29
A DOE Laboratory plan for providing exascale applica9ons and technologies for cri9cal DOE mission needs Rick Stevens and Andy White, cochairs Pete Beckman, Ray BairANL; Jim Hack, Jeff Nichols, Al GeistORNL; Horst Simon, Kathy Yelick, John ShalfLBNL; Steve Ashby, Moe KhaleelPNNL; Michel McCoy, Mark Seager, Brent GordaLLNL; John Morrison, Cheryl WamplerLANL; James Peery, Sudip Dosanjh, Jim AngSNL; Jim Davenport, BNL; Fred Johnson, Paul Messina, ex officio DOE Exascale Ini9a9ve 1 Argonne Na9onal Laboratory Brookhaven Na9onal Laboratory Oak Ridge Na9onal Laboratory Lawrence Berkeley Na9onal Laboratory Lawrence Livermore Na9onal Laboratory Los Alamos Na9onal Laboratory Pacific Northwest Na9onal Laboratory Sandia Na9onal Laboratory

ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

A  DOE  Laboratory  plan  for  providing  exascale  applica9ons  and  

technologies    for  cri9cal  DOE  mission  needs  

Rick  Stevens  and  Andy  White,  co-­‐chairs  Pete  Beckman,  Ray  Bair-­‐ANL;  Jim  Hack,  Jeff  Nichols,  Al  Geist-­‐ORNL;  Horst  Simon,  Kathy  Yelick,  John  Shalf-­‐LBNL;    Steve  Ashby,  Moe  Khaleel-­‐PNNL;  Michel  McCoy,  Mark  Seager,  Brent  Gorda-­‐LLNL;  John  Morrison,  Cheryl  Wampler-­‐LANL;  James  

Peery,  Sudip  Dosanjh,  Jim  Ang-­‐SNL;  Jim  Davenport,  BNL;    Fred  Johnson,  Paul  Messina,  ex  officio  

DOE  Exascale  Ini9a9ve   1  

Argonne  Na9onal  Laboratory  Brookhaven  Na9onal  Laboratory  Oak  Ridge  Na9onal  Laboratory  

Lawrence  Berkeley  Na9onal  Laboratory  Lawrence  Livermore  Na9onal  Laboratory  

Los  Alamos  Na9onal  Laboratory  Pacific  Northwest  Na9onal  Laboratory  

Sandia  Na9onal  Laboratory  

Page 2: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

A  grand  challenge  for  the  21st  century    Development  of  an  Exascale  Compu9ng  System  is  a  Grand  Challenge  for  the  21st  Century  

Page 3: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

The  Exascale  DraX  plan  has  Four    High-­‐Level  Components  

•  Science  and  engineering  mission  applica9ons  

•  Systems  soXware,  tools  and  programming  models  •  Computer  hardware  and  technology  development  

•  Systems  acquisi9on,  deployment  and  opera9ons      

DOE  Exascale  Ini9a9ve   3  

The  plan  targets  exascale  pla[orm  deliveries  in  2018  and  a  robust  simula9on  environment  and  science  and  mission  applica9ons  by  2020    

Co-­‐design  and  co-­‐development  of  hardware,  system  soXware,  programming  model  and  applica9ons  requires  intermediate  (~200  PF/s)  pla[orms  in  2015  

The  plan  is  currently  under  considera9on  for  a  na9onal  ini9a9ve  to  begin  in  2012  

Three  early  funding  opportuni9es  have  been  release  by  DOE  this  spring  to  support    preliminary  research  

Page 4: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Broad  Community  Input  •  Town  Hall  Mee9ngs  April-­‐June  2007  •  Scien9fic  Grand  Challenges  Workshops  Nov,  

2008  –  Oct,  2009  –  Climate  Science  (11/08),    

–  High  Energy  Physics  (12/08),    –  Nuclear  Physics  (1/09),    –  Fusion  Energy  (3/09),    –  Nuclear  Energy  (5/09),    –  Biology  (8/09),    –  Material  Science  and  Chemistry  (8/09),    

–  Na9onal  Security  (10/09)  

•  Exascale  Steering  Commifee  –  “Denver”  vendor  NDA  visits  8/2009  –  Extreme  Architecture  and  Technology  

Workshop    12/2009  

–  Cross-­‐cuing  workshop  2/2010  

•  Interna9onal  Exascale  SoXware  Project  –  Santa  Fe,  NM  4/2009  –  Paris,  France  6/2009  –  Tsukuba,  Japan  10/2009  

DOE  Exascale  Ini9a9ve   4  

MISSION  IMPERATIVES  

FUNDAMENTAL  SCIENCE  

Page 5: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Science  and  Engineering  Drivers  

•  Climate  •  Nuclear  Energy  •  Combus9on  •  Advanced  Materials  •  CO2  Sequestra9on  •  Basic  Science  

•  Common  Needs  – Mul9scale  –  Uncertainty  Quan9fica9on  –  Rare  Event  Sta9s9cs  

DOE  Exascale  Ini9a9ve   5  

Page 6: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19! 20! 21! 22! 23! 24!

Computa9onal  science  roadmap  for  a  predic9ve,  integrated  climate  model  

Exascale  Ini9a9ve  Steering  Commifee   6  

10-20PF!

150PF! 1-2EF!

Science simulations:!

Climate Drivers:!

1PF!

10EF!

25!

Quantify predictive

skill for hydrologic cycle on

sub continental

space scales!

Exploration of climate

system sensitivities!

Global cloud-system

resolving model

formulations!

Non-hydrostatic

adaptive formulations!

Quantify interactions of

carbon, nitrogen,

methane and water!

Comprehensive and accurate treatment of

aerosol microphysics!

Comprehensive land ice

treatments!

Accurate and bounded

representation of climate extremes!

Direct incorporation !of “human-

dimensions” feedback

mechanisms!

Development of accurate system

initialization techniques!

Global Simulations with 1st Generation coupled carbon and nitrogen components!

Accurate treatment of 200 Km hydrological features!

Global simulations with full chemistry /biogeochemistry and fully coupled stratosphere!

Global simulations capable of accurate treatment of !•  100 Km ! hydrological! features!•  Atmospheric ! composition!

Prediction experiments on decadal time scales, 100 Km hydrological features!

Large-ensemble multi-decadal prediction experiments!

Global cloud-system resolving ensemble prediction experiments!

Page 7: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Computa(onal  science  road  map  for  predic(ve  integrated  modeling  of  nuclear  systems  

DOE  Exascale  Ini9a9ve   7  

Page 8: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Low  temperature  combus9on  for  automobile  engines  can  provide  high  efficiency,  low  emissions  

•  Design  challenge:  •  understand  new  

combus9on  modes,  control  igni9on  9ming,  rate  of  pressure  rise,  etc.    

•  Science  challenge:  •  low-­‐temperature  igni9on  

kine9cs  and  coupling  with  turbulence  are  poorly  understood    

•  Approach:  •  perform  mul9-­‐scale  high-­‐

fidelity  simula9ons  to  predict  behavior  under  engine  relevant  condi9ons  

High-­‐fidelity  combus9on  simula9ons  require  exascale  compu9ng  to  predict  the  behavior  of    alterna9ve  fuels  in  novel  fuel-­‐efficient,  clean  engines,  and  so  facilitate  design  of  op9mal  combined  engine-­‐fuel  system  

Chemiluminescence  images  of  stra9fied  sequen9al  autoigni9on  in  an  HCCI  engine  courtesy  John  Dec,  Combus9on  Research  Facility,  Sandia  Na9onal  Laboratories  

8  DOE  Exascale  Ini9a9ve  

Page 9: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Mul9-­‐scale  modeling  and  simula9on  of  combus9on  at  exascale  is  key  for  predic9on  and  design  

•  Engine  design  and  op9miza9on:  –  Design  and  op9miza9on  of  diesel/

HCCI  engines,  in  geometry  with  surrogate  large-­‐molecule  fuels  representa9ve  of  actual  fuels  

•  Direct  numerical  simula9on:  –  DNS  of  turbulent  jet  flames  at  engine  

pressures  (30-­‐50  atm)  with  iso-­‐butanol  (50-­‐100  species)  for  diesel  or  HCCI  engine  thermochemical  condi9ons  

•  Molecular  scale:  –  Full-­‐scale  MD  with  on-­‐the-­‐fly  ab-­‐ini9o  

force  field.  Study  combined  physical  and  chemical  processes  affec9ng  nanopar9cle  and  soot  forma9on  processes.    Size  of  the  problem:  >1000  molecules  

9  DOE  Exascale  Ini9a9ve  

Page 10: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Evolving  the  Use  of    Computa9on  for  Design  

Current  tools  for  engineering  

•  Reynolds-­‐Averaged  Navier  Stokes  

•  Calculate  bulk  effects  of  turbulence  •  Turbulent  combus9on  submodels  

calibrated  over  narrow  range  

Current  tools  for  science  

•  Large  Eddy  Simula9on  (LES)  with  simple  chemistry,  normal  pressures  

•  Capture  transient  behavior  

•  Physics-­‐based  turbulent  combus9on  submodels  for  standard  fuels  

Future  tools  for  engineering  are  similar  to  those  used  for  science  •  LES  with  complex  chemistry,  high  

pressures,  mul9phase  transport  

•  Cycle-­‐to-­‐cycle  transient  behavior  for  control  strategy  design  

•  Physics-­‐based  turbulent  combus9on  submodels  for  biofuels  

RANS  calcula9on  for  fuel  injector  captures  bulk  behavior  

LES  calcula9on  for  fuel  injector  captures  greater  range  of  physical  

scales  

Page 11: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Mul9-­‐scale  materials  design  is  cri9cal  for  improving  efficiency    and  cost  of  photovoltaics  

•  Scien9fic  and  engineering  challenges  –  Predic9on  of  excited  states:  energies,  forces,  band-­‐

gaps,  level  alignment  –  Understanding  and  control  of  carrier  genera9on,  

recombina9on  and  transport  –  Understanding  and  control  of  defect  interac9ons  and  

migra9on  –  Simula9on  of  interface  forma9on  and  dynamics  

•  Computa9onal  science  challenges  –  Mul9-­‐scale  methods  –  Increased  spa9al  and  9me  scale  simula9ons  –  ab  ini9o  MD  methods  –  Electronic  structure  methods  for  excited  states  

DOE  Exascale  Ini9a9ve   11  

“Extreme-­‐scale  computa9on  can  create  a  breakthrough  in  the  accurate  predic9on  of  the  combined  effects  of  mul9ple  interac9ng  structures  and  their  effects  upon  electronic  excita9on  and  ul9mate  performance  of  a  PV  cell.”  Discovery  in  Basic  Energy  Sciences:  The  Role  of  Compu;ng  at  the  Extreme  Scale  (Workshop  Lefer  Report)  

From  Photovoltaic  Fundamentals  Subpanel,  BES  workshop  8/2009    

Page 12: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Full  quantum  simula9ons  are  required  for  understanding  and  deploying  befer  catalysts  

•  Efficient  storage  of  energy  requires  chemical  bonds  

•  Catalysts  are  crucial  for  inter-­‐conversion  of  electrical  and  chemical  energy  

•  Development  of  new  catalysts  requires  full  quantum  simula9ons  

•  Now:  1000  atoms,  3  nm  •  Needed:  10,000  atoms,  6  nm  

–  300,000  basis  func9ons  –  >  1020  integrals  

•  Achievable  with  Exascale  •  Founda9on  for  mul9-­‐scale  

models  

DOE  Exascale  Ini9a9ve   12  

BES/ASCR  Extreme  scale  workshop  

Page 13: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Simula9on  enables  fundamental  advances  in  basic  science.  •  Nuclear  Physics  

–  Quark-­‐gluon  plasma  &  nucleon  structure  –  Fundamentals  of  fission  and  fusion  reac9ons  

•  Facility  and  experimental  design  –  Effec9ve  design  of  accelerators  –  Probes  of  dark  energy  and  dark  mafer    –  ITER  shot  planning  and  device  control  

•  Materials  /  Chemistry  –  Predic9ve  mul9-­‐scale  materials  modeling:  

observa9on  to  control  

–  Effec9ve,  commercial,  renewable  energy  technologies,  catalysts  and  baferies  

•  Life  Sciences  –  Befer  biofuels  –  Sequence  to  structure  to  func9on  –  Genotype  to  Phenotype  

Slide  13  

ITER  

ILC  

Hubble  image  of  lensing  

Structure  of  nucleons  

These breakthrough scientific discoveries and facilities require exascale applications and resources.

Page 14: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Cross-­‐cuing  capabili9es  are  cri9cal  to  success  for    DOE  mission  and  science  

•  Uncertainty  quan9fica9on  –  Predict  climate  response  to  energy  technology  

strategies  –  Assessment  of  safety,  surety  and  performance  

of  the  aging/evolving  stockpile  without  nuclear  tes9ng  

–  Energy  security  

–  Responding  to  natural  and  manmade  hazards  

•  Mul9-­‐scale,  mul9-­‐physics  modeling  –  Mul9ple  physics  packages  in  earth  system  

model:  ocean,  land  surface,  atmosphere,  ice  

–  Mul9ple  physics  packages  in  modeling  reactor  core:  neutronics,  heat  transfer,  structures,  fluids  

•  Sta9s9cs  of  rare  events  –  Severe  weather  and  surprises  in  climate  

system  –  Accident  scenarios  in  nuclear  energy  

–  Nuclea9on  of  cracks  and  damage  in  materials  

4/13/10   Exascale  Ini9a9ve  Steering  Commifee  

Mul9-­‐scale  modeling  in  fast  sodium  reactor  

Storm  track  in  ESM  

urban  fire  

Geologic  sequestra9on  

Pine  Island  Glacier  

Page 15: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Uncertainty  quan9fica9on  is  cri9cal  and  requires  exascale  resources  

Response  surface  

Posterior  explora9on  

Finding  least  favorable  priors  Bounds  on  func9onals  

Adjoint  enabled  forward  models  

Data  extrac9on  from  model  

Local  approxima9ons,  filtering  Stochas9c  error  es9ma9on  

15  DOE  Exascale  Ini9a9ve  

EXASCALE  RESOURCES  Large  ensembles   Embedded  UQ  

“We  need  to  be  able  to  make  quan9ta9ve  statements  about  the  predictability  of  regional  clima9c  variables  that  are  of  use  to  society.”  

“scien9sts  must  create  new  suites  of  applica9on  codes,  Integrated  Performance  and  Safety  Codes  (IPSCs)  that  incorporate  …integrated  uncertainty  quan9fica9on..”  

“computa9onal  techniques  and  needs  complement  the  scien9fic  areas  that  will  be  pursued  with  extreme  scale  compu9ng.    Examples  include  …  verifica9on  and  valida9on  issues  for  extreme  scale  computa9ons  ”  

Page 16: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Exascale  Systems  Targets  

Systems   2009   2018     Difference  Today  &  2018  

System  peak   2  Pflop/s   1  Eflop/s   O(1000)  

Power   6  MW   ~20  MW  (goal)  

System  memory   0.3  PB   32  -­‐  64  PB       O(100)  

Node  performance   125  GF   1.2    or  15TF   O(10)  –  O(100)  

Node  memory  BW   25  GB/s   2  -­‐  4TB/s   O(100)  

Node  concurrency   12   O(1k)  or  O(10k)   O(100)  –  O(1000)  

Total  Node  Interconnect  BW   3.5  GB/s   200-­‐400GB/s  (1:4  or  1:8  from  memory  BW)  

O(100)  

System  size  (nodes)   18,700   O(100,000)  or  O(1M)   O(10)  –  O(100)  

Total  concurrency   225,000   O(billion)  +  [O(10)  to  O(100)  for  latency  hiding]  

O(10,000)  

Storage  Capacity   15  PB   500-­‐1000  PB  (>10x  system  memory  is  min)  

O(10)  –  O(100)  

IO  Rates   0.2  TB   60  TB/s     O(100)  

MTTI   days   O(1  day)   -­‐  O(10)  

Page 17: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Reducing  power  is  fundamentally  about  

architecture  choices  and  process  technology  •  Memory  (2x-­‐5x)  

–  New  memory  interfaces  (chip  stacking  and  vias)  –  Replace  DRAM  with  zero  power  non-­‐vola9le  memory  

•  Processor  (10x-­‐20x)  –  Reducing  data  movement  (func9onal  reorganiza9on,  >  20x)  –  Domain/Core  power  ga9ng  and  aggressive  voltage  scaling  

•  Interconnect  (2x-­‐5x)  –  More  interconnect  on  package  –  Replace  long  haul  copper  with  integrated  op9cs  

•  Data  Center  Energy  Efficiencies  (10%-­‐20%)  –  Higher  opera9ng  temperature  tolerance  –  Power  supply  and  cooling  efficiencies  

Page 18: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

The  Path  Forward  

•  Research  Needed  to  Achieve  Exascale  Performance  

•  Extreme  voltage  scaling  to  reduce  core  power  

•  More  parallelism  10x  –  100x  to  achieve  target  speed  •  Re-­‐architec9ng  DRAM  to  reduce  memory  power  

•  New  interconnect  for  lower  power  at  distance  •  NVM  to  reduce  disk  power  and  accesses  

•  Resilient  design  to  manage  unreliable  transistors  •  New  programming  models  for  extreme  parallelism  

•  Applica9ons  built  for  extreme  (billion  way)  parallelism  

Page 19: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Co-­‐design  is  a  fundamental    tenet  of  the  ini9a9ve    

Application

Technology

⬆ Model  ⬆ Algorithms  ⬆ Code  

Now,  we  must  expand  the  co-­‐design  space  to  find  beGer  solu;ons:  • new  applica;ons  &  algorithms,  

• beGer  technology  and  performance.  

⊕  architecture  ⊕  programming  model  ⊕  resilience  ⊕  power  

Applica9on  driven:  Find  the  best  technology  to  run  this  code.  Sub-­‐op;mal  

Technology  driven:  Fit  your  applica9on  to  this  technology.  Sub-­‐op;mal.  

Page 20: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

System  soXware  as  currently  implemented  is  not  suitable  for  exascale  system  

•  Barriers    –  System  management  SW  not  parallel  

–  Current  OS  stack  designed  to  manage  only  O(10)  cores  on  node  

–  Unprepared  for  industry  shiX  to  NVRAM  

–  OS  management  of  I/O  has  hit  a  wall  –  Not  prepared  for  massive  concurrency  

•  Technical  Focus  Areas  –  Design  HPC  OS  to  par99on  and  manage  node  

resources  to  support  massively  concurrency  –  I/O  system  to  support  on-­‐chip  NVRAM  

–  Co-­‐design  messaging  system  with  new  hardware  to  achieve  required  message  rates  

•  Technical  gaps  –  10X:  in  affordable  I/O  rates  –  10X:  in  on-­‐node  message  injec9on  rates  

–  100X:  in  concurrency  of  on-­‐chip  messaging  hardware/soXware  

–  10X:  in  OS  resource  management  

20  SoXware  challenges  in  extreme  scale  systems,  Sarkar,  2010  

Page 21: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

SoXware  &  

Programming  

Mod

els  

Hardw

are  

Pla[

orms    

Track  1  

Hardw

are  

Pla[

orms  

Track  n  

Basic  

Techno

logy  

App

lied  Math  

Uncertainty  

Quan9

fica9

on  

CoDesign  &  

App

lica9

ons  

SoXware  

Conven9o

nal  

Facili9

es  

Prep

ara9

on  

……   Outreach,  

Educa9

on  and

 Training  

Page 22: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

SoXware  &  

Programming  

Mod

els  

Hardw

are  

Pla[

orms    

Track  1  

Hardw

are  

Pla[

orms  

Track  n  

Basic  

Techno

logy  

App

lied  Math  

Uncertainty  

Quan9

fica9

on  

CoDesign  &  

App

lica9

ons  

SoXware  

Conven9o

nal  

Facili9

es  

Prep

ara9

on  

……   Outreach,  

Educa9

on  and

 Training  

What  is  in  this  box  and  how  will  it  be  organized?  

Page 23: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

SoXware  &  

Programming  

Mod

els  

Hardw

are  

Pla[

orms    

Track  1  

Hardw

are  

Pla[

orms  

Track  n  

Basic  

Techno

logy  

App

lied  Math  

Uncertainty  

Quan9

fica9

on  

CoDesign  &  

App

lica9

ons  

SoXware  

Conven9o

nal  

Facili9

es  

Prep

ara9

on  

……   Outreach,  

Educa9

on  and

 Training  

What  is  in  this  box  and  how  will  it  be  organized?  

Page 24: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

What  is  in  this  box?  

•  SoXware  –  Node  and  System  OS  –  Run9me  Libraries  –  Numerical  Libraries  –  IO  Libraries  –  Filesystems?  –  Data  Management  –  Visualiza9on  Tools?  –  Compilers?  –  Parallel  Tools?  

•  Programming  Models  –  Abstrac9ons  –  Standards  –  Reference  Implementa9ons  

•  How  many  na9onal  efforts  will  there  be?  

•  Do  we  have  a  strong  or  weak  coordina9on  model?  

•  How  much  of  this  is  open  source?  

•  How  does  the  IESP  relate  to  the  vendor  soXware  efforts?    

Page 25: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Issues  to  Think  About  

•  We  need  a  soXware  roadmap  for  community  developed  “open”  soXware  that  is  common  to  mul9ple  hardware  pla[orms  

•  The  SoXware  Roadmap  needs  to  determine  what  soXware  is  needed  by  EI,  what  capabili9es  to  be  included  in  each  itera9on  and  how  the  soXware  development  ac9vi9es  will  connect  to  various  na9onal  efforts  

•  IESP  in  order  to  play  a  significant  role  in  the  EI  needs  to  assume  the  role  of  community  soXware  supplier  to  the  rest  of  the  program  

Page 26: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Issues  to  Think  About  •  SoXware  in  general  is  a  weak  link  in  large-­‐scale  projects  •  If  the  IESP  is  not  perceived  as  a  primary  provider  of  cri9cal  soXware,  then  

other  groups  will  feel  the  need  to  build  soXware  development  into  their  plans  for  Exascale  

•  Primary  provider  means:  –  Owns  the  milestones  for  delivering  soXware  –  Has  a  structure  and  support  needed  to  deliver  soXware  on  schedule  

•  Development  teams  and  process  •  Tes9ng  and  valida9on  •  Packaging  and  Delivery  

–  Is  seen  as  delivering  that  capability  by  all  groups  involved  in  exascale  –  Offloads  the  responsibility  from  the  vendors  and  hardware  development  

projects  –  Can  be  counted  on  by  the  applica9ons  teams  to  provide  what  they  need  –  Is  the  primary  organiza9on  that  is  involved  in  co-­‐design  addressing  the  

soXware  related  items  

Page 27: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Governance  Models  

•  Strong  Model  –  Acts  and  thinks  like  a  (Single)  Project  –  Takes  responsibility  and  provides  deliverables  to  the  na9onal  

programs  and  vendors  –  Strong  and  par9cipatory  governance  model  

•  Weak  Model  –  Provides  coordina9on  and  cheerleading  to  the  mul9tude  of  

interna9onal  “projects”  –  Supports  others  that  are  actually  leading  the  development  

programs  –  Opt  in  governance  model  –  Not  necessarily  the  primary  contact  for  the  rest  of  the  program  

Page 28: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Prac9cal  Reali9es  •  We  have  some  challenges  with  “open  source”  

–  Probably  need  a  well  wrifen  manifesto  on  why  EI  needs  open  source  for  key  soXware  and  why  this  is  a  good  thing  not  something  that  is  a  compe99veness  problem  

•  Not  all  groups  think  that  soXware  should  be  implemented  as  an  interna9onal  effort  or  that  an  interna9onal  effort  can  deliver  on  a  schedule  

–  We  need  a  set  of  examples  where  this  has  worked  to  demonstrate  that  this  is  not  a  crazy  idea  

•  There  is  not  yet  a  funding  agency  consensus  that  the  soXware  must  be  developed  in  an  interna9onal  fashion  

–  Some  perceive  the  afempt  to  do  this  as  misguided  

–  Some  perceive  that  the  current  soXware  ecosystem  is  not  very  interna9onal    

•  There  is  a  definite  difference  in  the  scope/defini9on  of  “soXware”  from  the  EU,  US  and  Asian  par9cipants  that  is  confusing  to  program  management  

–  Systems  soXware  vs  applica9ons  soXware?  

–   We  need  a  way  to  resolve  these  differences  in  outlook  as  the  programma9c  support  will  like  be  dependent  on  this  resolu9on  

Page 29: ADOELaboratoryplanforproviding exascaleapplica9onsand ...exascale.org/mediawiki/images/d/db/PlanningForExascaleApps-Stev… · 07! 08! 09! 10! 11! 12! 13! 14! 15! 16! 17! 18! 19!

Need  to  Accomplish  

•  Develop  a  governance  model  for  IESP  that  has  broad  buy  in  from  the  community  and  agencies  

•  Validate  the  roadmap  in  discussions  with  applica9ons,  math  and  vendors  –  Develop  a  schedule  with  firm  target  dates  and  resource  es9mates  

•  Develop  a  program  execu9on  plan  that  is  firm  enough  that  other  parts  of  the  EI  can  use  it  for  leverage  

•  Address  the  “unspoken”  concerns  via  short  white  papers,  manifestos  and  community  outreach  

•  Start  ac9ng  like  a  “project”  to  exercise  the  governance  model