Ž 𝑏 𝑐𝑒 𝑓 𝑔𝑖 𝑗 π‘˜

𝑑𝑕𝑙

To get the first row of product do following:

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

a = (2 x 3) + (4 X 1) = 10 (1st row of first, 1st column of second)

b = (2 x 2) + (4 x 5) = 24 (1st row of first, 2st column of second)

c = (2 x 1) + (4 x 2) = 10 (1st row of first, 3st column of second)

d = (2 x 4) + (4 x 7) = 36 (1st row of first, 4st column of second)

e = (1 x 3) + (3 x 1) = 6 (2st row of first, 1st column of second)

f = (1 x 2) + (3 x 5) = 17 (2st row of first, 2st column of second)

g = (1 x 1) + (3 x 2) = 7 (2st row of first, 3st column of second)

h = (1 x 4) + (3 x 7) = 25 (2st row of first, 4st column of second)

i = (2 x 3) + (-1 x 1) = 5 (3st row of first, 1st column of second)

j = (2 x 2) + (-1 x 5) = -1 (3st row of first, 2st column of second)

k = (2 x 1) + (-1 x 2) = 0 (3st row of first, 3st column of second)

l = (2 x 4) + (-1 x 7) = 1 (3st row of first, 4st column of second)

7. 2 x2 Matrices

a. The matrix 1 00 1

is called identity matrix. When it is multiplied with any

matrix X the answer will be X.

b. Determinant of matrix π‘Ž 𝑏𝑐 𝑑

will be = π‘Ž 𝑏𝑐 𝑑

= π‘Žπ‘‘ βˆ’ 𝑏𝑐

c. Adjoint of matrix π‘Ž 𝑏𝑐 𝑑

will be = 𝑑 βˆ’π‘βˆ’π‘ π‘Ž

d. Inverse of non-singular matrix (determinant is β‰  0) π‘Ž 𝑏𝑐 𝑑

will be :

π‘Žπ‘‘π‘—π‘œπ‘–π‘›π‘‘

π‘‘π‘’π‘‘π‘’π‘Ÿπ‘šπ‘–π‘›π‘Žπ‘›π‘‘=

1

π‘Žπ‘‘ βˆ’ 𝑏𝑐

𝑑 βˆ’π‘βˆ’π‘ π‘Ž

8. Solving simultaneous linear equations by a matrix method

π‘Žπ‘₯ + 𝑏𝑦 = 𝑕𝑐π‘₯ + 𝑑𝑦 = π‘˜

≫≫ π‘Ž 𝑏𝑐 𝑑

π‘₯𝑦 =

π‘•π‘˜

π‘₯𝑦 =

π‘Ž 𝑏𝑐 𝑑

βˆ’1

Γ— π‘•π‘˜

7. Coordinate Geometry

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

Formulas

π·π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ 𝐴𝐡 = π‘₯2 βˆ’ π‘₯1 2 + 𝑦2 βˆ’ 𝑦1 2

π‘€π‘–π‘‘π‘π‘œπ‘–π‘›π‘‘ π‘œπ‘“ 𝐴𝐡 = π‘₯1 + π‘₯2

2,𝑦1 + 𝑦2

2

Parallelogram

If ABCD is a parallelogram then diagonals AC and BD have a common midpoint.

Equation of Straight line

To find the equation of a line of best fit, you need the gradient(m) of the line, and

the y-intercept(c) of the line. The gradient can be found by taking any two points

on the line and using the following formula:

π‘”π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘›π‘‘ = π‘š =𝑦2 βˆ’ 𝑦1

π‘₯2 βˆ’ π‘₯1

The y-intercept is the y-coordinate of the point at which the line crosses the y-

axis (it may need to be extended). This will give the following equation:

𝑦 = π‘šπ‘₯ + 𝑐

Where y and x are the variables, m is the gradient and c is the y-intercept.

Equation of parallel lines

Parallel line have equal gradient.

If lines 𝑦 = π‘š1𝑐1 and 𝑦 = π‘š2𝑐2 are parallel then π‘š1 = π‘š2

Equations of perpendicular line

If lines 𝑦 = π‘š1𝑐1 and 𝑦 = π‘š2𝑐2 are perpendicular then π‘š1 = βˆ’1

π‘š2 and π‘š2 = βˆ’

1

π‘š1.

Perpendicular bisector

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

The line that passes through the midpoint of A and B, and perpendicular bisector of AB. For any point P on the line, PA = PB

Points of Intersection

The coordinates of point of intersection of a line and a non-parallel line or a curve

can be obtained by solving their equations simultaneously.

8. Linear Law

To apply the linear law for a non-linear equation in variables x and y, express the

equation in the form

π‘Œ = π‘šπ‘‹ + 𝑐

Where X and Y are expressions in x and/or y.

9. Functions

Page 196

10. Trigonometric Functions

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

πœƒ is always acute.

Basics

sin πœƒ =π‘π‘’π‘Ÿπ‘π‘’π‘›π‘‘π‘–π‘π‘’π‘™π‘Žπ‘Ÿ

π‘•π‘¦π‘π‘œπ‘‘π‘’π‘›π‘’π‘ π‘’

cos πœƒ =π‘π‘Žπ‘ π‘’

π‘•π‘¦π‘π‘œπ‘‘π‘’π‘›π‘’π‘ π‘’

tan πœƒ =π‘π‘’π‘Ÿπ‘π‘’π‘›π‘‘π‘–π‘π‘’π‘™π‘Žπ‘Ÿ

π‘π‘Žπ‘ π‘’

tan πœƒ =sin πœƒ

cos πœƒ

cosec πœƒ =1

sin πœƒ

sec πœƒ =1

cos πœƒ

cot πœƒ =1

tan πœƒ

πœƒπ‘–π‘  βˆ’ 𝑣𝑒

πœƒπ‘–π‘  + 𝑣𝑒

Sin

2

All

1

Tan

3

Cos

4

0,360 180

270

90

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

Rule 1

sin(90 βˆ’πœƒ) = cos πœƒ

cos 90 βˆ’ πœƒ = sin πœƒ

tan 90 βˆ’ πœƒ =1

tan πœƒ= cot ΞΈ

Rule 2

sin(180 βˆ’ πœƒ) = + sin πœƒ

cos 180 βˆ’ πœƒ = βˆ’cos πœƒ

tan 180 βˆ’ πœƒ = βˆ’tan πœƒ

Rule 3

sin(180 + πœƒ) = βˆ’sin πœƒ

cos 180 + πœƒ = βˆ’cos πœƒ

tan 180 + πœƒ = +tan πœƒ

Rule 4

sin(360 βˆ’ πœƒ) = βˆ’ sin πœƒ

cos 360 βˆ’ πœƒ = +cos πœƒ

tan 360 βˆ’ πœƒ = βˆ’tan πœƒ

Rule 5

sin(βˆ’πœƒ) = βˆ’sin πœƒ

cos βˆ’πœƒ = +cos πœƒ

tan βˆ’πœƒ = βˆ’tan πœƒ

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

Trigonometric Ratios of Some Special Angles

cos 45 =1

2 cos 60 =

1

2 cos 30 =

3

2

sin 45 =1

2 sin 60 =

3

2 sin 30 =

1

2

tan 45 = 1 tan 60 = 3 tan 301

3

11. Simple Trigonometric Identities

Trigonometric Identities

sin2 πœƒ + cos2 πœƒ = 1

1 + tan2 πœƒ = sec2 πœƒ

1 + cot2 πœƒ = cosec2 πœƒ

12. Circular Measure

Relation between Radian and Degree

πœ‹

2 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘  = 90Β° πœ‹ π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘  = 180Β°

3πœ‹

2 π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘  = 270Β° 2πœ‹ π‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘›π‘  = 360Β°

𝑠 = π‘Ÿπ›³ where s is arc length, r is radius and Ο΄ is angle of sector is radians

𝐴 =1

2π‘Ÿπ‘  =

1

2π‘Ÿ2𝛳 where A is Area of sector

π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘ π‘’π‘π‘‘π‘œπ‘Ÿ

π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘π‘–π‘Ÿπ‘π‘™π‘’=

π‘Žπ‘›π‘”π‘™π‘’ π‘œπ‘“ π‘ π‘’π‘π‘‘π‘œπ‘Ÿ

π‘Žπ‘›π‘”π‘™π‘’ π‘œπ‘“ π‘π‘–π‘Ÿπ‘π‘™π‘’

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

13. Permutation and Combination

𝑛! = 𝑛 𝑛 βˆ’ 1 𝑛 βˆ’ 2 Γ— … Γ— 3 Γ— 2 Γ— 1

0! = 1

𝑛! = 𝑛 𝑛 βˆ’ 1 !

π‘›π‘ƒπ‘Ÿ=

𝑛!

𝑛 βˆ’ π‘Ÿ !

π‘›πΆπ‘Ÿ=

𝑛!

𝑛 βˆ’ π‘Ÿ ! π‘Ÿ!

14. Binomial Theorem

π‘Ž + 𝑏 𝑛 = π‘Žπ‘› + 𝐢1π‘›π‘Žπ‘›βˆ’1𝑏 + 𝐢2

π‘›π‘Žπ‘›βˆ’2𝑏2 + 𝐢3π‘›π‘Žπ‘›βˆ’3𝑏3 + β‹― + 𝑏𝑛

π‘‡π‘Ÿ+1 = π‘›πΆπ‘Ÿπ‘Žπ‘›βˆ’π‘Ÿπ‘π‘Ÿ

15. Differentiation

𝑑

𝑑π‘₯ π‘₯𝑛 = 𝑛π‘₯π‘›βˆ’1

𝑑

𝑑π‘₯ π‘Žπ‘₯π‘š + 𝑏π‘₯𝑛 = π‘Žπ‘šπ‘₯π‘šβˆ’1 + 𝑏𝑛π‘₯π‘›βˆ’1

𝑑

𝑑π‘₯ 𝑒𝑛 = π‘›π‘’π‘›βˆ’1

𝑑𝑒

𝑑π‘₯

𝑑

𝑑π‘₯ 𝑒𝑣 = 𝑒

𝑑𝑣

𝑑𝑐+ 𝑣

𝑑𝑒

𝑑π‘₯

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

𝑑

𝑑π‘₯ 𝑒

𝑣 =

𝑣𝑑𝑒𝑑π‘₯

βˆ’ 𝑒𝑑𝑣𝑑π‘₯

𝑣2

Where β€˜v’ and β€˜u’ are two functions

Gradient of a curve at any point P(x,y) is 𝑑𝑦

𝑑π‘₯ at x

16. Rate of Change

The rate of change of a variable x with respect to time is 𝑑π‘₯

𝑑𝑑

𝑑𝑦

𝑑𝑑=

𝑑𝑦

𝑑π‘₯Γ—

𝑑π‘₯

𝑑𝑑

𝛿𝑦

𝛿π‘₯β‰ˆ

𝑑𝑦

𝑑π‘₯

π‘ƒπ‘’π‘Ÿπ‘π‘’π‘›π‘‘π‘Žπ‘”π‘’ π‘π‘•π‘Žπ‘›π‘”π‘’ 𝑖𝑛 π‘₯ =𝛿π‘₯

π‘₯Γ— 100%

𝑓 π‘₯ + 𝛿π‘₯ = 𝑦 + 𝛿𝑦 β‰ˆ 𝑦 +𝑑𝑦

𝑑π‘₯𝛿π‘₯

17. Higher Derivative

𝑑𝑦

𝑑π‘₯= 0 when x =a then point (a, f(a)) is a stationary point.

𝑑𝑦

𝑑π‘₯= 0 and

𝑑2𝑦

𝑑π‘₯2 β‰  0 when x =a then point (a, f(a)) is a turning point.

For a turning point T

I. If 𝑑2𝑦

𝑑π‘₯2 > 0, then T is a minimum point.

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

II. If 𝑑2𝑦

𝑑π‘₯2 < 0, then T is a maximum point.

18. Derivative of Trigonometric Functions

𝑑

𝑑π‘₯ sin π‘₯ = cos π‘₯

𝑑

𝑑π‘₯ cos π‘₯ = βˆ’ sin π‘₯

𝑑

𝑑π‘₯ tan π‘₯ = sec2 π‘₯

𝑑

𝑑π‘₯ sinn π‘₯ = 𝑛 sinnβˆ’1 π‘₯ cos π‘₯

𝑑

𝑑π‘₯ cosn π‘₯ = βˆ’π‘› cosnβˆ’1 π‘₯ sin π‘₯

𝑑

𝑑π‘₯ tann π‘₯ = 𝑛 tannβˆ’1 π‘₯ sec2 π‘₯

19. Exponential and Logarithmic Functions

𝑑

𝑑π‘₯ 𝑒𝑒 = 𝑒𝑒

𝑑𝑒

𝑑π‘₯

𝑑

𝑑π‘₯ π‘’π‘Žπ‘₯ +𝑏 = π‘Žπ‘’π‘Žπ‘₯ +𝑏

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

A curve defined by y=ln(ax+b) has a domain ax+b>0 and the curve cuts the x-

axis at the point where ax+b=1

𝑑

𝑑π‘₯ 𝑙𝑛 π‘₯ =

1

π‘₯

𝑑

𝑑π‘₯ ln 𝑒 =

1

𝑒

𝑑𝑒

𝑑π‘₯

𝑑

𝑑π‘₯ 𝑙𝑛 π‘Žπ‘₯ + 𝑏 =

π‘Ž

π‘Žπ‘₯ + 𝑏

20. Integration

𝑑𝑦

𝑑π‘₯= π‘₯ ⟺ 𝑦 = π‘₯ 𝑑π‘₯

𝑑

𝑑π‘₯

1

2π‘₯2 + 𝑐 = π‘₯ ⟺ π‘₯ 𝑑π‘₯ =

1

2π‘₯2 + 𝑐

π‘Žπ‘₯𝑛 𝑑π‘₯ =π‘Žπ‘₯𝑛+1

𝑛 + 1+ 𝑐

π‘Žπ‘₯𝑛 + π‘Žπ‘π‘š 𝑑π‘₯ =π‘Žπ‘₯𝑛+1

𝑛 + 1+

𝑏π‘₯π‘š+1

π‘š + 1+ 𝑐

(π‘Žπ‘₯ + 𝑏)𝑛 𝑑π‘₯ = π‘Žπ‘₯ + 𝑏 𝑛+1

π‘Ž(𝑛 + 1)+ 𝑐

𝑑

𝑑π‘₯ 𝐹 π‘₯ = 𝑓(π‘₯) ⟺ 𝑓 π‘₯ 𝑑π‘₯ = 𝐹 𝑏 βˆ’ 𝐹(π‘Ž)

𝑏

π‘Ž

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

𝑓 π‘₯ 𝑑π‘₯ + 𝑓 π‘₯ 𝑑π‘₯𝑐

𝑏

= 𝑓 π‘₯ 𝑑π‘₯𝑐

π‘Ž

𝑏

π‘Ž

𝑓 π‘₯ 𝑑π‘₯ = βˆ’ 𝑓 π‘₯ 𝑑π‘₯π‘Ž

𝑏

𝑏

π‘Ž

𝑓 π‘₯ 𝑑π‘₯ = 0π‘Ž

π‘Ž

𝑑

𝑑π‘₯ sin π‘₯ = cos π‘₯ ⟺ cos π‘₯ 𝑑π‘₯ = sin π‘₯ + 𝑐

𝑑

𝑑π‘₯ βˆ’cos π‘₯ = sin π‘₯ ⟺ sin π‘₯ 𝑑π‘₯ = βˆ’ cos π‘₯ + 𝑐

𝑑

𝑑π‘₯ tan π‘₯ = sec2 π‘₯ ⟺ 𝑠𝑒𝑐2π‘₯ 𝑑π‘₯ = π‘‘π‘Žπ‘› π‘₯ + 𝑐

𝑑

𝑑π‘₯ 1

π‘Žsin(π‘Žπ‘₯ + 𝑏) = cos(π‘Žπ‘₯ + 𝑏) ⟺ cos(π‘Žπ‘₯ + 𝑏) 𝑑π‘₯ =

1

π‘Žsin(π‘Žπ‘₯ + 𝑏) + 𝑐

𝑑

𝑑π‘₯ βˆ’

1

π‘Žcos(π‘Žπ‘₯ + 𝑏) = sin(π‘Žπ‘₯ + 𝑏) ⟺ sin(π‘Žπ‘₯ + 𝑏) 𝑑π‘₯ = βˆ’

1

π‘Žcos(π‘Žπ‘₯ + 𝑏) + 𝑐

𝑑

𝑑π‘₯ 1

π‘Žtan(π‘Žπ‘₯ + 𝑏) = sec2(π‘Žπ‘₯ + 𝑏) ⟺ 𝑠𝑒𝑐2(π‘Žπ‘₯ + 𝑏) 𝑑π‘₯ =

1

π‘Žπ‘‘π‘Žπ‘› (π‘Žπ‘₯ + 𝑏) + 𝑐

𝑑

𝑑π‘₯ 𝑒π‘₯ = 𝑒π‘₯ ⟺ 𝑒π‘₯ 𝑑π‘₯ = 𝑒π‘₯ + 𝑐

𝑑

𝑑π‘₯ βˆ’π‘’βˆ’π‘₯ = π‘’βˆ’π‘₯ ⟺ π‘’βˆ’π‘₯ 𝑑π‘₯ = βˆ’π‘’βˆ’π‘₯ + 𝑐

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

21. Applications of Integration

For a region R above the x-axis, enclosed by the curve y=f(x), the x-axis and the lines x=a and x=b, the area R is:

𝐴 = 𝑓 π‘₯ 𝑑π‘₯𝑏

π‘Ž

For a region R below the x-axis, enclosed by the curve y=f(x), the x-axis and the lines x=a and x=b, the area R is:

𝐴 = βˆ’π‘“ π‘₯ 𝑑π‘₯𝑏

π‘Ž

For a region R enclosed by the curves y=f(x) and y=g(x) and the lines x=a and x=b, the area R is:

𝐴 = 𝑓 π‘₯ βˆ’ 𝑔(π‘₯) 𝑑π‘₯𝑏

π‘Ž

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

22. Kinematics

𝑣 =𝑑𝑠

𝑑𝑑

π‘Ž =𝑑𝑣

𝑑𝑑

𝑠 = 𝑣 𝑑𝑑

𝑣 = π‘Ž 𝑑𝑑

π΄π‘£π‘’π‘Ÿπ‘”π‘’ 𝑠𝑝𝑒𝑒𝑑 =π‘‘π‘œπ‘‘π‘Žπ‘™ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ π‘‘π‘Ÿπ‘Žπ‘£π‘’π‘™π‘™π‘’π‘‘

π‘‘π‘œπ‘‘π‘Žπ‘™ π‘‘π‘–π‘šπ‘’ π‘‘π‘Žπ‘˜π‘’π‘›

𝑣 = 𝑒 + π‘Žπ‘‘

𝑠 = 𝑒𝑑 +1

2π‘Žπ‘‘2

𝑠 =1

2 𝑒 + 𝑣 𝑑

𝑣2 = 𝑒2 + 2π‘Žπ‘ 

23. Vectors

If 𝑂𝑃 = π‘₯𝑦 then 𝑂𝑃 = π‘₯2 + 𝑦2

𝒃 = π‘˜π’‚ and k > 0 a and b are in the same direction

𝒃 = π‘˜π’‚ and k < 0 a and b are opposite in direction

Vectors expressed in terms of two parallel vectors a and b:

𝑝𝒂 + π‘žπ’ƒ = π‘Ÿπ’‚ + 𝑠𝒃 ⟺ p = r and q = s

www.revision-notes.co.cc

New Additional Mathematics

Muhammad Hassan Nadeem

If A, B and C are collinear points ⟺ AB=kBC

If P has coordinates (x, y) in a Cartesian plane, then the position vector of P is

𝑂𝑃 = π‘₯π’Š + 𝑦𝒋

where i and j are unit vectors in the positive direction along the x-axis and the y-

axis respectively.

Unit vector is the direction of 𝑂𝑃 is 1

π‘₯2 + 𝑦2 π‘₯π’Š + 𝑦𝒋 π‘œπ‘Ÿ

1

π‘₯2 + 𝑦2 π‘₯𝑦

24. Relative velocity

www.revision-notes.co.cc