5
Proc. Nati. Acad. Sci. USA Vol. 86, pp. 7989-7993, October 1989 Genetics The adenylyl cyclase gene from Schizosaccharomyces pombe (signal transduction/cAMP/evolution/ceil regulation) DALLAN YOUNG, MICHAEL RIGGS, JEFFREY FIELD, ANNE VOJTEK, DANIEL BROEK*, AND MICHAEL WIGLER Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 Contributed by Michael Wigler, July 28, 1989 ABSTRACT We cloned the adenylyl cyclase gene from the fission yeast Schizosaccharomyces pombe using low-stringency hybridization to the Saccharomyces cerevisiae adenylyl cyclase gene. The Sc. pombe gene encodes a 1692-amino acid-residue protein. The identity of this gene was confirmed by studies of its expression in Sa. cerevisiae. Expression of the carboxyl- terminal region of the Sc. pombe adenylyl cyclase protein will suppress a temperature-sensitive mutation in the Sa. cerevisiae adenylyl cyclase gene. Furthermore, Sa. cerevisiae that lack their endogenous adenylyl cyclase gene and express the car- boxyl-terminal region of the Sc. pombe adenylyl cyclase protein have measurable adenylyl cyclase activity. The carboxyl- terminal region of this protein has strong homology with the catalytic domain of the Sa. cerevisiae adenylyl cyclase. Also, Sc. pombe adenylyl cyclase, like Sa. cerevisiae adenylyl cyclase, contains a tandemly repeated motif rich in leucine. Neither yeast protein is particularly homologous to the recently cloned Gs-responsive mammalian adenylyl cyclase [Krupinski, J., Coussen, F., Bakalyar, H. A., Tang, W.-J., Feinstein, P. G., Orth, K., Slaughter, C., Reed, R. R. & Gilman, A. G. (1989) Science 244, 1558-1564]. Adenylyl cyclase catalyzes the conversion of ATP into the second messenger cAMP, which plays an important role in the regulation of a variety of cellular responses in eukaryotic organisms. In the budding yeast Saccharomyces cerevisiae, cAMP can regulate a range of cellular events, including cell growth, cell-cycle progression, glycogen metabolism, and heat shock sensitivity (1-4). The gene encoding adenylyl cyclase from Sa. cerevisiae, CYR], has been previously cloned in this laboratory (5) and others (6, 7). This gene encodes a 2026-amino acid-residue protein. Deletion analysis has revealed that the 418-amino acid carboxyl-terminal end of the protein is sufficient for enzymatic activity. Using the region of CYRI that encodes the catalytic domain as a hybridization probe, we were able to detect and clone the adenylyl cyclase gene from the distantly related fission yeast Schizosaccharomyces pombe.t We present here a compari- son of the amino acid sequence of the adenylyl cyclase from Sc. pombe with that of Sa. cerevisiae. MATERIALS AND METHODS DNA Manipulation. DNA was purified from the Sc. pombe strain SP67 (8) by a described procedure (9). Sc. pombe DNA was cut with restriction enzymes (New England Biolabs), fractionated on a 1% agarose gel, and blotted onto nitrocel- lulose paper (10). DNA fragments that were homologous to the Sa. cerevisiae adenylyl cyclase gene were detected by low-stringency hybridization to a nick-translated (11), 32p labeled Pvu II-Cla I fragment of the plasmid pCYR1-2 (5). Low-stringency hybridization was performed in 6x SSC (lx SSC is 0.15 M sodium chloride/0.015 M sodium citrate), lx Denhardt's solution (0.02% polyvinylpyrrolidone/0.02% Ficoll/0.2% bovine serum albumin), and denatured calf thy- mus DNA (50 gg/ml) at 550C for 24 hr followed by several washings in 2x SSC/12 mM Na2HPO4/8 mM NaH2PO4/1.35 mM Na4P207/1.25% SDS at 55°C. The Sa. cerevisiae CYR] probe detected a 3.2-kilobase-pair (kbp) EcoRI-Xba I Sc. pombe DNA fragment. To clone this fragment, Sc. pombe DNA was cut with EcoRI and Xba I and fractionated on an agarose gel. DNA fragments 2.7 to 3.7 kbp in length were purified by electroelution and inserted into the A ZAP vector (Stratagene). Individual plaques containing the 3.2-kbp DNA insert homologous to CYR] were detected by filter hybrid- ization (12). The plasmid pPC28 was constructed by subclon- ing the 3.2-kbp EcoRI-Xba I DNA insert into pUC118. A library of Sc. pombe DNA that was cut with Sal I and Xba I was constructed in pUC118, and clones hybridizing to the 3.2-kbp fragment were detected by colony-filter hybridiza- tion (13). The DNA sequence of one such clone, pPC2, was determined by a modified procedure (14) of the dideoxynu- cleotide chain-termination method (15). Yeast Expression Plasnids. The plasmid pAD4 contains the yeast LEU2 gene from YEp213 (9), the yeast 2-pim origin of replication, the ampicillin resistance gene, and the bacterial origin of replication from pUC18, as well as the yeast ADHI (alcohol dehydrogenase) promoter and terminator sequences (16). pAD4 is identical to the plasmid pADNS, which was described (17), except that the promoter and terminator sequences are separated by the pUC18 polylinker sequence. The plasmid pADPC was constructed by inserting the 4.0-kbp HindIII-Sac I fragment of pPC2 into the vector pAD4 at the HindIII-Sac I sites. The plasmid pYCYR contains the 8.2- kbp region of pEF-CYR1 (18), containing the alcohol dehy- drogenase promoter linked to the entire coding sequence of Sa. cerevisiae adenylyl cyclase, cloned into the vector YEp13 (9). Yeast Strains and Genetics. Yeast were grown, trans- formed, and analyzed as described. The genotype of the Sa. cerevisiae strain T50-3A is MATa his3 leu2 trpl ura3 cyrl-2, and its construction has been described (5). The cyrl-2 allele encodes a temperature-sensitive adenylyl cyclase (19). The genotype of the Sa. cerevisiae strain T158-5AT is MATa his3 leu2 trpl ura3 ade8 cyrl:: URA3. In T158-5AT the entire adenylyl cyclase gene is deleted and replaced with the Sa. cerevisiae URA3 gene. This strain has been described (20). Adenylyl Cyclase Assays. Adenylyl cyclase assays were performed using crude yeast membrane extracts. Yeast mem- brane extracts were prepared from 1-liter yeast cultures that were grown to a density of 1 x 107 cells per ml. Cells were washed in buffer C {200 mM Mes [2-(N-morpholino)ethane- sulfonic acid], pH 6.2/0.1 mM MgCl2/0.1 mM EGTA/1 mM 2-mercaptoethanol/1 mM phenylmethylsulfonyl fluoride}, resuspended in 35 ml of buffer C, and lysed in a French press *Present address: Kenneth Norris Jr. Cancer Research Hospital and Research Institute, P.O. Box 33800, 1444 East Lake Avenue, Los Angeles, CA 90033. tThe sequence reported in this paper has been deposited in the GenBank data base (accession no. M26699). 7989 The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact. Downloaded by guest on January 9, 2021

adenylyl cyclase genefrom SchizosaccharomycesSalI-Xba I fragmentfromthe plasmid pPC2, beginningfromthe SalI site andextending6885 basepairs (bp), is shown. pPC2wasisolated from a genomic

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: adenylyl cyclase genefrom SchizosaccharomycesSalI-Xba I fragmentfromthe plasmid pPC2, beginningfromthe SalI site andextending6885 basepairs (bp), is shown. pPC2wasisolated from a genomic

Proc. Nati. Acad. Sci. USAVol. 86, pp. 7989-7993, October 1989Genetics

The adenylyl cyclase gene from Schizosaccharomyces pombe(signal transduction/cAMP/evolution/ceil regulation)

DALLAN YOUNG, MICHAEL RIGGS, JEFFREY FIELD, ANNE VOJTEK, DANIEL BROEK*, AND MICHAEL WIGLERCold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724

Contributed by Michael Wigler, July 28, 1989

ABSTRACT We cloned the adenylyl cyclase gene from thefission yeast Schizosaccharomyces pombe using low-stringencyhybridization to the Saccharomyces cerevisiae adenylyl cyclasegene. The Sc. pombe gene encodes a 1692-amino acid-residueprotein. The identity of this gene was confirmed by studies ofits expression in Sa. cerevisiae. Expression of the carboxyl-terminal region of the Sc. pombe adenylyl cyclase protein willsuppress a temperature-sensitive mutation in the Sa. cerevisiaeadenylyl cyclase gene. Furthermore, Sa. cerevisiae that lacktheir endogenous adenylyl cyclase gene and express the car-boxyl-terminal region of the Sc. pombe adenylyl cyclase proteinhave measurable adenylyl cyclase activity. The carboxyl-terminal region of this protein has strong homology with thecatalytic domain ofthe Sa. cerevisiae adenylyl cyclase. Also, Sc.pombe adenylyl cyclase, like Sa. cerevisiae adenylyl cyclase,contains a tandemly repeated motif rich in leucine. Neitheryeast protein is particularly homologous to the recently clonedGs-responsive mammalian adenylyl cyclase [Krupinski, J.,Coussen, F., Bakalyar, H. A., Tang, W.-J., Feinstein, P. G.,Orth, K., Slaughter, C., Reed, R. R. & Gilman, A. G. (1989)Science 244, 1558-1564].

Adenylyl cyclase catalyzes the conversion of ATP into thesecond messenger cAMP, which plays an important role inthe regulation of a variety of cellular responses in eukaryoticorganisms. In the budding yeast Saccharomyces cerevisiae,cAMP can regulate a range of cellular events, including cellgrowth, cell-cycle progression, glycogen metabolism, andheat shock sensitivity (1-4). The gene encoding adenylylcyclase from Sa. cerevisiae, CYR], has been previouslycloned in this laboratory (5) and others (6, 7). This geneencodes a 2026-amino acid-residue protein. Deletion analysishas revealed that the 418-amino acid carboxyl-terminal end ofthe protein is sufficient for enzymatic activity. Using theregion of CYRI that encodes the catalytic domain as ahybridization probe, we were able to detect and clone theadenylyl cyclase gene from the distantly related fission yeastSchizosaccharomyces pombe.t We present here a compari-son of the amino acid sequence of the adenylyl cyclase fromSc. pombe with that of Sa. cerevisiae.

MATERIALS AND METHODSDNA Manipulation. DNA was purified from the Sc. pombe

strain SP67 (8) by a described procedure (9). Sc. pombe DNAwas cut with restriction enzymes (New England Biolabs),fractionated on a 1% agarose gel, and blotted onto nitrocel-lulose paper (10). DNA fragments that were homologous tothe Sa. cerevisiae adenylyl cyclase gene were detected bylow-stringency hybridization to a nick-translated (11), 32plabeled Pvu II-Cla I fragment of the plasmid pCYR1-2 (5).Low-stringency hybridization was performed in 6x SSC (lxSSC is 0.15 M sodium chloride/0.015 M sodium citrate), lx

Denhardt's solution (0.02% polyvinylpyrrolidone/0.02%Ficoll/0.2% bovine serum albumin), and denatured calf thy-mus DNA (50 gg/ml) at 550C for 24 hr followed by severalwashings in 2x SSC/12 mM Na2HPO4/8 mM NaH2PO4/1.35mM Na4P207/1.25% SDS at 55°C. The Sa. cerevisiae CYR]probe detected a 3.2-kilobase-pair (kbp) EcoRI-Xba I Sc.pombe DNA fragment. To clone this fragment, Sc. pombeDNA was cut with EcoRI and Xba I and fractionated on anagarose gel. DNA fragments 2.7 to 3.7 kbp in length werepurified by electroelution and inserted into the A ZAP vector(Stratagene). Individual plaques containing the 3.2-kbp DNAinsert homologous to CYR] were detected by filter hybrid-ization (12). The plasmid pPC28 was constructed by subclon-ing the 3.2-kbp EcoRI-Xba I DNA insert into pUC118. Alibrary of Sc. pombe DNA that was cut with Sal I and XbaI was constructed in pUC118, and clones hybridizing to the3.2-kbp fragment were detected by colony-filter hybridiza-tion (13). The DNA sequence of one such clone, pPC2, wasdetermined by a modified procedure (14) of the dideoxynu-cleotide chain-termination method (15).

Yeast Expression Plasnids. The plasmid pAD4 contains theyeast LEU2 gene from YEp213 (9), the yeast 2-pim origin ofreplication, the ampicillin resistance gene, and the bacterialorigin of replication from pUC18, as well as the yeast ADHI(alcohol dehydrogenase) promoter and terminator sequences(16). pAD4 is identical to the plasmid pADNS, which wasdescribed (17), except that the promoter and terminatorsequences are separated by the pUC18 polylinker sequence.The plasmid pADPC was constructed by inserting the 4.0-kbpHindIII-Sac I fragment of pPC2 into the vector pAD4 at theHindIII-Sac I sites. The plasmid pYCYR contains the 8.2-kbp region of pEF-CYR1 (18), containing the alcohol dehy-drogenase promoter linked to the entire coding sequence ofSa. cerevisiae adenylyl cyclase, cloned into the vectorYEp13 (9).

Yeast Strains and Genetics. Yeast were grown, trans-formed, and analyzed as described. The genotype of the Sa.cerevisiae strain T50-3A is MATa his3 leu2 trpl ura3 cyrl-2,and its construction has been described (5). The cyrl-2 alleleencodes a temperature-sensitive adenylyl cyclase (19). Thegenotype of the Sa. cerevisiae strain T158-5AT is MATa his3leu2 trpl ura3 ade8 cyrl:: URA3. In T158-5AT the entireadenylyl cyclase gene is deleted and replaced with the Sa.cerevisiae URA3 gene. This strain has been described (20).

Adenylyl Cyclase Assays. Adenylyl cyclase assays wereperformed using crude yeast membrane extracts. Yeast mem-brane extracts were prepared from 1-liter yeast cultures thatwere grown to a density of 1 x 107 cells per ml. Cells werewashed in buffer C {200 mM Mes [2-(N-morpholino)ethane-sulfonic acid], pH 6.2/0.1 mM MgCl2/0.1 mM EGTA/1 mM2-mercaptoethanol/1 mM phenylmethylsulfonyl fluoride},resuspended in 35 ml of buffer C, and lysed in a French press

*Present address: Kenneth Norris Jr. Cancer Research Hospital andResearch Institute, P.O. Box 33800, 1444 East Lake Avenue, LosAngeles, CA 90033.tThe sequence reported in this paper has been deposited in theGenBank data base (accession no. M26699).

7989

The publication costs of this article were defrayed in part by page chargepayment. This article must therefore be hereby marked "advertisement"in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Dow

nloa

ded

by g

uest

on

Janu

ary

9, 2

021

Page 2: adenylyl cyclase genefrom SchizosaccharomycesSalI-Xba I fragmentfromthe plasmid pPC2, beginningfromthe SalI site andextending6885 basepairs (bp), is shown. pPC2wasisolated from a genomic

7990 Genetics: Young et al. Proc. Natl. Acad. Sci. USA 86 (1989)

1 GTCGACGGAGCAGGATTAATCAATTTTGATTGTTGTACGGAGGATGATCTAAATAATCCTCATCTTTTGT TTACACTGTATAAACTATTGGAAAGGTTTTCTCTAATCTTCCTTCGAAAA121 TGTGCTTTGCTTTGGTATTGCCGCTATGGAGTTTCATTTGAGACGCAACCGAATTTAAACTTTCAAAATTCAGAAT TATCACGTTTACAAACAAAAATGCATATTCCAGGTGTTATTGAA241 TTATCTAATCATCTTTGTCTTACGGCATCTTCCACAGAATGGAGCCTTATAAAGCACTGGTGTAATTTCTTTACAGAGACTGGTCCTCTATGCGATTTTCCTCGCGCTTATTACCCTGGA361 ATTTATGAACTAGTTTCTTTACCGTATGAATTGGATAAAGTCTTTGAGTTACTATTGGCCAGGCGATGCTCGAAATGTTTAACTGAACCTATGGAACCAGCGATATGTTTAT TTTGTGGG4 81 AAGCTCTTATGCTTCCAAAGTCATTGTTGTTCCTTTAATGGTATTGGAGAATGTAATCTTCATATGCAACAATGCGCTTCTGACATTGGAATTTTTCTTATTGTCAAAAAATGCGCTATT60 1 CTCTACCTCAATCCACCTGTAGGAAGCTTCTCTGTAGCTCCATTTTTGGATGCGTATGGAGAGACAGATTTGGGATTGCGTCGTGGCCGCTCTCAATATCTATCACAAAAACGTTATGAT721 GAAACAGTACGAACGATGTGGCTAAACGGATCTATTCCTTCTTATATTGCTCGACAACTGGATGCGAATCCAGACACCGGAGGTTGGGAAACACTTTAGGCTAAACAATGGGAGTTTACG841 TGATCTAAGCTACTAATTTTTTTAATGCTTCAAACACCTTGATTATTTATTAGGATATATATACCAAAACTTGACATTTTATCATT TAATTCATATTCATTGACCTGTAAATATAGGTTA961 CTTTACAAACATTTCGTCTCATTCAAACAGTCAATCGTATTGCCCTTATATTTAAGGGGCGAGTATCATTTAAGGATAAAATTAGATGAAAGTTTCATGAATACTTTAAAACTCAG-TTTG1081 AAACTTTGATAAAAGAAGCTTTTTTAACTCATCAGTCAAATCCAATGTTAATTAATGGAAGGAGTAATGGAAAGCCTTCMAAAAAAATAAAAAAATCATAGTAATTAATTCAAGACC

1201 GCCTTCATCTAGTATATTCAGTAGATTTGTTTACAAATCGATGAAATAGTGACGTACGCAGTATTCGAACGCGCCTTACAGTTTCTTCCTCACTAATTCACTGAGAACACATAGTGTT GG1321 AAATTACCACTCTGGAATATAGTTTAGAGTTAGGAAGATACATGAGGTGTTGGAACCCAAACCCTTTCTTGTTC TAAACCTAACAAGTGATATAATCAGACAAAGAAACGCTGGTGTTGG14 41 AACTAGGATAATAGAGCAAATACTAGTTCTATAAATTCAATATTCCTTGCTTGGATAGGG-ATATAACCATTATTGAATTTTCCTTGTCCAAAATTCGCGTATAGTGGTATTTTTGAAACG1 561 AAGGTGCTACAGATTCTTAGGAAGGATGCAAATTGCCAC TAATGGATCAAAGCMAGCGATTGTTAAAGTCAGCTGTTCCAAACCCGCCTGAACATTTTAAAACAGGTATAT CCTGGCTT1 **MetAspGlnSerLysArgLeuLeuLysSerAlaValProAsnProProGlu~lsPheLysThrGlyIleSerTrpLeul1680 GATGACCTTGACGAGAAGGACGATGACTCAGCGACGTCTGTGAACTATGATATACCAGAAATAACCGAAGCAAATCTCTGTAATGACTCCCATGAAGCTCTTTCACCTTGCACTCAACCT2 7 AspAspLeuAspGl uLysAspAspAspSerAl aThrSerValAsnTyrAspI leProGlu I leThrGl uAlaAsnLeuCysAsnAspSerH isGluAl aLeuSerProCysThrG lnP ro

1800 GTCGGTAATTCTGGACGACCTGTCGAAGCTTTTAAGACCTATCCTAGCACTCCTGCAGTACCTAGCAAAAGCGTGCTTTTCCATTTTTATGAACCGGATGAGAACTTTAGCTTATC TGAC67 Va lGlyAsnSerGlyArgProVa lGl uAlaPheLysThrTyrProSerThrP roAl aValProSerLysSerVa lLeuPheHi1sPheTyrGl uProAspGluAsnPheSerLeuSe rAsp1920 ACGGGACGTACTAAATCGGATACCGCCTTAGCTGCAAGAGAAAGCTCTGAAAAGTCTGAAGTGCCACGTGATACCCGTAGTGCTGGGATAAAGCCATACAAAGAAAATAACT CGTCTAAT10 7 ThrGlyArgThrLysSerAspThrAlaLeuAlaAlaArgGluSerSerGl uLysSerGl uVa lProArgAspThrArgSerAlaGl yI leLysProTyrLysGl uAsnAsn~erSe rAsn2040 TGTGCAATTTCTAAAGAAGCAGGCCTTCGAAGACTTATTGATAAGGACAGAGAATCTTTCGACAAAAACCTGAATCAGTCATTTACCAATCTAACTTTTCCAGAACCGATTTCTGATGAC14 7 CysAla IleSerLysGluAl aGlyLeuArgArgLeuI leAspLysAspArgGluSerP heAspLysAsnLeuAsnGl nSerPheThrAsnLeuThrPheP roGl uPro I leSerAspAsp

2160 AGTGACAGTGTGGAGTTTCAACGTGATTCTCTTAATAACAATTGGCCAGCTAGTTTGGAAGGTAGCATACACGAATTACCCAGGAATAGTGATGATGATGGAATCC CTGCTTCTGCGGCT18 7 SerAspSerVal1G1 uPheGl nArgAspSerLeuAsnAsnAsnTrpP roAlaSerLeuGluGlySer I leHi1sGl uLeuProArgAsnSerAspAspAspGly I leP roAl aSerAl aAl a

2 280 CATATCCTGGACCTCGATTATCATAGAGATAGTTATGATAGCCCTTGGAAGAAGTTTTTACCGTACCCTTCCATTTTATCCGATGATTCTTGGAAAGCTCCGGAGAGTTGGGGAACTAGT22 7 H1isI leLeuAspLeuAspTyrH1isArgAspSerTyrAspSerProTrpLysLysPheLeuProTyrProSer I leLeuSerAspAspSerTrpLysAl aProGl uSerTrpG lyThrSer

2 400 TTGCCCACTGAGGCTATTCCAAAGCAGGTTTTTACTACTAGATTTTTTGCTCGTCCTTCCCTGGGCAATAGAAAGAAAGAGTTCTTTCTTCGAGTATACCGTGATGATCGAACTTCCGTA2 67 LeuProThrGluAlaI leProLysGl nValPheThrThrArgPheP heAlaArgProSerLeuG lyAsnArgLysLysGl uPhoPheLeuArgVal TyrArgAspAspArgT hrSe rVa1l

2 520 TCATTCATTTGCCCTATTGGCATACAAACTCATGAAGT GATTAAGCTGTTAGCAAGGTTATTTTTTCTTCCCTCGTCTGCTAATTTTTACCTCTTATTAATCCAATTCAATACAGAACGT307 SerPheI leCysProI leGlyI leGl nThrHi sGluVa l IleLysLeuLeuAlaArgLeuPhePheLeuProSerSerAlaAsnPheTyrLeuLeuL uI leGlnPheAsnThrGl uArg

2 64 0 ATTTTGTTGCCTCATGAACAGCCATGCATTATATTTGAACGATTATTGAGTTTGTTTGGGTGTAAGGTAACTTCCGATGAAGAAATAAATGAAGAAGATAATTATAGTGTTGCTAGATTG34 7 I leLeuLeuProH1isGluGl nProCysI le.I lePheGl uArgLeuLeuSerLeuPheGlyCysLysVa lThrSerAspGl uGlu IleAsnGl uGluAspAsnTyrSerVa lAlaArgLeu

2 760 GTGTTTACTACGATGGATATTGGAGCGGATGTATTGCGTAAATTCTCTGAMAAAAAAATTACTGCGAACCTTGACATTAGTAGGTCAAACCTGGAGGTTATTCCGGTAAAGATCTATC CC387 ValPheThrThrMetAspI leGlyAlaAspVa lLeuArgLysPheSerGl uLysLysI leThrAlaAsnLeuAspI leSerArgSerAsnLeuG luVa lI leProVa lLys I leTyrP ro

2 880 TATGCCCATGAACTTATCTCGTTGAATGTTTCGCACAATTTATCGCTGGACCTGCCTTTAGATTTCATGGAGCGCTGTGTCAAGCTTAAGCGGTTAGACATTTCCAATAATTTAAGGTCT4 27 TyrAl a H1sGluLeuI leSerLeuAs nVa lSerHi1sAsnLeu SerLeuAspLeuProLeuAspPheMetGluArgCysVa lLysLeuLysArgLeuAspI leSerAsnAsnLeuArgSer

3 000 CCAAGAGGAAAACCGATTACTGCTCTTCGCCAATTGGAAGTTTTGAACATGTCTCGTAACGATATATATGAATTGGATCCTCTTATATTCTCTGGGCTTAGTCGAAATTCTCTGAAAGAA4 67 ProArgGlyLysPro I leThrAla LeuArgGl nLeuGl uVa lLeuAsnMetSerArgAsnAspI leTyrGluLeuAspProLeu I leP heSerGlyLeuSerArgAsnSerLeuLysGl u

312 0 TTGAATATAGCTAATAATAAGCTGTTCTTCCTTCCCCATTCTACTAGATATTTGGTGAATCTAACCTATCTTGATTTATCCTACAATAATTTTGTGACTTTCCCTTTAATAATTACTGAG50 7 LeuAsn I leAlaAsnAsnLysLeuP heP heLeuP roH1sSerThrArgTyrLeuVa lAsnLeuThrTyrLeuAspLeuSerTyrAs nAsnPheVa lThrPheProLeuI le I leTh rGl u

3 240 TTGTCCCAATTGGAGACTCTTAACTTTTCGCATAATTTATTGTCACAGATATCTAGCAAAATTGGCTCTCTT GTTMAATTGAAGCATCTATATCTACAATTTAATGATTTATCTAATCGG5 47 LeuSerGl nLeuGl uThrLeuAsnPheSerHi sAsnLeuLeuSerG ln I leSerSerLys I leG lySerLeuVa lLysLeuLysH1isLeuTyrLeuGl nPheAsnAspLeuSerAs nArg

3 3 60 CTTCCACAGGAAATAGGCTTGCTAAAAAATCTGGAAACAATTGACCTTAGTTATAATGCGATTACTAACATCGCCAGT TTATCTGAATGTCCGAAACTAAATAGCATCAATGTAGCTTGC58 7 LeuP roGl nGluI leGlyLeuLeuLysAsnLeuGluThrI leAspLeuSerTyrAs nAla I leThrAsnI leAlaSerLeuSerGl uCysProLysLeuAsnSerI leAsnVa lAl aCys

3 4 80 AATTTACTTTCTTTTTACGAATATTCCAATCCGTCAGCTACATT CATCGACTTCTCGTTTTGTCCACTGACTACAATTGATCCGGCAT TTAGCTATAGCAATCTCGTCTACTTTGATATC62 7 AsnLeuLeuSerPheTyrGl uTyrSerAsnProSerAl aThrPheIleoAspP heSerPheCysP roLeuThrThr I leAspP roAl aPheSerTyrSerAsnLeuVa lTyrPheAs pIle

3 60 0 TCACATGCGAAGCTTATTGGGCTCAAGGATTCTGTCATTGAAACTTTAGTAAATGTAGAAACAGTGAAAGTGAATTACAACCACTT TACTAGCATTTCCGATGCAATTTCTGCTATGCAA667 SerHisAl aLysLeuI leGl yLeuLysAspSerVal I leGl uThrLeuVa lAsnVa lGluThrVal LysVa lAsnTyrAsnHi sPheThrSerI leSerAspAl aI leSerAlaMetGln

3 720 AATTTGAAATATTTGTCTTGCACGAACT GTGAAATGTCTTATGTTTCACCAAACCTTGGCAAATTAAAGCATTTAGTTCACCTGGATTTACATGCAAATAATATCAAAATATTC CCTGAG70 7 AsnLeuLysTyrLeuSerCysThrAs nCysGl uMet SerTyrVa lSerProAsnLeuGlyLysLeuLy sH15sLeuVa l H1sLeuAspLeuH1isAla~snAsn I leLys I leP heProG lu

3 840 GAAGTATGGCAAGTCTCTTCACTAAAAGTTGTTAACCTGTCTTC CAATATCCTGGAGAAAATCMAGTTACCAGTTGCAACGTCAAAAAAATTAACTAGGACAATTAGC CAATTAAAAATC74 7 Gl uValTrpGlnVa lSerSerLeuLysVa lVa lAsnLe uSerSerAsn I leLeuGl uLys I leLysLeuP roVa lAlaThrSerLysLys LeuThrArgThr IleSerGl nLeuLys I le

3 960 ATGCGTACTTTATCAGGAAATCCGGTATCGAGCCTCTCCTCCCAAGAATTTGTTATGCCTACCGTTGAAGAATTATACTTGGTGGACAACAGATTGGGCMATGACTGTTTTACGGCTTTA78 7 MetArgThrLeuSerG lyAsnProVa lSerSerLeuSerSerGl nGluPheValMetProThrVa lGl uGluLeuTyrLeuValAspAsnArgLeuGlyAsnAspCysPheThrAl aLeu

4 080 GMATACTTTAAGTGTTTAAAAGTCTTAAATTTATCTTACAATTATT TAACGGAAATTCCAAGCAAGTTTTTCCAAAATTTTTCTGATC TTAAACACCTTTTTGTGTCAGGAAATGAGCTT827 GluTyrPheLysCysLeuLysVa lLeuAsnLeuSerTy rAsnTyrLeuThrG lu I leProSerLys PhePheGl nAsnPheSerAspLeuLysH1isLeuP heVa lSerGlyAsnGl uLeu

4 200 GCAAATCTTTCCATTTCCAGTACAGCGCAGGTCCTACTTGAAACTTTGTACGCGAATGGAAATCGTCTTTCCTCTTTTCCTAAAAATGAAGCTTTGTCTMAAAGTTTAAGATTT TTGGAC8 67 AlaAsnLeuSer I leSerSerThrAl aGlnVa lLeuLeuGluThrLeuTyrAlaAs nG lyAsnArgLeuSerSe rPheProLysAs nGluAl aLeuSerLysSerLeuArgP heLeuAsp

4 320 ATAAGTACCAATAATCTGCAGAATTTAGCAGTAGAAAAAGCTGAAAAGAAGAGTTTAACTAAACTTCCTCAATTGGAATACCTTAATCTATCTGGTAACACATGGTTTCGATTCTCTGAG90 7 I leSerThrAsnAsnLeuGl nAsnLeuAlaVa lGluLysAlaGl uLysLysSerLeuThrLysLouProG lnLeuGluTyrLeuAsnLeuSerGlyAsnThrTrpPheArgPheSerGl u

4 4 40 CATGAAGATACAAACTTTACAAAATCATATTTGAAGAATTTAAAGTTTTTGAGCATCATGGATTTGAATACAAAATTTTCTAATGCGCCTTCTGATGTTCTAAACCATTTTATTCMACGC94 7 H1isGluAspThrAs nP heThrLysSerTyrLeuLysAsnLeuLy sP heLeuSer I leMetAspLeuAsnThrLy sPheSerAsnAl aProSerAspVa lLeuAs nHi1sPheIleGl nArg

4 5 60 AACTCTCCTCAACCTAACATTTTGAGGTATGGAGTATGTGGATACCTTTCTC GTTCTATTCCCGTCATCTCTGCAT GTGAATTAGTTGTTAACAACTTTTTGCATCCTCAATCATCTTTA98 7 AsnSerProGl nProAsnI leLeuArgTyrGlyVa lCysGlyTyrLeuSerArgSerI leProVal I leSerAl aCysGl uLeuVa lVa lAsnAsnPheLeuH1 sP roGl nSerSerLeu

4 68 0 TACTGTGTGCTTGACAGTGACATCAGCGCTGGAAAAAACAACCGGGTTTTAAAATTTGTGTACGACAATTTGGCTTCATGCCTAGC GCATGAGATTAATGCAGCAGATTCCTCTTCTGAA1027 TyrCysVa lLeuAspSerAspI leSerAlaGlyLysAsnAsnArgVa lLeuLysPheVa lTyrAspAs nLeuAl aSerCysLeuAl aHi1sGl uI leAsnAlaAlaAspSerSerSerGl u4 800 CAAATTTGTAACGCTTTGAGAAGAGGATTTCTTCGTTTAAACAAAAAATTAGGAAATGTCATTCATTATGACCT TAGGAAGTCTTCAGAAGGAGACGTGGATAGTAATTACGTTAC CACT1067 Gl nI leCysAsnAl aLeuArgArgGl yP heLeuArgLeuAsnLysLysLeuGlyAsnVal I leHi1sTy rAspLeuArg LysSerSerG luGl yAspVa lAspSerAsnTyrVal ThrThr4 920 ATGAATATTTCAGAAAAGGGTTATTCTATGGACAGTTCTTGCTTGGATATAGGAGTTAGCATTATCTTAGTGTACGTCAGGGATACAAGAGCTTTC GTTGCCAATGTGGGCACATCAATG110 7 MetAsn IleSerGluLysGl yTyrSerMetAspSerSe rCysLeuAsp I leGlyVa lSer.I leI le.LeuVa lTyrVa lArgAspThrArgAl aP heVa lAla~snValGlyThrSerMet5 04 0 GCTATAATGTCTACGAGAAATGATTCGGAACCTACAACTTTAAGTGTCATGCATGATGTGTACAATAGGGATGAAATTCGTCGCATAGTTGATTCATGTGGTTTCATATCTGGTGAAATA114 7 Ala IleMetSerThrArgAsnAspSerGluProThrThrLeuSerValMetH1isAspVal TyrAsnArgAspGl uI leArgArg I leValAspSerCysGlyPheI leSerG lyGl uI le

5160 AAATCGACCACTACACGTGCTATTGGTCGTTTGTCTCAATTTCCTGGCGTCCAAGCAGTTCCCTATGTTAATGTGCAGTACTTATC TGAACTAAACGAATTTATCATTCTAGCAAATCAG118 7 LysSerThrThrThrArgAl aIleGlyArgLeuSerGl nPheProG lyVa lGlnAl aValProTyrVa lAsnVa lGlnTyrLeuSerGl uLeuAsnGl uPheI leI leLeuAlaAs nG ln5 280 GAATTTTGGAGCGTATTATCAAAACGCACAGTAATTGACGTT GTTCGTGCCAACAGACATTCTCCTCTATTAGCCTCTACGAAGCTACGTGACTATGCTATTGCATATGGTGCAGAAAAA12 27 G1luPheTrpSerVa 1LeuSe rLysArgThrVal1I leAspVa lVa lArgAl aAsnArgHi1s SerP roLeuLeuAl aSerThrLysLeuArgAspTyrAl aIleAl aTyrGl yAlaGl uLys

5 400 AATGTTCTTGTAGTTATCGTCGAATTGAACGGATTGTTTGAAGAGAATTCCC TTAATTTCAACCAACTACGGGGGGATGAAAAAACTTTAGCAATTTCTGAAAAGAAC GATAATATGT CA12 67 AsnVal LeuValVal1I leVa lGluLeuAsnGlyLeuPheGluGl uAsnSerLeuAsnPheAsnGl nLeuArgGl yAspGl uLysThrLeuAlalIleSerGl uLysAsnAspAsnMet Ser5 520 TTTGTCCAAGATTTACCCGATGATTCTTCTTTAGCACGAATGAATAGAGAAGTC TCTCCCCCGAAAGGTTGTATTGCCATGGTTTTTACTGATATTAAGAATTCCACATTATTGTGGGAA130 7 PheVal1G1lnAspLeuP roAspAspSerSerLeuA laArgMetAs nArgGl uVa 1SerProProLysGlyCys I leAlaMetValPheThrAspI leLysAsnSe rThrLeuLeuTrpGl u

FIG. 1. (Figure continues on the opposite page.)

5640 AGACATCCTATTGCAATGAGATCTGCGATCAAAACTCATAATACTATTATGCGTCGGCAACTCCGTGCAACTGGAGGCTATGAAGTAAAAACCGAAGGAGATGCGTTTATGGTTTGTTTT1347 ArgH1sProIleAlaaMetArgSerAlaI leLysThrHisAsnThrIleMetArgArgGlnLeuArgAlaThrGlyGlyTyrGluValLysThrGluGlyAspAlaPheMetValCysPhe

5760 CAAACAGTTCCTGCTGCATTACTTTGGTGTTTTTCAGTACAATTACAGTTACTTTCGGCAGATTGGCCCAACGAAATAGTTGAGTCAGTGCAAGGACGGTTGGTACTCGGCTCAAAAAAT1387 G1nThrValProAlaAlaLeuLeuTrpCysPheSerValGlnLeuGlnLeueuLSerAlaAspTrpProAsnGluI leValGluSerVa1G1nGlyArgLeuValLeuGlySerLysAsn

Dow

nloa

ded

by g

uest

on

Janu

ary

9, 2

021

Page 3: adenylyl cyclase genefrom SchizosaccharomycesSalI-Xba I fragmentfromthe plasmid pPC2, beginningfromthe SalI site andextending6885 basepairs (bp), is shown. pPC2wasisolated from a genomic

Proc. Natl. Acad. Sci. USA 86 (1989) 79915880 GAGGTGTTATATCGAGGGCTTAGTGTTCGAATTGGTGTCAATTATGGTGTAACCGTGAGTGAACTAGATCCCATCACTAGACGTATGGACTATTACGGGCCTGTAGTAAACAGAACATCT1427 GluValLeuTyrArgGlyLeuSerValArgIleGlyValAsnTyrGlyValThrValSerGluLeuAspProIleThrArgArgMetAspTyrTyrGlyProValValAsnArgThrSer

6000 AGGGTTGTATCAGTCGCTGATGGTGGTCAAATTGCTGTTTCTGCTGAGGTGGTATCTGTATTGAATCAGCTTGATTCAGAAACAATGTCATCAGAGAAGACGAATGTCAACGAAATGGAA1467 ArgValValSerValAlaAspGlyGlyGlnIleAlaValSerAlaGluValValSerValLeuAsnGlnLeuAspSerGluThrMetSerSerGluLysThrAsnValAsnGluMetGlu

6120 GTTCGTGCTCTTAAACAAATCGGTTATATTATCCATAACCTTGGAGAATTTAAGTTAAAAGGTTTGGATACTACTGAAATGATTTCATTGGTTTATCCTGTGCAATTGCAAGGAAGACTG1507 ValArgAlaLeuLysGlnIleGlyTyrIleIleHisAanLeuGlyGluPheLysLeuLysGlyLeuAspThrThrGluMet IleSerLeuValTyrProValGlnLeuGlnGlyArgLeu

6240 GAGAGATTGATAAAGAGCCGAAGTTTGGGAACACCCACAGCCCTCCCGGAAACTCAGACTTATACTCCCGTTCGTAGTAGAAGCAACAGCTTGCGACCCATGTTAGCAAGATTGAGTGAT1547 GluArgLeuIleLysSerArgSerLeuGlyThrProThrAlaLeuProGluThrGlnThrTyrThrProValArgSerArgSerAsnSerLeuArgProMetLeuAlaArgLeuSerAsp

6360 TCAAAATCTGTCCATGGAGAGGAGGGTGGTTCTGGGAAGAGATCGGTTTCATCCTTGCGCAACGTATCACCATCAGAGAGTACTGGTGGATATGAAGGTTGTATTTTTGATGACCAACAG1587 SerLysSerValHlsGlyGluGluGlyGlySerGlyLysArgSerValSerSerLeuArgAsnValSerProSerGluSerThrGlyGlyTyrGluGlyCysIlePheAspAspGlnGln

6480 TATCAATTACTTTATGAACTTTGTGAGCGTCTTGAAGACCATGCCGCTATACTGCATGGGTTTCCTGAACCACCGCCTTGCGATACCGGTCTGGCAGCTCCCGTAAACCAGGCCGAGGAG1627 TyrGlnLeuLeuTyrGluLeuCysGluArgLeuGluAspHlsAlaAlaI1eLeuHl GlyPheProGluProProProCysAspThrGlyLeuAlaAlaProValAsnGlnAlaGluGlu

6600 TATTCATTGTTCTACCGTCTGACTTTGCGTATCGAGAATACTATTTATTGTGTCAGTCAAATGCTTGGACACACTGGCTAAATGAATGCATATAATGACTGCTATATTTAAATAATGTTT1667 TyrSerLeuPheTyrArgLeuThrLeuArgIleGluAsnThrIleTyrCysValSerGlnMetLeuGlyHlsThrGly***

6720 AACCCCATAAATAGTTTATATATATATATTTATTTTTTGTATATATAATTTGCATATTTTTAATAAAATTTTTTTTTTTTTTGCTATACCCTAAAGTTGGAATTATGGAATACCAAATTA

6840 ACGTACGTGTTTCGAGGCAAATCAACTTTTATTTACTATTAGTAAA

FIG. 1. The DNA sequence and predicted amino acid sequence of the Sc. pombe adenylyl cyclase gene. The DNA sequence of a 10-kbpSal I-Xba I fragment from the plasmid pPC2, beginning from the Sal I site and extending 6885 base pairs (bp), is shown. pPC2 was isolatedfrom a genomic Sc. pombe DNA library. Both strands of the entire DNA sequence presented were determined. Numbers at left indicatenucleotide and amino acid positions. An open reading frame encoding a 1692-amino acid protein begins at nucleotide 1602 and is bracketed bystop codons at nucleotide 1578, 24 bp upstream from the start codon, and position 6677. ***, Stop codons.

at 20,000 psi (1 psi = 6.9 kPa). The lysate was centrifuged at1000 x g for 10 min. The pellet was discarded, and thesupernatant was centrifuged at 15,000 rpm for 90 min in aSorvall SS34 rotor. The pellet was resuspended in 2 ml ofbuffer C. The procedures described above were done at 4°C.Protein concentrations were measured following a describedprocedure (21). Adenylyl cyclase reactions containing 15-60,ug of membrane extract protein, 1 mM [a-32P]ATP (126cpm/pmol), 2.5 mM MnCl2, 20 mM creatine phosphate, 20units ofcreatine phosphokinase (Sigma), and 0.25 mM cAMPin 100 ,ul were incubated for 30 min at 30°C. cAMP producedwas measured by a published procedure (22).

RESULTSCloning and Sequencing a Gene from Sc. pombe Homologous

to the Adenylyl Cyclase Gene of Sa. cerevisiae. We firstdetected a DNA sequence in Sc. pombe that is homologousto the Sa. cerevisiae gene encoding adenylyl cyclase bySouthern blot-hybridization. The plasmid pPC2, which con-tains a 10-kbp DNA sequence derived from genomic Sc.pombe DNA, was isolated as described, and the nucleotidesequence was determined (Fig. 1). The sequence contains anopen reading frame that is 5097 bp long and encodes a protein1692-amino acid residues in length. The protein encoded bythis sequence has significant homology with Sa. cerevisiaeadenylyl cyclase (Fig. 2)-particularly in the carboxyl-terminal catalytic domains.

Expression of the Carboxyl-Terminal Region of the ProteinEncoded by the Sc. pombe Gene in Sa. cerevisiae Containing aTemperature-Sensitive Adenylyl Cyclase. To determine theidentity of the Sc. pombe gene, we first conducted a genetictest. We built a plasmid, pADPC, that contains the HindIII-Sac I fragment of pPC2, encoding the 727-amino acid car-boxyl-terminal region of the Sc. pombe protein, linked to theyeast ADHI (alcohol dehydrogenase) promoter in the yeastexpression vector pAD4. This plasmid contains the Sa.cerevisiae LEU2 gene (see Materials and Methods for de-tails). pADPC was used to transform the Sa. cerevisiae strainT50-3A, which contains the cyrl-2 allele and is temperaturesensitive for growth due to a thermolabile adenylyl cyclase(5, 19). Four independent Leu+ clones of T50-3A that weretransformed with pADPC were able to grow at the restrictivetemperature of 36°C, whereas four independent Leu+ clonestransformed with the vector pAD4 were unable to grow at therestrictive temperature (data not shown).

Adenylyl Cyclase Activity in Yeast Expressing the Carboxyl-Terminal Region of the Protein Encoded by the Sc. pombeGene. We next tested whether the Sc. pombe gene encodesan adenylyl cyclase by measuring adenylyl cyclase activity in

a Sa. cerevisiae strain that lacks its own adenylyl cyclase butexpresses the carboxyl-terminal region of the Sc. pombeprotein. The strain T158-5AT, in which the endogenousadenylyl cyclase gene has been completely replaced with theyeast URA3 gene, contains a high-copy plasmid that encodesthe yeast SCH9 gene (20). Overexpression of SCH9, whichencodes a protein homologous to the cAMP-dependent pro-tein kinase catalytic subunits, permits the normal growth ofstrains lacking adenylyl cyclase (20). We transformed T158-5AT with the plasmids pAD4, pADPC, or pYCYR. pYCYRis a plasmid that contains the Sa. cerevisiae adenylyl cyclasecoding sequence linked to the ADHI promoter. Sa. cerevi-siae containing pYCYR have high levels of adenylyl cyclaseactivity relative to wild-type yeast strains. We measuredadenylyl cyclase activity in transformed T158-5AT cellscontaining these plasmids (Table 1). We found that the levelsof adenylyl cyclase activity in cells expressing the region ofthe Sc. pombe gene contained on the plasmid pADPC wereat least 30-fold higher than levels found in cells harboring thevector pAD4. These results provide conclusive evidence thatthe Sc. pombe gene encodes adenylyl cyclase. We havenamed this Sc. pombe gene cyri.

DISCUSSIONIn the yeast Sa. cerevisiae, adenylyl cyclase is regulated byRAS proteins (24). There is no evidence that RAS proteinsregulate adenylyl cyclase in either Sc. pombe or in mamma-lian cells (25-28). In mammals, one major form of adenylylcyclase is regulated by Gs protein (29). Although both Gs andRAS proteins bind guanine nucleotides, they belong to verydistinct families of proteins. Recently, a mammalian geneencoding a G,-responsive adenylyl cyclase was cloned andsequenced (30). It contains two large multi-membrane-spanning domains and two 40-kDa domains that are proposedto be catalytic. There is very little homology between theseputative catalytic domains and the catalytic domain ofthe Sa.cerevisiae adenylyl cyclase. Moreover, the Sa. cerevisiaeenzyme contains no transmembrane domains. Thus, the twoadenylyl cyclases are very different.The yeast Sc. pombe is quite diverged from Sa. cerevisiae.

In fact, when proteins conserved between Sa. cerevisiae, Sc.pombe, and mammals have been compared, they have gen-erally been observed as equally diverged (31-35). It is,therefore, of some interest to compare Sc. pombe adenylylcyclase with those of Sa. cerevisiae and mammals. The Sa.cerevisiae and Sc. pombe proteins show striking homologywithin their respective catalytic domains (63% identity in a158-amino acid region). In contrast, the Sc. pombe adenylylcyclase, like the Sa. cerevisiae enzyme, shows little homol-

Genetics: Young et al.

Dow

nloa

ded

by g

uest

on

Janu

ary

9, 2

021

Page 4: adenylyl cyclase genefrom SchizosaccharomycesSalI-Xba I fragmentfromthe plasmid pPC2, beginningfromthe SalI site andextending6885 basepairs (bp), is shown. pPC2wasisolated from a genomic

Proc. Natl. Acad. Sci. USA 86 (1989)

S. pombe 1 MDQSKRLLKSAVPNPPEHFKTGISWLDDLDEKDDDSATSVNYDIPEITEANLCNDSHEALSPCTQPVGNSGRPVEAFKTYPSTPAVPSKSVLFHFYEPDE: :1 :I~~~~~::1 ::I

S. cerevisiae 371 TPTIETPISCKPSLFRLDTNLEDVTDITKTVPPTAVNSTLNSTHGTETASPKTVIMPEGPRKSVSMADLSVAAzAPNGEFTSTSNDRSQWVAPQSWDVET

101 NFSLSD-TGRTKSDTALAARESSEKSEVPRDTRSAGIKPYKENNSSNCAISKEAGLRRLIDKDRESFDKNLNQSF-T-NLT-FPEP ISDDSDSVEFQRDSLNNNW-PASLEGSIHlII II :: : : : : ::1 :1 : :1II :: 1:: 1:

471 KRKKTKPKGRSKSRRSSIDADELDPMSPGPPSKKDS-RHHHDRKDNESMVTAGDSNSSFVDICKENVPNDSKTALDTKSVNRLKSNLAMSPPSIRYAPSNLDGDYDTSSTSSSLP

211 ELPRNSDDDG I-PASAAH ILD-LDYHRD-SYDSP-WKKFLPYPS.IL-SDD-SWKAP E-SWGTS-LPTEAI PKQV-FT-TRFFARP S.LGNRKKEFFLRVYRDDRTSVSFICP IGI Q1:1 :: :I: : 1: I : :1 ::: : 1:: :1:: I I : 1

5 85 SS S.ISSEDTS SCSDSSSYTNAYMEANREQDNKTP ILNKTKSYTKKFTS SSVNMNSPDGAQSSGLLLQD EKDDEVECQLEHYYKDFSDLDP KRHYAI RI FNTDDTFTTLSCTPATT

316 THEVIKLLARLFFLP S.SANFYLLLIQFNTE RI LLPHEQPC I IFERLLSLFGCKVTSDEEI NEEDNYSVA-RLVFTTMD IGA-DVLRKFSEKKIT-ANLDISRSNLEVI PVKI YP Y1:1 1 1: 11: 1 :11 1 1 :1 :11 11: :: I :1 :: :1: :1 1: 1

700 VEEI IPALKIKFNITAQGNFQISLKVGKLSKILRPTSKPLIERKLLLLNGYRKSDPLHIMGIEDLSFVFKFLFHPVTPSHFTPEQEQRIMRSEFVHVDLRNMDLTTPPIIFYQH

4 28 AHELISLNVSHNLSLDLPLDFMERCVKLKRLD ISNNLRSP RGKP -- ITALRQLEVLNMSRND IYELDP LIFSGLSRNSLKELNIANNKLFFLPHSTRYLVNLTYLDLSYNNFVTF1: 11:11:1 : 111:1:1 :11 1: 1:1 : 1i I I I : 1 11:1 11 I 11 1111 1 1::

815 TSEIESLDVSNNAN IFLP LEFIES SIKLLSLRMV-NIRASK- FPSNITKAYKLVSLELQRNF- IRKVP--NS IMKLSNLTILNLQCNELESLPAGFVELKNLQLLDLSSNKFMHY

5 41 PLI ITELSQLETLNFSHNLLSQ ISSKIGSLVKLKHLYLQFNDLSNRLPQEIGLLKNLETIDLSYNAITNIASLSECPKLNSINVACNLLSFYEYSNPSATFIDFSFCP LTTID-P

9 25 PEVINYCTNLLQIDLSYNKI QSLPQSTKYLVKLAKMNLSHNKL-N- FIGDLSEMTDLRTLNLRYNRI SSI KT-NA-SNLQNLFLTDNR ISNFEDTLPKLRALEIQENP ITSISFK

6 55 AF SYSNLVYFDISHAKLIGLKDSVIETLVNVETVKVNYNHFT SISDAI SAMQNLKYLSCTNCEMSYVSPNLGKLKHLVHLDLHANN IKIFPEEVWQVSSLKVVN LS SNILEKIKL1: : : : :: :1 : :1 1::1 : 11 : :11 : 1: 11 1111 III: I1: :: :1:111 :

1036 DFYPKNMTSLTLNKAQLS SIPGELLTKLSFLEKLELNQNNLTRLPQE ISKLTKLVFLSVARNKLEYIPPELSQLKSLRTLDLHSNN IRDFVDGM-ENLELTS LNISSNAFGNSSL

7 70 PVATSKKLTRTI SQLKIMRTLSGNPVSSLSSQEFVMPTVEELYL-VDNRLGNDCFTALEY FKCLKVLNLSYNYLTE IPSKFFQNFSDLKHLFVSGNELANLS I SSTAQ-VLLETL:1 :::A: 1 1:: :I111111111:::I :K :1::1 1111T11

9250ESYNSGKSSLFIANFDMPFCVLVNSNFD-HMKEIEYSNLTSDVKSLL

8 83 YANGNRLSSFPKNEALSKSLRFLD ISTNNLQNLAVEKAEKKS LTKLPQLEYLNLSGNTWF-- R-FSEHE-DTNFTK-SYLKNLKFLS IMD-- LN-TKFSNAP SDVLNHFIQRNSP1 1: 1:1 1 :1: 1I1 :1 111:111 :1 : 1: 1 :: 11 1 :11 11 11

1240 MLNSNQMLSLPAELSNLSQLSVFDVGANQLKYNISNYHYDWNWRNNKELKYLNFSGNRRFEIKSFISHDIDADLSDLTVLPQLKVLGLMDVTLNTTK

990

1337

yWew xa sIUV ;U -JJbniV sQAU L:JV V 1:N Nr I-VLD aAGKNNRtVLK V IVNLASCLAENAAVSSSEtQICNALRRGFLRLNKKLGNVIHYDLR-KSSEGDVD: :1 : : : :: : : : II

VPDENVNFRLRTTASI INGMRYGVADTLGQRDYVSSRDVTFERFRGNDDECSLCLHDSKNQNADYGHNISRIVRDIYDKILIRQLERYGDETDDNIKTALRFSFLQLNKEI

1101 SNYVTTMNISEKGYSMDS SCLDIGVS I ILVYVRDTRAFVANVGT SMAIMSTRND SEPTTLSVMHDVYNRDE IRRIVDSCGFI -SGE IKS--TTT RAIGRLSQFPGVQAVPYVNVQ::: : ~~~~~II ::1:1 :1t11:1 111:1 :1:: 11 1:1 11 11:: I: 11:1: :1:1 :1

14 48 NGMLNSVDNGADVANLSYADLLSGAC STVI YIRGKKLFAANLGDCMAI LS-KNNGDYQTLTKQH LPTKREEYERI RISGGYVNNGKLDGVVDVS RAVGFFDLLP HI HASPD ISW

1213 YLSELNEFIILANQEFWSVLSKRTVIDVVRANRHSPLLASTKLRDYAIAYGAEKNVLVVIVELNGLFEENSLNFNQLRGDEKTLAI SEKNDNMSFVQDLPDDSSLARMNREVSPP:I: : ::I : 11 1: 11 I 1:1 1:111 1: :: 1: 11 : :::: II ::I I 1: 1:111

15 62 TLTKADEMLIVATHKLWEYMDVDTVCDIARENSTDP LRAAAELKDHAMAYGCTENI-T ILC-L-ALY- EN-I--QQ-Q-N-R-FTL-NKN SLMTRRSTF-EDTTLRRLQP EISP P

132 8 KGCIAMVFTD IKNSTLLWERHP IAMRSAI KTHNT IMRRQLRATGGYEVKTEGDAFtMVCFQTVPAALLWCFSVQLQLLSADWPNE IVESVQGRLVLGSKNEVLYRGLSVRI GVNYG: : II II : : : : : :

1 6 64 TGNLAMVFTD IKSSTFLWELFPNAMRTAIKTHNDIMRRQLRI YGGYEVKTEGDAFMVAFP TPTSGLTWCLSVQLKLLDAQWP EE ITSVQDGCQVTDRNGN I IYQGLSVRMGI HWG

14 43 VTVS ELDP ITRRMDYYGPWVNRTSRWSVADGGQIAVSAEWVSVLNQLDS ETMS SEKTNVNEMEVRALKQ IGYI I-HNLGEFKLKGLDTT EM I SLVYPVQLQGRLERLIKSRSLG

17 79 CPVPELDLVTQRMDYLGPMVNKAARVQGVADGGQ IAMS SDFY SEFNKIMKYH.ERWVKGKESLKEWYGEEI I GEVLERE IAMLES IGWAFFDFGEHKLKGLETKE LVTIAYPKILA

15 57 TPTAL-P ETQTYTPVRSRSN-S LRPMLARLSDSKSVHGEE-GGSGKRSVS SLRNVS P.SESTGGYEGCI FDDQQYQLLYELCERLEDHAAI LHGFPEPP PCDTGLAAPVNQAEEYS

18 94 SRHEFASEDEQS KLINETMLFRLRVI SNRLES IMSALSGGF IELDS RT EGSY IKFNP-KVENGIMQS ISEKDALLFFD HVITRI ESSVALLH-LRQ-QRC-SGLEI -CRNDKTSA

.....I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1664 FRTRETICSMGT

2 0 04 RSNI FNV-VDELLQMVKNAKDLST

ogy to the mammalian adenylyl cyclase. A weak consensussequence derived from aligning the putative mammaliancatalytic domains with four guanylyl cyclases and the Sa.cerevisiae adenylyl cyclase also weakly fits the Sc. pombeadenylyl cyclase, but not much better than one would expectgiven the homology between the Sc. pombe and Sa. cerevi-siae proteins in their catalytic domains. Thus, at least twoquite distinct branches exist in the evolution of adenylylcyclase in eukaryotes: the one represented by the recentlycloned gene from mammalian cells and the other representedby the genes conserved between two divergent yeasts. Thecloned mammalian gene encodes a Gs-responsive adenylylcyclase. What regulates the Sc. pombe enzyme (25, 26) is notclear; nor is it clear how many distinct forms of adenylylcyclase are present in mammalian cells (36-39).Homology between the yeast enzymes is not as striking

outside the catalytic domains (29% identity over 1274 aminoacids), perhaps reflecting divergent regulation. However,both enzymes share a common motif outside their catalyticdomains. The Sa. cerevisiae enzyme contains a 23-aminoacid leucine-rich consensus sequence that is tandemly re-peated -22 times. A similarly tandemly repeated sequence is

FIG. 2. Alignment of theamino acid sequences (in one-letter code) of the adenylyl cy-clases of Sc. pombe and Sa.cerevisiae. The Sc. pombe pro-tein is aligned above the Sa.cerevisiae protein. This align-ment was done by the method ofDayhoff (23) using a logarithm ofodds matrix for 250 acceptedpoint mutations per 100 aminoacids. Numbers at left indicateamino acid positions from thebeginning of the proteins; thefirst 370 amino acids of theSa. cerevisiae protein are notshown. Amino acids that areidentical or highly conserved atcorresponding positions are in-dicated by or :, respectively.Amino acid residues are indi-cated as highly conserved whenboth residues fall within one ofthe following amino acid groups:(N,D), (D,E,Q), (Q,H), (H,N),(H,R), (R,K), (R,W), (M,I,L,V),(F,L), (F,Y).

found in the Sc. pombe adenylyl cyclase (Fig. 3). Very similarmotifs are also found tandemly repeated in a variety ofeukaryotic proteins (40). Results from our laboratory suggestthat this region is important for activation of the Sa. cerevi-siae adenylyl cyclase by RAS protein. Although the regula-tion of Sc. pombe and Sa. cerevisiae adenylyl cyclase may

Table 1. Adenylyl cyclase activityAdenylyl cyclase activity,

pmol/min per jigPlasmid* Experiment I Experiment IIpAD4 <1.0 <1.0pADPC 35.8 35.6pYCYR 881.1 479.2

The Sa. cerevisiae strain T158-5AT harboring the designatedplasmids was tested for adenylyl cyclase activity as described.Values are expressed as the average pmol ofcAMP produced per minper yg of total membrane protein for three separate assays.*Plasmids pADPC and pYCYR direct the expression of the catalyticregion of Sc. pombe adenylyl cyclase and the entire Sa. cerevisiaeadenylyl cyclase, respectively.

7992 Genetics: Young et al.

Dow

nloa

ded

by g

uest

on

Janu

ary

9, 2

021

Page 5: adenylyl cyclase genefrom SchizosaccharomycesSalI-Xba I fragmentfromthe plasmid pPC2, beginningfromthe SalI site andextending6885 basepairs (bp), is shown. pPC2wasisolated from a genomic

Proc. Natl. Acad. Sci. USA 86 (1989) 7993

S. pombe

326 LFFLPSSANFYLLLIQFNTERILL350 PHEQPCI IFERLLSLFGCKVTSDEEINEEDNYSVARLVFTTMDIGAD397 VLRKFSEKKITANWDSRSNLEVX421 PVKIYPYAHELISLUV2HNLSLDL445 PLDFXERCVKLKRLDXSNNLRS467 PRGKPITALRQLEVIURND1YELD493 PLIFSGLSRNSLKELWIANNIKLFFL518 PHSTRYLVNLTYLDL8YWINFVTT541 PLIZTELSQLETLNFUHXLLSQX564 SSKXGSLVKLKHLYLQFNDLSNRL588 PQE1GLLKNLETIDVLYNAITN1ASLSEC617 PKLNSXNVACNLLSFYEYSNPSATrIDFSFCPLTTIDPAFSYSNLVYFDISHAKLIGL675 KDSVXETLVNVETVKVNYNHVTSI699 SDAISAMQNLKYLSCT NCEMSYVS723 P NLGKLKHLVHDLHANNIKIF745 PEEVWQVSSLKVVNLISNILEKIKLPVATSKKLTRTISQLKIMRTLSGNPVSSL799 SSQErV MPTVEELYLVDNRLGNDC823 FTALEYFKCLKVLULBYNYLTEIPSKFFQN853 FSDLKHLFV SGNELANLSISSTAQVLLETLYANGNRLSSF893 PKNEALSKSLRFWZ3TNNLQNLAVEKAE922 KKSLTKLPQLEYLULBGNTWFRFSEHEDT951 NFTKSYLKNLKFLSIMDLNTKFSNAPSDVLNHFIQRNSPQPNILRYGVC

CON PxxaxxLxxLxxLNaSxNxaxxaD

S. cerevislae

734 PTSKPILIERKLLLLNGYRKSDPLHIMGIEDLSFVFKFLFHPVTPSHFT783 PEQEQRIMRSEFVHVDLRNMDLTTP808 PIIFYQHTSEIESWMVSNWANIFL832 PLEFIESSIKLLSLRXV JIRASKF856 PSNXTKAYKLVSLELQRNFXRKV879 PNSXMKLSNLTILNLQCNELESL902 *AGFVELKNLQLLDS5SNKVMHY925 PEVINYCTNLLQIDLSYEKXQSL948 PQSTKYLVKLAKMNLHNKLNF970 IGDLSEMTDLRTLRYNIRSSI993 KTNASNLQNLFLTDNRISNr1013 EDTLPKLRALEXQENPITSISFKDFYPKNMTSLTLNKAQLSSI1056 PGELLTKLSFLEKLELNQNNLTRL1080 PQEISKLTKLVFLSVARNKLEYI1103 PPELSQLKSLRTLDLHSNNIRDT1126 VDGMENLELTSLEX!SSNArGNSSLENSFYHNMSYGSKLSKSLMFFIAADNQFDDA1181 MWPLrNCFVNLKVLULSYNNFSDV1205 SNMKLESITELYLIGNKLTTL1226 SGDTVLKWSSLKTLMfNSNQXLSL1250 VAELSNLSQLSVFDVGANQLKYNISNYHY1279 DWNWRNNELKYLEFGNRRFEI

CON PxxaxxLxxLxxLNaSxNxaxxaD

FIG. 3. Alignments of the leucine-rich repeats of Sc. pombe andSa. cerevisiae adenylyl cyclases. A region of the protein sequence ofthe Sc. pombe adenylyl cyclase, from amino acid-residue positions326 to 999, is shown in segments aligned to give the best fit to theconsensus sequence shown below. Residues that match the consen-sus sequence are in boldface. Numbers at left indicate the amino acidposition of the first amino acid residue of each segment. A similaralignment of the region of the Sa. cerevisiae adenylyl cyclase, fromamino acid-residue positions 734 to 1300, is also shown. In theconsensus sequence, x indicates any amino acid residue, and aindicates any aliphatic amino acid residue included in the amino acidgroup M, I, L, and V (one-letter code). Consensus sequences derivedfrom each protein are identical.

differ in essential respects, this regulation will probably sharecommon features. The isolation of the gene encoding Sc.pombe adenylyl cyclase should facilitate the characterizationof the regulation of this enzyme.

We thank Drs. David Beach, Maureen McLeod, John Colicelli,and Ken Ferguson for advice and useful discussions and again Dr.David Beach for critically reading the manuscript. This work wassupported by grants from the National Institutes of Health, theAmerican Cancer Society, and by the Pfizer Biomedical ResearchAward. M.W. is an American Cancer Society Research Professor.

1. Cameron, S., Levin, L., Zoller, M. & Wigler, M. (1988) Cell 53,555-566.

2. Toda, T., Cameron, S., Sass, P., Zoller, M. & Wigler, M. (1987)Cell 50, 277-287.

3. Cannon, J. & Tatchell, K. (1987) Mol. Cell. Biol. 7, 2653-2663.4. Matsumoto, K., Uno, I. & Ishikawa, T. (1983) Cell 32, 417-423.5. Kataoka, T., Broek, D. & Wigler, M. (1985) Cell 43, 493-505.6. Masson, P., Lenzen, G., Jacquemin, J. M. & Dandin, A. (1986)

Curr. Genet. 10, 343-352.7. Casperson, G. P., Walker, N. & Bourne, H. (1985) Proc. Natl.

Acad. Sci. USA 82, 5060-5063.8. McLeod, M., Stein, M. & Beach, D. (1987) EMBO J. 6,

729-736.9. Sherman, F., Fink, G. R. & Hicks, J. B., eds. (1986) Labora-

tory Course Manual for Methods in Yeast Genetics (ColdSpring Harbor Lab., Cold Spring Harbor, NY).

10. Southern, E. M. (1975) J. Mol. Biol. 98, 503-517.11. Maniatis, T., Jeffrey, A. & Kleid, D. G. (1975) Proc. Natl.

Acad. Sci. USA 72, 1184-1188.12. Woo, S. L. C. (1979) Methods Enzymol. 68, 389-395.13. Grunstein, M. & Hogness, D. (1975) Proc. Natl. Acad. Sci.

USA 72, 3961-3%5.14. Biggins, M. D., Gibson, T. J. & Hong, G. F. (1983) Proc. Natl.

Acad. Sci. USA 80, 3963-3965.15. Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl.

Acad. Sci. USA 74, 5463-5467.16. Bennetzen, J. L. & Hall, B. D. (1982) J. Biol. Chem. 257,

3018-3025.17. Colicelli, J., Birchmeier, C., Michaeli, T., O'Neill, K., Riggs,

M. & Wigler, M. (1989) Proc. Natl. Acad. Sci. USA 86,3599-3603.

18. Field, J., Nikawa, J., Broek, D., MacDonald, B., Rodgers, L.,Wilson, I. A., Lerner, R. A. & Wigler, M. (1988) Mol. Cell.Biol. 8, 2159-2165.

19. Matsumoto, K., Uno, I. & Ishikawa, T. (1984) J. Bacteriol. 157,277-282.

20. Toda, T., Cameron, S., Sass, P. & Wigler, M. (1988) GenesDev. 2, 517-527.

21. Bradford, M. M. (1976) Anal. Biochem. 72, 248-254.22. Salomon, Y., Londos, C. & Rodbell, M. (1974) Anal. Biochem.

58, 541-548.23. Dayhoff, M. 0. (1978) in Atlas ofProtein Sequence and Struc-

ture, ed. Dayhoff, M. 0. (Natl. Biomed. Res. Found., Wash-ington, DC), Vol. 5, Suppl. 3, pp. 345-352.

24. Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, K.,Broek, D., Cameron, S., Broach, J., Matsumoto, K. & Wigler,M. (1985) Cell 40, 27-36.

25. Fukui, Y., Kozasa, T., Kaziro, Y., Takeda, T. & Yamamoto,M. (1986) Cell 44, 329-336.

26. Nadin-Davis, S. A. Nasim, A. & Beach, D. (1986) EMBO J. 5,2963-2971.

27. Birchmeier, C., Broek, D. & Wigler, M. (1985) Cell 43, 615-621.

28. Beckner, S. K., Hattori, S. & Shih, T. Y. (1985) Nature(London) 317, 71-72.

29. Gilman, A. G. (1987) Annu. Rev. Biochem. 56, 615-649.30. Krupinski, J., Coussen, F., Bakalyar, H. A., Tang, W.-J.,

Feinstein, P. G., Orth, K., Slaughter, C., Reed, R. R. &Gilman, A. G. (1989) Science 244, 1558-1564.

31. Lee, M. G. & Nurse, P. (1987) Nature (London) 327, 31-35.32. Hindley, J. & Phear, G. A. (1984) Gene 31, 129-134.33. Mertins, P. & Gallwitz, D. (1987) Nucleic Acids Res. 15,

7369-7379.34. Russell, P. R. & Hall, B. D. (1982) Mol. Cell. Biol. 2, 106-116.35. Nadin-Davis, S. A., Yang, R. C. A., Narang, S. A. & Nasim,

A. (1986) J. Mol. Evol. 23, 41-51.36. Pfeuffer, E., Mollner, S. & Pfeuffer, T. (1985) EMBO J. 4,

3675-3679.37. Smigel, M. D. (1986) J. Biol. Chem. 261, 1976-1982.38. Mollner, S. & Pfeuffer, T. (1988) Eur. J. Biochem. 171, 265-

271.39. Minocherhomjee, A. M., Selfe, S., Flowers, N. J. & Storm,

D. R. (1987) Biochemistry 26, 4444-4448.40. Hofsteenge, J., Kieffer, B., Matthies, R., Hemmings, B. A. &

Stone, S. R. (1988) Biochemistry 27, 8537-8544.

Genetics: Young et al.

Dow

nloa

ded

by g

uest

on

Janu

ary

9, 2

021