65
B. E. Boser 1 Advanced Analog Integrated Circuits Operational Transconductance Amplifier I & Step Response Bernhard E. Boser University of California, Berkeley [email protected] Copyright © 2016 by Bernhard Boser EE240B – OTA I: Step Response

Advanced Analog Integrated Circuits Operational ...boser/courses/240B/lectures/M06... · Advanced Analog Integrated Circuits ... 2-port analysis ignores the feedforward path and therefore

  • Upload
    lamngoc

  • View
    229

  • Download
    1

Embed Size (px)

Citation preview

B. E. Boser 1

Advanced Analog Integrated Circuits

Operational Transconductance Amplifier I& Step Response

Bernhard E. BoserUniversity of California, Berkeley

[email protected]

Copyright © 2016 by Bernhard Boser

EE240B – OTA I: Step Response

B. E. Boser 2

High-Level View

• Transistors are transconductors

• Some OTA designs consist of >40 transistors– Only few (typically 1 … 2) provide the transconductance in the signal path– The rest is support, e.g.

• increasing low frequency gain• output voltage range • biasing

• Hierarchical design strategies are imperative– Unless you like nodal equations for 40 transistors …

EE240B – OTA I: Step Response

B. E. Boser 3

Divide and Conquer

EE240B – OTA I: Step Response

B. E. Boser 4

In SC Circuit

EE240B – OTA I: Step Response

B. E. Boser 5

In SC Circuit

EE240B – OTA I: Step Response

Amplifier is active only in 𝜙":

B. E. Boser 6

Capacitive Feedback … Simulation

𝑅$% ≅ 20GΩ

EE240B – OTA I: Step Response

B. E. Boser 7

Small-Signal Model

Absorb Cgd, Cdb, etc. in Cf, CL, …

EE240B – OTA I: Step Response

B. E. Boser 8

Advanced Analog Integrated Circuits

Loop-Gain & Stability

Bernhard E. BoserUniversity of California, Berkeley

[email protected]

Copyright © 2016 by Bernhard Boser

EE240B – OTA I: Step Response

B. E. Boser 9

Model

EE240B – OTA I: Step Response

B. E. Boser 10

Loop-Gain Analysis

EE240B – OTA I: Step Response

B. E. Boser 11

Loop-Gain T(s)

𝑇 𝑠 = 𝛽𝑔1

𝑠 2 𝐶4565

Feedbackfactor𝛽 =𝑣%𝑣6=

𝐶C𝐶C + 𝐶$ + 𝐶%

≠1𝑎H6

EffectiveLoadCapacitance𝐶4565 = 𝐶4 + 1 − 𝛽 𝐶C

EE240B – OTA I: Step Response

B. E. Boser 12

Frequency Response of T(s)

𝑇 𝑠 =𝛽𝑔1

𝑠 2 𝐶4565

EE240B – OTA I: Step Response

w

|T(jw)|

To

𝜔R =𝛽𝑔1𝐶4565

𝜔R𝑇6

-90o

0o w

B. E. Boser 13

Advanced Analog Integrated Circuits

Closed-Loop Response

Bernhard E. BoserUniversity of California, Berkeley

[email protected]

Copyright © 2016 by Bernhard Boser

EE240B – OTA I: Step Response

B. E. Boser 14

Closed-Loop Analysis

Feedback-Only Model Generalized Model

EE240B – OTA I: Step Response

Ref: P. Hurst, “A comparison of two approaches to feedback circuit analysis,” IEEE Trans. edu., Aug. 1992, pp. 253-261.

B. E. Boser 15

Closed-Loop Transfer Function

EE240B – OTA I: Step Response

B. E. Boser 16

𝐴T

EE240B – OTA I: Step Response

B. E. Boser 17

𝑑

EE240B – OTA I: Step Response

B. E. Boser 18

Closed-Loop Gain

𝐴 𝑠 = 𝐴T𝑇 𝑠

1 + 𝑇 𝑠 +𝑑

1 + 𝑇 𝑠 = −𝐶$𝐶C

𝛽𝑔1𝑠 2 𝐶4565

1 + 𝛽𝑔1𝑠 2 𝐶4565

+𝛽 𝐶$𝐶4565

1 + 𝛽𝑔1𝑠 2 𝐶4565

= −𝐶$𝐶C

1 − 𝑠𝐶C𝑔1

1 + 𝑠 𝐶4565𝛽𝑔1

= −𝐶$𝐶C

1 − 𝑠𝑧1 − 𝑠

𝑝

𝑝 = −𝛽𝑔1𝐶4565

z = +𝑔1𝐶C

EE240B – OTA I: Step Response

B. E. Boser 19

Advanced Analog Integrated Circuits

Stability and T(s) with Simulator

Bernhard E. BoserUniversity of California, Berkeley

[email protected]

Copyright © 2016 by Bernhard Boser

EE240B – OTA I: Step Response

B. E. Boser 20

T(s) Verification with Simulator

• Infinite impedance point to break loop usually not accessible– E.g. inside transistor

EE240B – OTA I: Step Response

[ Hspice manual ]

B. E. Boser 21

Workaround (Don’t do this!)

EE240B – OTA I: Step Response

Vo

1Gig¥

vreturn

vtestMockLoad

C1

C2

[ Drawing by B. Murmann ]

B. E. Boser 22

General Problem

Any “single loop“ feedback circuit can be represented as:

EE240B – OTA I: Step Response

gm×vx

vxZ1 Z2

Breakpoint at ideal source is not available.But there is a breakpoint “between finite impedances“

available breakpoint

21

21)(ZZZZgsT m +×

=

[ Drawing by B. Murmann ]

B. E. Boser 23

Middlebrook Double Injection Method

EE240B – OTA I: Step Response

Z1 Z2

iy

vxZ1 Z2 vy

vtest(ac)

itest(ac)

ix

1

22 ZZZgT

vv

mvx

y +×=º

2

11 ZZZgT

ii

mix

y +×=º

21

21

ZZZZgT m +

×=True Loop Gain:

Solving yields:

21++-

=iv

iv

TTTTT

• No “DC“ break in the loop, all loading effects covered.• Measure Tv and Ti, then calculate actual T• Variant implemented in many simulators, e.g. stb-analysis in Spectre

[ Middlebrook 75 ][ Drawing by B. Murmann ]

B. E. Boser 24

SPICE

EE240B – OTA I: Step Response

B. E. Boser 25

Multiple Feedback Loops

• Break all loops at a single point

• If such a point does not exist: [Bode 45]

“If a circuit is stable when all its tubes have their nominal gains, thetotal number of clockwise and counterclockwise encirclements of thecritical point must be equal to each other in the series of Nyquist diagrams for the individual tubes obtained by beginning with all tubesdead and restoring the tubes successively in any order to theirnominal gains”

– Suggestion: take a controls class if your circuit depends on this!

EE240B – OTA I: Step Response

B. E. Boser 26

Nonlinearities

• Real circuits are nonlinear – frequency response depends on signal amplitude. Bode:

“... thus the circuit may sing when the tubes begin to lose their gainbecause of age, and it may also sing, instead of behaving as it should, when the gain increases from zero as power is supplied to the circuit ...“

• Always run a ”large signal” transient analysis for a complete stability check!– With realistic (large) signal amplitudes including overload– Power supply ramping. Is a special order required?

EE240B – OTA I: Step Response

B. E. Boser 27

Advanced Analog Integrated Circuits

Settling

Bernhard E. BoserUniversity of California, Berkeley

[email protected]

Copyright © 2016 by Bernhard Boser

EE240B – OTA I: Step Response

B. E. Boser 28

Step Response

EE240B – OTA I: Step Response

B. E. Boser 29

Closed-Loop Gain

• Use favorite analysis method, e.g. return-ratio analysis*, nodal analysis, …

EE240B – OTA I: Step Response

𝐴 𝑠 =𝑉6(𝑠)𝑉\(𝑠)

= −𝐶$𝐶C

1 − 𝑠𝐶C𝑔1

1 + 𝑠 𝐶4565𝛽𝑔1

= −𝐶$𝐶C

1 − 𝑠𝑧1 − 𝑠

𝑝

𝜔] =𝑔1𝐶C

*Note: 2-port analysis ignores the feedforward path and therefore does not get the zero

𝜔]𝜔^

=𝐶4565𝛽𝐶C

usually ≫ 1

𝜔^=𝛽𝑔1𝐶4565

≅ 𝜔defghij $ = 𝜔Rhik($)

B. E. Boser 30

Dynamic Error (no zero)

EE240B – OTA I: Step Response

Assume switch on-resistance contribution to settling is negligible

B. E. Boser 31

Dynamic Settling Error

EE240B – OTA I: Step Response

B. E. Boser 32

Dynamic Settling Error (single pole)

𝜺𝒅 𝒕𝒔 𝝉⁄1% 4.6

0.1% 6.90.01% 9.2

10-6 13.8

EE240B – OTA I: Step Response

B. E. Boser 33

Amplifier Bandwidth versus fs

EE240B – OTA I: Step Response

𝜀f 𝑓defg 𝑓$⁄1% 1.5

0.1% 2.20.01% 2.9

10-6 4.4

B. E. Boser 34

Static Settling Error

EE240B – OTA I: Step Response

B. E. Boser 35

Example

𝐶$ = 4pF𝐶C = 1pF𝐶% = 1pF𝑔1𝑟6 = 6000

EE240B – OTA I: Step Response

B. E. Boser 36

Dynamic Error (with zero)

• Instant response to step determined by capacitive feed-forward

𝐴 𝑠 =𝑉6(𝑠)𝑉\(𝑠)

= −𝐶$𝐶C

1 − 𝑠𝐶C𝑔1

1 + 𝑠 𝐶4565𝛽𝑔1

𝑧 = +𝑔1𝐶C𝑝 = −

𝛽𝑔1𝐶4565

EE240B – OTA I: Step Response

B. E. Boser 37

Step Response with Zero

𝑣6,$5x^ 𝑡 = −𝑉$5x^ 2 𝐺\ 1 − 1 −𝑝𝑧 𝑒d5 |⁄

1 −𝑝𝑧 =

1

1 − 𝛽𝐶C

𝐶C + 𝐶4

𝑡$ = −𝜏∙ln 𝜀f 1 − 𝛽𝐶C

𝐶C + 𝐶4

EE240B – OTA I: Step Response

B. E. Boser 38

Advanced Analog Integrated Circuits

Phase Margin

Bernhard E. BoserUniversity of California, Berkeley

[email protected]

Copyright © 2016 by Bernhard Boser

EE240B – OTA I: Step Response

B. E. Boser 39

Cascode

EE240B – OTA I: Step Response

B. E. Boser 40

Phase Margin

EE240B – OTA I: Step Response

𝑓 " 𝑓R⁄ Phase Margin∞ 90o

5 ~80o

1/5 ~28o

B. E. Boser 41

Step Response

EE240B – OTA I: Step Response

0 1 2 3 4 5 6 7 8 9 100

0.5

1

1.2

0

v s t 1,( )

v s t 3,( )

v s t 100,( )

1 e t--

100 t

B. E. Boser 42

Relative Settling Error for 𝑓 " 𝑓R⁄ = 3

EE240B – OTA I: Step Response

0 1 2 3 4 5 6 7 8 9 100

0.005

0.01

0.012

0

e s t 3,( )

e t-

100 t

B. E. Boser 43

Settling Time versus 𝑓 " 𝑓R⁄

EE240B – OTA I: Step Response

0 1 2 3 4 5 6 7 8 9 102

4

6

8

10

12

1415

3.508

t s e K,( )

ln e( )-

100.8 K𝑓 " 𝑓R⁄

𝜀f = 0.1%

B. E. Boser 44

Noise

EE240B – OTA I: Step Response

[ B. Murmann ]

B. E. Boser 45

Advanced Analog Integrated Circuits

Design Example

Bernhard E. BoserUniversity of California, Berkeley

[email protected]

Copyright © 2016 by Bernhard Boser

EE240B – OTA I: Step Response

B. E. Boser 46

Design Example: Specification

EE240B – OTA I: Step Response

B. E. Boser 47

Design: Gain & Feedback Factor

EE240B – OTA I: Step Response

B. E. Boser 48

Design: Dynamic Range

EE240B – OTA I: Step Response

B. E. Boser 49

Design: Settling

EE240B – OTA I: Step Response

B. E. Boser 50

Design: Power Dissipation

EE240B – OTA I: Step Response

B. E. Boser 51

Could we go Faster?

EE240B – OTA I: Step Response

B. E. Boser 52

Advanced Analog Integrated Circuits

Gain Boosting

Bernhard E. BoserUniversity of California, Berkeley

[email protected]

Copyright © 2016 by Bernhard Boser

EE240B – OTA I: Step Response

B. E. Boser 53

Openloop Gain

𝑎H6 = 𝑔1𝑅6

EE240B – OTA I: Step Response

B. E. Boser 54

Openloop Gain

𝑎H6 = 𝑔1𝑅6

EE240B – OTA I: Step Response

B. E. Boser 55

Gain Boosting

EE240B – OTA I: Step Response

B. E. Boser 56

Gain Boosting

• Use feedback to boost low-frequency output resistance

• References– B. J. Hosticka, “Improvement of

the gain of MOS amplifiers,” JSSC, Dec. 1979 , pp. 1111-4.

– E. Sackinger and W. Guggenbuhl, “A high-swing high-impedance MOS cascode circuit”, JSSC, Feb. 1990, pp. 289-298.

– K. Bult, G. Geelen, “A fast-settling CMOS op-amp for SC circuits with 90-dB DC gain,” JSSC, Dec. 1990 , pp. 1379-84.

EE240B – OTA I: Step Response

B. E. Boser 57

High Frequency Analysis

EE240B – OTA I: Step Response

B. E. Boser 58

Overall Amplifier Response

EE240B – OTA I: Step Response

Ref: M. Das, “Improved design criteria of gain boosted CMOS OTA with high-speed optimizations,” IEEE CAS II, March 2002, pp. 204-7.

𝜔]

𝜔6

𝑣6𝑣\

𝑓

Doublet

B. E. Boser 59

Advanced Analog Integrated Circuits

Pole-Zero Doublets

Bernhard E. BoserUniversity of California, Berkeley

[email protected]

Copyright © 2016 by Bernhard Boser

EE240B – OTA I: Step Response

B. E. Boser 60

Pole-Zero Doublets

Ref: Y. Kamath, R. G. Meyer, and P. R. Gray, “Relationship between frequency response and settling time of operational amplifiers,” IEEE J. Solid-State Circuits, pp. 347–352, Dec. 1974.

EE240B – OTA I: Step Response

B. E. Boser 61

Doublet Settling

• Amplifier model: replace Gmo with

EE240B – OTA I: Step Response

p

zmom s

s

GsG

w

w

+

+=

1

1)(

Notation from Y. Kamath, R. G. Meyer, and P. R. Gray, “Relationship between frequency response and settling time of operational amplifiers,” IEEE J. Solid-State Circuits, pp. 347–352, Dec. 1974.

B. E. Boser 62

Doublet Settling

• Amplifier model: replace Gmo with

• Closed-loop response

EE240B – OTA I: Step Response

p

zmom s

s

GsG

w

w

+

+=

1

1)(

( )

1 h wit1

of bandwidth is , 33

<<+=

=

= --

eeaaw

w

wbww

pz

dBdBp sT

with

( ) ÷÷÷÷

ø

ö

çççç

è

æ

+

+

+-@

+-=

- pp

z

dBm

Leffin

o

s

s

sc

sFGC

sc

VV

w

w

w1

1

11

1

3ppp

Leff

modB C

FG

ww

w

@

=-3with

Notation from Y. Kamath, R. G. Meyer, and P. R. Gray, “Relationship between frequency response and settling time of operational amplifiers,” IEEE J. Solid-State Circuits, pp. 347–352, Dec. 1974.

B. E. Boser 63

Doublet Step Response

EE240B – OTA I: Step Response

( ) ( )ppdB ttstepstepo BeAecVtv ww -- ++-= -31,

21

1

bbe-

@

-@

B

Awith

B. E. Boser 64

Doublet Example

EE240B – OTA I: Step Response

0 1 2 3 4 5 6 7 8 9 10

0

0.5

11.1

0.1-

v s_no_doublet t( )

v s_doublet_ term t a, b,( )

v s_doublet t a, b,( )

100 t

9 10 11 12 13 14 15 16

0.005

0

0.005

0.01-

1 v s_no_doublet t( )-

1 v s_doublet t a, b,( )-

169 t

a = 1.5b = 0.3

B. E. Boser 65

Gain Boosting – Doublets

EE240B – OTA I: Step Response