31
ADVANCED NUMERICAL AND PHYSICAL SIMULATION OF THE RING ROLLING PROCESS S. Andrietti 1 , J.-L. Chenot 1,2 , P. Lasne 1 , 1 Transvalor SA, France 2 CEMEF - Mines ParisTech, France AeroMat’2014 – S. Andrietti et al. 1

advanced numerical and physical simulation of the ring rolling process

  • Upload
    buidat

  • View
    231

  • Download
    6

Embed Size (px)

Citation preview

ADVANCED NUMERICAL

AND PHYSICAL SIMULATION

OF THE RING ROLLING PROCESS

S. Andrietti1, J.-L. Chenot1,2, P. Lasne1,

1 Transvalor SA, France 2 CEMEF - Mines ParisTech, France

AeroMat’2014 – S. Andrietti et al. 1

Outline

• Introduction

• Thermo-mechanical model & FE resolution

• Examples of numerical simulation with FORGE®

• Metallurgical aspects

• Conclusions

2 AeroMat’2014 – S. Andrietti et al.

Introduction • Applications of ring rolling in many industrial fields:

– Aerospace

– Automotive

– Nuclear

– Railroad, Oil & Gas

– Wind Power

• Sophisticated process:

– Due to kinematics

– Several independent rolls

– Accurate piloting is crucial

3 AeroMat’2014 – S. Andrietti et al.

Industrial issues

• Rolling mill piloting

• Process instabilities : ring climbing phenomenon, offset

• Workpiece properties : effective strain and grain flow

• Prevent defects : underfilling, folds, fishtail, …

• Prediction of the microstructure

=> Virtual factory from ingot to final ring.

4 AeroMat’2014 – S. Andrietti et al.

• Introduction

• Thermo-mechanical model & FE resolution

• Examples of numerical simulation with FORGE®

• Metallurgical aspects

• Conclusions

5 AeroMat’2014 – S. Andrietti et al.

• Constitutive equations

– Elasto-viscoplastic:

– Elasticity:

– Viscoplasticity:

Example of power law:

6

e p th

( ) (3 2 ) 2e e e e e eJdtrace T I

dt

0

2' ( , , )

3

p

T

1

' 2 ( , ) 3m

pK T

AeroMat’2014 – S. Andrietti et al.

• Friction modeling:

– Example « Coulomb viscoplastic »:

• Thermal coupling

7

1 fp

f n v v

( ( )) : 0pdTc div kgrad T r

dt

AeroMat’2014 – S. Andrietti et al.

8

• Time discretization:

– Time increments t for non-stationary processes

– Implicit formulation for the mechanical equilibrium at each

time step

• Finite element discretization:

– Use of P1+/P1 linear tetrahedral elements

– Unknows : Velocity (v) , Pressure (p) , Temperature (T)

• Equation solving:

– Iterative method for non-linear system

– Solver supports high parallel computing (up to 64 cores)

AeroMat’2014 – S. Andrietti et al.

• Arbitrary Lagrangian Eulerian (ALE) formulation:

– Use of a structured mesh with refinement in angular

sectors

– Next trends : dual-mesh technique, self-adaptive

remeshing

9 AeroMat’2014 – S. Andrietti et al.

10

• Introduction

• Thermo-mechanical model & FE resolution

• Examples of numerical simulation with FORGE®

• Metallurgical aspects

• Conclusions

Aeromat’2014 – S. Andrietti et al.

Typical industrial example

11 AeroMat’2014 – S. Andrietti et al.

Typical defect prediction

12 AeroMat’2014 – S. Andrietti et al.

Underfilling defect

Fishtail defect

Cou

rte

sy o

f M

ura

ro S

pa

Grain flow prediction

13 AeroMat’2014 – S. Andrietti et al.

Rolling mill piloting

• Ring centering :

– Use of force-driven (or torque) guide rolls

– Keep the ring’s centroid along X-axis by applying a

scalar constraint

• Piloting mode :

– « conventional » : displacements of mandrel & axial rolls

are set based on pre-defined rolling curves

– « innovative » : coupling with real-time process data 14 AeroMat’2014 – S. Andrietti et al.

15

Conventional piloting

King roll : constant rotation speed

Mandrel & axial rolls : automatic rotation speed

Standard rolling curves :

• Ring Growth Speed vs Outer Diameter

• Ring Height vs Thickness

AeroMat’2014 – S. Andrietti et al.

Ring thickness

Rin

g h

eig

ht

Conventional piloting - Results

AeroMat’2014 – S. Andrietti et al.

17

Innovative piloting

Collaborative work with Muraro Spa (Italy)

Displacements of rolls & cones are function of time

according to the real evolution of the ring’s parameters

• Diameter – Thickness – Height

• Linear velocity - Rotation speed

• Force - Torque

AeroMat’2014 – S. Andrietti et al.

General principle of the external piloting

18

Innovative piloting - Results

AeroMat’2014 – S. Andrietti et al.

Stainless steel bearing ring

Courtesy of Muraro Spa

19

Innovative piloting – Results

AeroMat’2014 – S. Andrietti et al.

Courtesy of Muraro Spa

20

• Introduction

• Thermo-mechanical model & FE resolution

• Examples of numerical simulation with FORGE®

• Metallurgical aspects

• Conclusions

Aeromat’2014 – S. Andrietti et al.

Heat treatment capabilities

21 AeroMat’2014 – S. Andrietti et al.

• Various heat treatment operations can be simulated:

– Austenitization, carburizing, nitriding

– Quenching, tempering

– Induction heating, induction hardening

• Standard outputs:

– Phase transformation (for steel), dimensional variations

– Final hardness & residual stress

• Example:

– Water+Polymer quenching of a steel ring

22 AeroMat’2014 – S. Andrietti et al.

AISI 4140 Steel - HTC conditions

Vickers hardness distribution vs Experimental measurements

Co

urt

esy

of

Fris

a Fo

rjad

os

Quenching - Results

23

Microstructure evolution

JMAK semi-empirical approach for recristallization

AeroMat’2014 – S. Andrietti et al.

Dynamic : nucleation and growth during

deformation

Meta-dynamic : nucleation during

deformation and growth after deformation

Static : nucleation and growth after

deformation

For given constant conditions

Material data for recristallization

• Low carbon steel : SAE 1035, …

• Austenitic stainless steels : 316L, …

• Ni steels / Mn steels / Cr steels

• Ni-Cr-Mo / Mn-Cr / Cr-Mo / Mn-Si steels (SAE 9310, SAE 5120, SAE 4140, SAE 1536, …)

• Nickel based alloy : Inconel718, Waspaloy

• Or User data

24 AeroMat’2014 – S. Andrietti et al.

AeroMat’2014 – S. Andrietti et al. 25

Recristallization during ring rolling

Grain size evolution with sensors Strain & Strain rate vs Time

Average grain size evolution

26 Aeromat’2014 – S. Andrietti et al.

Nu

cle

atio

n a

nd

Gro

wth

From Macroscale …

27 Aeromat’2014 – S. Andrietti et al.

… to Mesoscale modeling

28 Aeromat’2014 – S. Andrietti et al.

29

Recristallization model – Full field approach

AeroMat’2014 – S. Andrietti et al.

Adaptive anisotropic mesh

Representative Volume Element

Modelling of grain growth (left) and static recrystallization (right) in 304L austenitic stainless steel

Conclusions

• Numerical simulations of complex ring rolling process

providing reliable results (final shape, grain flow,

defects, strain-temperature-stress-hardness, …)

• An innovative & efficient new piloting method to

reproduce the industrial practice

• Intensive work for final microstructure prediction using

mesoscale modeling

• Perspectives : use multi-objective optimization engine

applicable to any sort of process design

30 Aeromat’2014 – S. Andrietti et al.

THANK YOU FOR YOUR ATTENTION

Stéphane Andrietti Director of Software Production Department

Transvalor SA

Email : [email protected]

Web site : www.transvalor.com

AeroMat’2014 – S. Andrietti et al. 31

Patrice Lasne Expert Engineering Department

Transvalor SA

Email : [email protected]

Web site : www.transvalor.com

Professor Jean-Loup Chenot Transvalor Scientific Director

Email : [email protected]

www.transvalor.com

www.cemef.mines-paristech.fr