50
Advanced Nuclear Physics Nuclear Theory Group, Tohoku University Kouichi Hagino 原子核理論特論 東北大学 原子核理論研究室 萩野浩一

Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

  • Upload
    others

  • View
    19

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Advanced Nuclear Physics

Nuclear Theory Group,Tohoku UniversityKouichi Hagino

原子核理論特論

東北大学原子核理論研究室萩野浩一

Page 2: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Contents

Nuclear Many-Body Problemswith strong interaction

(Low-energy) Nuclear Physics

to understand rich nature of atomic nuclei starting from nucleon-nucleon interactions

- size, mass, density, shape- excitations- decays- nuclear reactions

two kinds of particle: protons and neutrons

Nuclei: many-body systems of nucleons (protons and neutrons)

Page 3: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Contents

Nuclear Many-Body Problems

Liquid drop modelSingle-particle motion and shell structureHartree-Fock approximationBruckner theoryPairing correlations and superfluid Nucleinucleosynthesis and physics of neutron-rich nucleiRandom phase approximation (RPA)Nuclear reactions and superheavy elements

(physics of Nihonium)

this lecture: microscopic descriptions of atomic nuclei

Nuclei: many-body systems of nucleons (protons and neutrons)

Page 4: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

References

Bohr-Mottelson Ring-Schuck Rowe Frobrich-Lipperheide

Page 5: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Lecture notes:

http://www.nucl.phys.tohoku.ac.jp/~hagino/lecture.html

(Tohoku University → Physics → Nuclear Theory→ Kouichi Hagino → Lectures)

Page 6: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Introduction: atoms and atomic nuclei

~ 50 cm

~ 10-10 m

cellsDNA

~ 10-8 m

atom

everything is made of atoms.

~ µm = 10-6 m

Page 7: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Introduction: atoms and atomic nuclei

~ 50 cm

~ 10-10 m

cellsDNA

~ 10-8 m

atom

~ 10-15 m

atomic nucleus

Page 8: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

NuclearPhysics

Nucleus as a quantum many body system

charge mass (MeV) spin, parityProton +e 938.256 ½+

Neutron 0 939.550 ½+

Basic ingredients:

(note) n → p + e- + νe (10.4 min)

1 fm = 10-15 m

Page 9: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

protons

neutrons

Nucleons are not stopping inside a nucleus.(they move relatively freely)

a self-bound system

Yet, they are not completely independent.A nucleus keeps its shape while nucleons influence among themselves so that a nucleon does not escape.

Page 10: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

protons

neutrons

Nucleons are not stopping inside a nucleus.(they move relatively freely)

Yet, they are not completely independent.A nucleus keeps its shape while nucleons influence among themselves so that a nucleon does not escape.

a self-bound system

What happens if a photon is absorbed into a nucleus? - one nucleon simply starts moving faster?

photon

Page 11: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

protons

neutrons

Nucleons are not stopping inside a nucleus.(they move relatively freely)

Yet, they are not completely independent.A nucleus keeps its shape while nucleons influence among themselves so that a nucleon does not escape.

a self-bound system

What happens if a photon is absorbed into a nucleus? - one nucleon simply starts moving faster?

Very coherent motion can happen

Collective motions

Page 12: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

protons

neutrons

Nucleons are not stopping inside a nucleus.(they move relatively freely)

Yet, they are not completely independent.A nucleus keeps its shape while nucleons influence among themselves so that a nucleon does not escape.

a self-bound system

What happens if a photon is absorbed into a nucleus? - one nucleon simply starts moving faster?

Very coherent motion can happen

Collective motions

Page 13: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

a variety of motions→ very rich!

Very coherent motion can happen

Collective motions

Page 14: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Nuclear Chart: 2D map of atomic nuclei

neutron number

proton number

Page 15: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Periodic Table of elements (1869)

Mendeleev(1834-1907)

Page 16: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Taka and Fuji (a grand -daughter of Mendeleev)

Periodic Table of elements (1869)

Mendeleev(1834-1907)

Page 17: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Periodic Table of elements (1869)protons only, no information on neutrons

Page 18: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Nuclear Chart: an extended version of periodic table

neutron number

proton number isotopes

16O (Z=8, N=8, A=16)17O (Z=8, N=9, A=17)18O (Z=8, N=10, A=18)

A=Z+N

Page 19: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

neutron number

proton number

・Stable nuclei in nature: 287 ・Nuclei artificially synthesized :about 3,000・Nuclei predicted:about 7,000 ~ 10,000

Nuclear Physics: Several static and dynamical propertiesof those nuclei

Page 20: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

neutron number

proton number how many neutrons can be attached?

what is the heaviest nucleus? what is the shape of nuclei?is there any exotic structure? how do nuclei decay?….. etc. etc.

Nuclear Chart: an extended version of periodic table

Page 21: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

neutron number

proton number how many neutrons can be attached?

what is the heaviest nucleus? what is the shape of nuclei?is there any exotic structure? how do nuclei decay?….. etc. etc.

Nuclear Chart: an extended version of periodic table

Page 22: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Extension of nuclear chart: frontier of nuclear physics

neutron-rich nuclei (RIBF)

halo nuclei

9C 10C 11C 14C 15C 16C 17C 18C 19C 20C 22C12C 13C

12N 13N 16N 17N 18N 19N 20N 21N 22N 23N14N 15N

13O 14O 15O 16O 17O 18O 19O 20O 21O 22O 23O 24O

17F 18F 19F 20F 21F 22F 23F 24F 25F 26F 27F 29F 31F

Page 23: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Neutron-rich nuclei (RIBF at RIKEN)

r-process nucleosynthesis

Page 24: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

October 17, 2017

NAOJ B.P. Abbott et al., PRL119 (‘17) 161101nucleosynthesis at this time?

Page 25: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Ele.-mag. wave from the source of GW

solid lines:with r-processnucleosynthesis

dashed line:no r-process nucleosynthesis

http://www.cfca.nao.ac.jp/pr/20171016

M. Tanaka et al.,Astron. Soc. Jpn. 69 (‘17) 102

October 17, 2017

opac

ity

time

Page 26: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

neutron number

proton number how many neutrons can be attached?

what is the heaviest nucleus? what is the shape of nuclei?is there any exotic structure? how do nuclei decay?….. etc. etc.

Nuclear Chart: an extended version of periodic table

Page 27: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Extension of nuclear chart: frontier of nuclear physicssuperheavy elements

Page 28: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Prediction of island of stability: an important motivation of SHE study

Yuri Oganessian

island of stability around Z=114, N=184W.D. Myers and W.J. Swiatecki (1966), A. Sobiczewski et al. (1966)

nuclei in nature

Page 29: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

neutron number

proton number how many neutrons can be attached?

what is the heaviest nucleus? what is the shape of nuclei?is there any exotic structure? how do nuclei decay?….. etc. etc.

Nuclear Chart: an extended version of periodic table

Page 30: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

a nucleus is not always spherical

Quantum shape dynamics

「形の量子論」

Page 31: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

neutron number

proton number how many neutrons can be attached?

what is the heaviest nucleus? what is the shape of nuclei?is there any exotic structure? how do nuclei decay?….. etc. etc.

Nuclear Chart: an extended version of periodic table

Page 32: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Density Distribution

Page 33: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Density Distribution High energy electron scattering

Born approximation:

(Fourier transform of the density)

Form factor

e-

Page 34: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Born approximation

θV(r)

incident flux:

Page 35: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Electron scattering

Form factor

e- e-

* relativistic correction:

Page 36: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Fermi distribution

(fm-3)(fm)

(fm)

Saturationproperty

Page 37: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Momentum Distribution

Fermi gas approximation

kx

ky

kz

Fermi energy: (MeV)

(note: spin-isospin degeneracy)

ρ = 0.17 fm-3 kF ~ 1.36 fm-1

kF

Page 38: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

V

protons neutrons

~ 40 MeV(from Fermigas model)

~ 8.5 MeV(from expt.)

~ 48.5 MeV

A potential for nucleons inside a nucleus

Page 39: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp
Page 40: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Discussion: Electron scattering

Form factor

e- e-

Why do cross sections decrease for an extended density distribution?

Page 41: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp
Page 42: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Appendix

Page 43: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

x

V(x)Fermi gas model

EF (Fermi energy)

What is the relation between EF and the particle number?

→ Fermi gas model

Page 44: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Fermi gas model

non-interaction many Fermion system (with no external potential)

0 L

put infinite walls at x = 0 and x = L:

xthree-dimensional case:

Page 45: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Fermi gas model

nx

ny

nz

(1,1,1)(nx,ny,nz)

(2,1,1),(1,2,1)(1,1,2)

…..

N p

artic

les

Page 46: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Fermi gas model

nx

ny

nz

(1,1,1)(nx,ny,nz)

(2,1,1),(1,2,1)(1,1,2)

…..

N p

artic

les

EF

the highest energy:

nF

nF

nF

nF

nx, ny, nz > 0

Page 47: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Fermi gas model

nx

ny

nz

the highest energy:

nF

nF

nF

nF

Page 48: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Fermi gas model

or

Page 49: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Fermi gas model

total energy

Page 50: Advanced Nuclear Physics - nucl.phys.tohoku.ac.jp

Fermi gas model

nx

ny

nz

(1,1,1)(nx,ny,nz)

(2,1,1),(1,2,1)(1,1,2)

…..

N p

artic

les

EF

nF

nF

nF

nF