82
Advances in Millimetre- Wave 3D Printing and MCM Technologies WM08 Dr Kamal K Samanta and Prof Ali A Rezazadeh AMWT Ltd UK and University of Manchester, UK [email protected]

Advances in Millimetre- Wave 3D Printing and MCM Technologies

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Advances in Millimetre-

Wave 3D Printing and MCM

TechnologiesWM08

Dr Kamal K Samanta and Prof Ali A

Rezazadeh

AMWT Ltd UK and University of Manchester, UK

[email protected]

Prof. John Papapolymerou, Michigan State University, USA

24/07/2016

1

Slide 1of 16

Co‐Designed CMOS based Antenna Modules for 5G Radio Nodes

J. Laskar, R. Pelard, R. Pratap and A. Rida

Maja Systems

Si Valley, [email protected]

WF08  Advances in mmW 3D printing and MCM technologies

Slide 2of 16

Maja Systems

• Pioneers in CMOS based Active AntennaModules– More than 20 patents Issued or pending– Over 15 years of continuous development

• mmW Digital Radio product– Shipping or in development for all major mmW

5G bands

2

24/07/2016

2

Slide 3of 16

“Must Haves” for 5G implementation 

• Need to Simultaneously Deliver:– Modularity– Sub‐0.5 Watt digital radio nodes with Antenna– Multi‐Gigabit– Support Mesh Architectures

Slide 4of 16

mmW CMOS: The Opportunity

24/07/2016

3

Slide 5of 16

The Challenge

18951895 2000s2000s 20162016

Slide 6of 16

Manufacturing Flow

•Electronically Beam 

Steerable Array

• Multi‐Sector 

Technology

•Scalable beamforming structure

• 4‐element beam former

•16‐element beam former

•Standard PCB flow

•Integrated System

• Single Chip

•Standard Digital CMOS

24/07/2016

4

Slide 7of 16

Co‐designed antenna library

• Vertical and edge‐fire antenna array library (5 to 25dBi gain)

Slide 8of 16

Combine with mmW Digital Radios

• Standard CMOS Flow

• Digital Calibration and Control

– Digital Die Sort

– Adaptive 

– Environment

– Manufacturing Flow

– BIST

– Bits‐In/Bits‐Out

24/07/2016

5

Slide 9of 16

Co‐Design Eliminates Precision Metal…

Integrated Antenna Arrays3D PCB Module Process

Large panel fabrication

SM™ Antenna Technology

Multi-sector Technology

Phased Array Technology

Embedded Filter

Slide 10of 16

Design Reuse10

Antenna

Digital Receiver

Digital

Exciter Digital

WaveformProcessing

••

••

DigitalRadar

Elements/Subarrays

••

••

DigitalWaveformGenerator

Digital Beamforming

(DBF)

••

Beams

Antenna

Digital Receive

r

WidebandModulatio

nDigitalData

Processing

••

••

Elements/Subarrays

••

••

DigitalData

Processing

Digital Beamforming

(DBF)

••

Beams

MMW Radar / sensingMMW Communication

DigitalCommunica

tion

24/07/2016

6

Slide 11of 16

mmW Digital Radio Architectures

• V‐band Fixed Beam             & Beamformer Unit Cell

• Low power Short Reach (< 200mW)

Slide 12of 16

Scaleable Element Beam Former

24/07/2016

7

Slide 13of 16

Pulse Shaping in Transmitter Modem

• 13-tap raised-cosine FIR digital filter

• Pre-calculated coefficients stored in look-up table

• Time interleaving enables very high speed of operation (4.4GS/s)

• Integrated 6BIt DAC

• Ultra low-power (2mW from < 1V supply) 65nm

Slide 14of 16

Planar Phased Array Technology

H2 matrix (2 bits resolution)

48 Elements Phased Array Determination of DoA Algorithm

Multi resolution code‐book

4 848

48 elementsGain > 20dBiBeam-width ~ 5Deg.

Scanning ~120 Deg.

H3 matrix (3 bits resolution)

H4 matrix (4 bits resolution, etc..)

24/07/2016

8

Slide 15of 16

Planar Phased Array Technology

Slide 16of 16

Summary: Active Antenna Modules

• Single Chip CMOS– RF/ADC/DAC/Modem

• Co‐design with Antenna– Eliminates Precision Metal

• Low BOM and RBOM– Self Test: BIST

• Versatility– > 1,000 bits of Digital 

Control– Adaptive / Self Healing– Bits‐In/Bits‐Out

• Scalability– Standard Manufacturing 

Flows– Programmable

mmW Antenna

RF

ADC/DAC

MODEM

Controller

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Aerosol Jet 3D Printing for SOP RF Front Ends

John PapapolymerouMSU Foundation Professor and Chair

[email protected]

Department of Electrical and Computer EngineeringMichigan State UniversityEast Lansing, MI 48824

2016 European Microwave Conference Workshop WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Outline

• Introduction/Applications• Aerosol Jet Printing Basics• Examples of 3D Manufactured RF and mm-wave circuits• Conclusions

2

3

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Looking into the Future

Mobile World Congress 2013 - Ericsson

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Wide bandwidth (7 GHz in US)

Short-range wireless comm.

Good security

High date rates up to 15 Gbps

Millimeter-Wave Wireless Applications

60 GHz Band (802.15.3c)

Source: B.Gaucher, ‘Completely Integrated 60 GHz ISM Band Front End Chip Set and Test Result,’ IEEE 802.06-0003-00-003c, Jan. 9,2006.

4

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Millimeter-Wave Wireless Applications

5

Defense and space applications.

Automotive radar.• 76-77 GHz• Front/rear/side collision avoidance• Parking/lane change assistance• Blind spot warning• Automatic cruise control• Sections of the E-Band at 71-76 GHz,

81-86 GHz for multi-gigabit per second wireless communications

• D-Band+ short range high speed wireless

W-Band

WM08 Advances in Millimeter-wave 3D Printing and MCM TechnologiesWM08 Advances in Millimeee

Radars for Environmental Sensing

6

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Source: http://www.siemens.com/innovation/en/home/pictures-of-the-future/industry-and-automation/Additive-manufacturing-facts-and-forecasts.html

Market for Additive Manufacturing Technologies

7

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Less steps

Polyimide InkSilver Ink

Carrier Gas AerosolVirtual Impactor

Printing Head

A building with a bunch of facilities Single machine

Multiple complex steps with several equipment

A couple of different chemicals are required. Less materials

Photolithography Aerosol Jet Printing

Expensive Expensive

Comparison with Traditional Manufacturing

8

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

DW processes ResolutionMaterial viscosity

range (Pa·s) or typesWrite speed

Complex curvature printing

Droplet

Inkjet Line width 50-200μm <0.01 0.3mm3/s(single nozzle)

Moderate

Aerosol JetLine width 10-150μm thickness 10nm-5μm <2.5

0.25mm3/s(single nozzle)

Excellent

Flow Micropen 100μm <1,000 50mm3/s Excellent

Tip AFM12nm line width and

5nm spatial resolution

Thiol molecules, macromolecules,

nanoparticles0.2-5μm/s Limited

Flow-based Tip-basedDroplet-based

Comparison of Different Direct Write Processes

9

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Nozzle Output:Small Aerosol Droplets ~ 1-5umUp to 0.25 microliter/sec dispensing speed<10-150 μm line width printing capability

Ink viscosity: 0.7-10 cP

Sheath Gas In

Focused BeamTo <10um

Dense Aerosol

Substrate

3 to 5mm Standoff

Shea

th G

as In

Sheath Gas In

Focused BeamTo <10um

Dense Aerosol

Substrate

3 to 5mm Standoff

Shea

th G

as In

Printing Head

3-5 mm Standoff Focused beam to <5 μm

Substrate

Gas InGas In

Pneumatic Atomization

UltrasonicAtomization

Ink viscosity: 1-2,500 cP

Condensed aerosolCarrier gas

Transducer

www.optomec.com

Aerosol Jet Printing Processes

10

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

www.optomec.com

Ink Jet vs. Aerosol Jet

11

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Conventional Dispensing:• Pros

• Direct material deposition• Low cost & easy setup• Relatively flexible on Material

choice

• Cons• Slow• Lack of accuracy• Limited consistency• Limited feature size

Micro-Dispensing/direct printing:• High speed

• As fast as 500mm/sec.• Wide range of material choice:

• viscosity from 1cps to >1 million cps.• Type of materials can be processed but not limited to conductive, dielectric,

adhesive, solder, epoxy, encapsulate, hot melt, silicone oil, biological chemicals, live cells and etc.

• Capability of high resolution and accuracy• Pico-liter level column control• Line width as small as 10um

Digital Direct Printing

12

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

• Optomec AJP system was installed in March 2013• Prototype printed electronics fabricated at GTMI with the AJP

system include strain and temperature sensors, organic transistors/pressure sensors, RFID tag, and high frequency antenna

Courtesy of Prof. Chuck Zhang, School of ISyE, Georgia Tech13

Aerosol Jet Printing Setup at GT/GTMI

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies 14

Optomec 5X Aerosol Jet Printer at MSU

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Interconnects linked with IC chip pins

RFID tag on silicone

Temperature sensor printedwith carbon nanotubes RFID tag and antenna array

on carbon fiber prepreg

Strain sensor array printedwith silver ink

High frequency antenna

Courtesy of Prof. Chuck Zhang, School of ISyE, Georgia Tech

Aerosol Jet Prototypes Samples Fabricated at Georgia Tech

15

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Graphite CNT/Silver NPMetal NP CNT

Polyimide(Flexible Films)

Carbon Fiber Prepreg(Composites)

3D Surface

Substrates

Metal

Polyimide

Wide Ranges of Inks and Substrate Materials

Courtesy of Prof. Chuck Zhang, School of ISyE, Georgia Tech16

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Silver InkLCPCopper

Type-1 Transmission Line

17

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Silver Ink

LCPCopper

Polyimide

Type-2 Transmission Line

18

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Silver Ink

GlassPolyimide

Type-3 Transmission Line

19

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Silver Ink Polyimide Ink

Edge Error 10%

Edge Error 0.5%

Silver and Polyimide Ink Fabrication Results

20

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Gap= 48 μm

Wsig= 138 μm

L = 2 mm

Wgnd = 1.5 mm

Fabrication Tolerance is 10%.

Silver and Polyimide Ink Fabrication Results

21

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

(a) Printed silver ink on 2 mil LCP as type-1(b) the same dimension as type-1 with an additional 10 μm polyimide layer on LCP(c) printed metal-polyimide-metal 3-D structures as type-3 on the glass

Photos of Fabricated Samples

F. Cai, Y.H. Chang, K. Wang, C. Zhan and J. Papapolymerou, “Aerosol Jet Printing for 3D Multilayer Passive Microwave Circuitry,” 2014 IEEE European Microwave Conference, pp. 512-515, Rome, Italy, October 2014

22

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Silver Ink

LCPCopper

Polyimide

Type 1

Type 2

0 10 20 30 40 50

-2

-1.5

-1

-0.5

0

Frequency (GHz)

S21

(dB

)

Meas Type1Meas Type2Sim Type1Sim Type2

0 10 20 30 40 50-80

-60

-40

-20

Frequency (GHz)S

para

mete

rs (

dB

)

Meas Type1 S11

Meas Type1 S22

Meas Type2 S11

Meas Type2 S22

Sim Type1 S11

Sim Type1 S22

Sim Type2 S11

Sim Type2 S22

2 mm

2 mm

10 μm polyimide

Frequency 1 MHz 40 GHz

Type1 0.005 dB/mm

0.3dB/mm

Type2 0.006 dB/mm

0.38dB/mm

RF Results

F. Cai, Y.H. Chang, K. Wang, C. Zhan and J. Papapolymerou, “Aerosol Jet Printing for 3D Multilayer Passive Microwave Circuitry,” 2014 IEEE European Microwave Conference, pp. 512-515, Rome, Italy, October 2014 23

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

0.5 mm

20 μm polyimide

Complete 3-D printing: 25 layers of polyimide for20 um thickness, between DDM metals.

Printed metal (10 layers of metal ~ 7 um)

Type 3

Glass 1 mm

Printed Polyimide

G S G

Loss~0.5 dB/mm @50 GHz!

RF Results

0 10 20 30 40 50-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Frequency (GHz)

S2

1 (

dB)

MeasSim

0 10 20 30 40 50-80

-60

-40

-20

Frequency (GHz)

S p

ara

mete

rs (

dB

)

Meas S11

Meas S22

Sim S11

Sim S11

F. Cai, Y.H. Chang, K. Wang, C. Zhan and J. Papapolymerou, “Aerosol Jet Printing for 3D Multilayer Passive Microwave Circuitry,” 2014 IEEE European Microwave Conference, pp. 512-515, Rome, Italy, October 2014 24

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

3D Printing of D-Band Transmission Lines

10 m Gap

10 m Line

21 3 4 5 6 7 8 9 10

Units:10 μm

120 140 160-3

-2

-1

0

Frequency (GHz )

S 2

1 (d

B)

Line 2Line 1Line 3

120 140 160-1

-0.5

0

Frequency (GHz)

S 2

1 (d

B)

10 layers of ink – tmetal~ 7 umLCP substrate

For microstrip lines 1,2,3: L3=1, 2 and 3 mmLoss ~ 0.65 dB/mm @ 170 GHz, 0.45 dB/mm @ 140 GHz

CPW line: L4= 1mm – Loss~ 0.5 dB/mm @ 145 GHz

25

Type 1

F. Cai, Y.H. Chang, K. Wang, S. Pavlidis, W.T. Khan and J. Papapolymerou, “High Resolution Aerosol Jet Printing of D- Band Printed TransmissionLines on Flexible LCP Substrate,” presented at the 2014 IEEE International Microwave Symposium, Tampa, FL, June 2014

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

• Fast and cost effective manufacturing compared to lithography process

• Conformal antenna on various surfaces

• Low temperature processing suitable for polymer substrates

• Performance matching simulation results

Transmission Line & Ring Oscillator

Amplifier CircuitPrinted Antenna

3D Printing of 2.4 GHz Flexible Antenna

26

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

FDM Polyjet

* Sources: -http://reprap.org/wiki/Fused_filament_fabrication-http://www.3daddfab.com/technology/

Filament SpoolFilament is led to the extruder

Heater

UV curing lampLeveling blade

Elevator

Build surfaceBuild platform

Part supportPart

Build material

Support materialal

Torque and a pinch system

Platform

Comparison of FDM & Polyjet3D Printing

27

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

• The state of the art 3-D printer• More professional prototypes-Fine resolution about 16 μm in zdirection and 20 μm in x-y direction-Good surface finishing (~0.5 μm)• 18 Material Options(transparent, opaque, rigid, rubber-likeand high temperature compatible)• Non-toxic, no need for sealed-off

labs and OSHA respiratory protectionEden 260V

Features of the Polyjet 3D Printing

28

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

ab

d

HFSS Model Resin Sample Final Parts

Print by EdenCopper Sputtering /

Electroplating

3D Printed X-band Resonator

F. Cai, W. Khan and J. Papapolymerou, “A Low Loss X-band Filter Using 3-D Polyjet Technology,” presented at the 2015 IEEE International Microwave Symposium, Phoenix, AZ, May 2015.

29

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

HFSS Model Sample

Des. (mm) Fab. (mm) Deviationa 20.20 20.18 0.1%b 5.00 4.98 0.4%d 21.4 21.21 0.42%

ab

d

Fabrication Errors

F. Cai, W. Khan and J. Papapolymerou, “A Low Loss X-band Filter Using 3-D Polyjet Technology,” presented at the 2015 IEEE International Microwave Symposium, Phoenix, AZ, May 2015.

30

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

-50

-45

-40

-35

-30

-25

-20

10 10.2 10.4

S21

(dB

)

Frequency (GHz)

S21_Meas

14

fr=10.25 GHz

Ideally, is 4800 !

Measured Results

F. Cai, W. Khan and J. Papapolymerou, “A Low Loss X-band Filter Using 3-D Polyjet Technology,” presented at the 2015 IEEE International Microwave Symposium, Phoenix, AZ, May 2015.

31

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

3D laser microscope

2D Profilometer Measurement

-0.1-0.6 μm surface roughness with a 3 μm waviness over 2D measurement. -Root mean square roughness is 0.5-1.9 μm over the complete 3D surface respectively.

Surface Roughness

F. Cai, W. Khan and J. Papapolymerou, “A Low Loss X-band Filter Using 3-D Polyjet Technology,” presented at the 2015 IEEE International Microwave Symposium, Phoenix, AZ, May 2015.

32

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

• Huray Model treats a conductor surface as if it were stacked with small spheres

- Approximates the effect of 3D printed parts- Assumes more surface area than other models; can better

model significantly rough surfaces

Behavioral Modeling with Huray Model

F. Cai, W. Khan and J. Papapolymerou, “A Low Loss X-band Filter Using 3-D Polyjet Technology,” presented at the 2015 IEEE International Microwave Symposium, Phoenix, AZ, May 2015.

33

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Qu 14

Flat area Aflat 1

Number of particles Ni 16

Skin depth 0.652 μm

Radius of particles 1.66 μm

-55-50-45-40-35-30-25-20

10 10.2 10.4

S21

(dB

)

Frequency (GHz)

S21_Meas

S21_Sim

10.21 GHz10.25 GHz

Measured & Simulated Results

F. Cai, W. Khan and J. Papapolymerou, “A Low Loss X-band Filter Using 3-D Polyjet Technology,” presented at the 2015 IEEE International Microwave Symposium, Phoenix, AZ, May 2015.

34

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Resonator1

Resonator 2

b

a

a

d

Gap

Side View Top View

L i r i s Tcont

Q ex

*Two-Pole Chebyshev Filter- Bandwidth (BW) 5% - Ripple 0.1 dB

Par. a b d Liris Tcont Gap

Value (mm) 20.2 5 21.4 6.2 1.85 6

X-Band Filter Design

F. Cai, W. Khan and J. Papapolymerou, “A Low Loss X-band Filter Using 3-D Polyjet Technology,” presented at the 2015 IEEE International Microwave Symposium, Phoenix, AZ, May 2015.

35

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Before Assembly After AssemblyRaw Samples

Fabricated Samples

F. Cai, W. Khan and J. Papapolymerou, “A Low Loss X-band Filter Using 3-D Polyjet Technology,” presented at the 2015 IEEE International Microwave Symposium, Phoenix, AZ, May 2015.

36

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

IL 2.1 dB

BW 3.9%

IL 2.0 dB, BW 5%

Results

F. Cai, W. Khan and J. Papapolymerou, “A Low Loss X-band Filter Using 3-D Polyjet Technology,” presented at the 2015 IEEE International Microwave Symposium, Phoenix, AZ, May 2015.

37

38WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Standard Vivaldi

M. Ghazali, K.Y. Park, J. Byford, J. Papapolymerou and P. Chahal, “3D Printed Metalized Polymer UWB High Gain Vivaldi Antennas,” presented at the 2016 IEEE International Microwave Symposium, San Francisco, CA, May 2016.

39WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Design: Bilateral Vivaldi

• Improves low frequency gain

• Improve low frequency S11

• Cavity cover minimizes back lobe radiation

M. Ghazali, K.Y. Park, J. Byford, J. Papapolymerou and P. Chahal, “3D Printed Metalized Polymer UWB High Gain Vivaldi Antennas,” presented at the 2016 IEEE International Microwave Symposium, San Francisco, CA, May 2016.

40WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Fabrication

Pins and Holes for Alignment

“Inside” Before metalization

Outside Before metalization

Metalized

Space for feed

M. Ghazali, K.Y. Park, J. Byford, J. Papapolymerou and P. Chahal, “3D Printed Metalized Polymer UWB High Gain Vivaldi Antennas,” presented at the 2016 IEEE International Microwave Symposium, San Francisco, CA, May 2016.

Objet Connex350 Commercial 3D Printer - Vero White: rigid opaque ABS comprised mainly of poly(isobornyl acrylate) and poly(methyl methacrylate)

41WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Assembled Vivaldi Antenna Assembled Bilateral Vivaldi Antenna

107mm119.73mm

37m

m

93.8

2mm

Silver Paste

Fabrication

M. Ghazali, K.Y. Park, J. Byford, J. Papapolymerou and P. Chahal, “3D Printed Metalized Polymer UWB High Gain Vivaldi Antennas,” presented at the 2016 IEEE International Microwave Symposium, San Francisco, CA, May 2016.

42WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Reflection Coefficient: Standard Vivaldi

-10 dB

M. Ghazali, K.Y. Park, J. Byford, J. Papapolymerou and P. Chahal, “3D Printed Metalized Polymer UWB High Gain Vivaldi Antennas,” presented at the 2016 IEEE International Microwave Symposium, San Francisco, CA, May 2016.

43WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Reflection Coefficient: Bilateral

-10 dB

M. Ghazali, K.Y. Park, J. Byford, J. Papapolymerou and P. Chahal, “3D Printed Metalized Polymer UWB High Gain Vivaldi Antennas,” presented at the 2016 IEEE International Microwave Symposium, San Francisco, CA, May 2016.

44WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Radiation Pattern: Standard Vivaldi

M. Ghazali, K.Y. Park, J. Byford, J. Papapolymerou and P. Chahal, “3D Printed Metalized Polymer UWB High Gain Vivaldi Antennas,” presented at the 2016 IEEE International Microwave Symposium, San Francisco, CA, May 2016.

45WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Radiation Pattern: Bilateral

M. Ghazali, K.Y. Park, J. Byford, J. Papapolymerou and P. Chahal, “3D Printed Metalized Polymer UWB High Gain Vivaldi Antennas,” presented at the 2016 IEEE International Microwave Symposium, San Francisco, CA, May 2016.

46WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Discrepancies

• Gain and radiation pattern based on the placement of the antenna

• Surface roughness

• Air gap in the slot line region

• Sensitivity of the connector placement

• Silver paste was used for coaxial placement as well as covering the air gap (Silver paste has higher losses at higher frequencies)

Coaxial cable

Silver paste

Air Gap

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

Conclusions

• Printed Electronics will meld with 3D Printing

• 3D manufacturing of basic RF structures (transmission lines) shows great potential up to D-band

• RF 3D has great potential – Performance can be further improved

• To move from Rapid Prototyping to true Rapid Manufacturing…..SPEED

47

WM08 Advances in Millimeter-wave 3D Printing and MCM Technologies

[email protected]

Acknowledgements

• Prof. Chuck Zhang, School of ISyE – Georgia Tech• Prof. Ben Wang, School of ME – Georgia Tech• Prof. Prem Chahal - MSU• Dr. Fan Cai, School of ECE – Georgia Tech• Dr. Kevin Wang, School of ISyE – Georgia Tech• Spyros Pavlidis, School of ECE – Georgia Tech• Mohd Ghazali, Kyoung Park, Jennifer Byford, School of ECE -

MSU• Prof. Wasif Khan, LUMS, Pakistan• National Science Foundation under grant number ECCS-

1231869

48

Slide 2 of NNN WF05 Advances in GaN Power Amplifiers: Linearity, Bandwidth and Efficiency

Ali A.Rezazadeh Prof. of Microwave and mm-wave Engineering

University of Manchester, UK [email protected]

3D Multilayer MMICs- A flexible approach for low cost components

Slide 3 of NNN

Semiconductor Technology

Properties Si GaAs GaN SiC Energy Band gap (eV) 1.12

(indirect) 1.43

(direct) 3.4

(direct) 3.26

(indirect)

Breakdown Field (x105V/cm)

3 4 25 25

Intrinsic Electron Mobility (cm2/V.sec)

1,500 1,800 2000 600

Thermal Conductivity at 300K (W/cm.C)

1.45 0.45 1.45 3-5

Saturated Electron Drift Velocity (@107V/cm)

1 1 2 2.5

Substrate Resistivity ( -cm) 103 108

Slide 4 of NNN

Introduction Future exploitation of millimetre-wave (mmw) bands requires:

low-loss, efficient, highly integrated single-chip solutions. Present day MMICs are implemented mainly in a planar fashion.

At mm-wave it is essential to employ a large amount of passive circuitry for functions such as matching, biasing, phase shifting, coupling and filtering and as a result the passive components on MMICs often take up far more space than the active devices.

pHEMT pHEMT pHEMT R R

Capacitor Coupler

Inductor Polyimide

GaAs Substrate

Transmission line

Microstrip design MMIC MS layout

Slide 5 of NNN

Microstrip design

Microstrip lines are used more frequently CAD packages support the microstrip design The components are scaled to the chip size To ground through-substrate via hole are required this makes the fabrication complicated At high frequencies the via hole inductance becomes significant and deteriorates the circuit performance

Slide 6 of NNN

Planar CPW

CPW Transmission line is first proposed by C.P. Wen in 1969 It has the G-S-G combination because the ground planes and conductor are on the same face there is no need for via holes Wafer size is not limited Ground planes provide shielding to the central conductor and hence the cross talk between the lines is less

Slide 7 of NNN

3D Multilayer CPW

Requires: - Appropriate dielectric material - Careful design - Powerful modelling tool

Provides flexibility in designing multilayer structures with higher performance

Can achieve compact, 3D circuits

Slide 8 of NNN

Transistor layouts

Microstrip Design

Slide 9 of NNN

Current Crowding Effect

S.I.GaAs Substrate

S.I. GaAs Substrate

Conventional CPW V-shaped multilayer CPW

Slide 10 of NNN

Transmission Line parameters - 1

CPW parameters:

Characteristic Impedance Z0 Effective Dielectric constant εreff

Dissipation loss The propagation constant is given as

And these parameters can be calculated in different ways, from the measured S-parameters the following relations are used

Slide 11 of NNN

Transmission Line Parameters -2

fc

effectiver 20,

10ln20

10lnln20log20_ leeLossnDissipatio

ll

Where,

C = Velocity of light

l = Length of the transmission line

= Attenuation constant

= Phase constant

Slide 12 of NNN

Transmission Line Parameters- 3

Conductor Loss

- DC Resistance - Surface resistance due to skin effect

f1 1

sR

- current crowding

Dielectric Loss

- Effective Dielectric constant

- Loss tangent

Radiation Loss

Slide 13 of NNN

Transmission Line Modelling

0 10 20 30 40

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

Measured Data of Multilayer TL Simulated Data From Momentum Simulated Data From HFSS

S(1

,1)(

dB

)

Frequency(GHz)

Momentum Simulated

Measured Data

HFSS Simulated

At higher frequency HFSS gives more stable results

Slide 14 of NNN

Effect of Unintentional Horizontal Coupling

Measured coupling between two adjoining transmission lines

S = 75 m (=5G) provides sufficient isolation (30dB) for most application

Van Tuyen Vo, Lokesh Krishnamurthy, Qing Sun, and Ali A. Rezazadeh, “3-D Low-Loss Coplanar Waveguide Transmission Lines in Multilayer MMICs”, IEEE Transactions On Microwave Theory and Techniques, Vol. 54, No. 6, June 2006, pp2864-2871. Doi: 10.1109/TMTT.2006.875458

Slide 15 of NNN

Coupling Effect in MS and CPW Designs

(a) Microstrip coupled lines

(b) CPW coupled lines with ground shield

CPW circuits can be made more compact than MS circuits while good isolation between components can be obtained.

5 10 150 20

-60

-40

-20

-80

0

Frequency (GHz)

S21 [dB

]

MS S=90um

CPW S=90um

MS S=150um

Slide 16 of NNN

3D Multilayer Fabrication Process Technology

Metal deposition, M1

Dielectric deposition, P1

Plasma etch (RIE), P1

Metal deposition, M2

Dielectric deposition, P2

Plasma etch (RIE), P2

Metal deposition, M3

Process flow Multilayer circuits on 2” GaAs

Slide 17 of NNN

CPW Transmission Lines Designs

50 lines

V-shape

> 50 lines < 50 lines

Overlap with 2 metals

V-shape with overlap

Standard Standard on PI

Elevation 1

Elevation 2

Slide 18 of NNN

CPW Transmission Lines- Measured Z0

0 5 10 150

10

20

30

40

50

Measured Simulated

O = 20 m

O = 10 m

O = 1 m

Mag(Z

0)

()

f (GHz)

0 5 10 15 2040

50

60

70

80

90

100

Measured Simulated

Mag(Z

0)

()

f (GHz)

Slide 19 of NNN

Design Z0 at 10GHz

r,effective

Elevation 65 4.3

50

V-shape

50 6

28 6

V-shape 18 6

With overlap 15 6 10 20 30 40 50 60 700

2

4

6

8

10

r, e

ffe

ctive

Z0 ( )

CPW Transmission Lines

Slide 20 of NNN

S.I GaAs Substrate

S.I GaAs Substrate

S.I GaAs Substrate

CPW Multilayer Capacitors

Conventional Capacitor Folded Capacitor

Micrograph of a fabricated multilayer capacitor

Tapered hole Capacitor

Slide 21 of NNN

CPW Multilayer Capacitors

6 8 10 12 14 16

1

2

3

4

5

Folded

Tapered Hole

C (p

F)

Area ( m2x104)

Conventional

Overall Capacitance is increased by two times

Multilayer layer capacitors are compact in nature

Measured capacitance variation with area

Equivalent circuit of a capacitor

Rp

Cg

Rs

CpCg

Slide 22 of NNN

Design of CPW Multilayer couplers

Edge coupling

Broadside coupling

IN

COUPLED

PPCoupling log10

IN

ISOLATED

PPIsolation log10

COUPLED

ISOLATED

PPyDirectivit log10

A fabricated CPW coupler

Slide 23 of NNN

Straight and right angle probing Calibration substrate used in SOLR

We employ SOLR type of calibration with Wincal® software

A variation of SOLT calibration

SHORT OPEN LOAD RECIPROCAL THRU

Orthogonal calibration

Slide 24 of NNN

0 5 10 15 20 25 30-30

-25

-20

-15

-10

-5

0

Isolation

Coupling factor

Cou

plin

g &

Isol

atio

n, d

BFrequency, GHz

0 5 10 15 20 25 30-30

-25

-20

-15

-10

-5

0

Isolation

Coupling factor

Cou

plin

g &

Isol

atio

n, d

B

Frequency, GHz

Spiral coupler Straight coupler

Additional mutual coupling

Space saving

Edge coupling Broadside coupling

Multilayer Couplers

Slide 25 of NNN

0 5 10 15 20 25 30-30

-25

-20

-15

-10

-5

0

Isolation

Coupling factor

Co

up

ling

& Iso

latio

n, d

B

Frequency, GHz

0 5 10 15 20 25 30-30

-25

-20

-15

-10

-5

0

Isolation

Coupling factor

Co

up

ling

& Iso

latio

n, d

B

Frequency, GHz

Spiral coupler Straight coupler

Additional mutual coupling

Space saving

Edge coupling Broadside coupling

Multilayer Couplers

Slide 26 of NNN

Compact inductor has been realized with directly overlayed design with similar performance

0 2 4 6 8 10 12 14 16 18 200.00

0.05

0.10

0.15

0.20

MS Planar

Offset M2-M3

Directly overlayed M1-M3

Offset M1-M3

CPW Planar

Indu

ctor

's a

rea,

mm

2

Inductance, nH

Planar

Offset stacked

Directly overlayed

Comparison of inductors design

Slide 27 of NNN

Micrograph of a fabricated Wilkinson Power Divider

100

Wilkinson Power Divider

Slide 28 of NNN

Bandwidth 14 GHz – 28 GHz Compact: 0.67 mm x 0.38 mm

Micrograph of a fabricated 20 GHz Balun

20 GHz 3D Multilayer Balun

Slide 29 of NNN

Slide 30 of NNN

Alignment marks

PCM

pHEMTs 2 x60 m 2 x100 m

3D Multilayer Cell Design

Slide 31 of NNN

Alignment marks

PCM

pHEMTs 2 x60 m 2 x100 m

3D Multilayer Cell Design

Slide 32 of NNN

DC Characterisation of 200 m pHEMTs on 6 inch wafer

-2.0 -1.5 -1.0 -0.5 0.0 0.5

0

10

20

30

40

50

60

g m, I

ds

Vgs

(V)

@ Vds

= 3V

Ids

(mA)

gm (mS)

Measured and simulated current gain and unilateral gain (Vgs = - 0.05V, Vds = 3V) pHEMTs characteristics

1E8 1E9 1E10-10

0

10

20

30

40

50

60

fT=20GHz

Modelled

Measured

h21,

dB

Frequency, Hz

1E8 1E9 1E10-10

0

10

20

30

40

fMAX

=40GHz

Modelled

Measured

MA

G, d

B

Frequency, Hz

Parameters@

VGS= - 0.2V and VDS= 3V Value

Cpg, fF 64

Cpd, fF 34

Ls, pH 2.54

Ld, pH 91

Lg, pH 128

Rs, 3.8

Rg, 3.7

Rd, 2.6

Cgd, fF 20.3

Cds, fF 71.2

Cgs, fF 375

Rds, 740

Ri, 1.42

gm, mS 53

, ps 1.58

Slide 33 of NNN

Planar CPW 3D CPW

750 mx870 m = 0.65mm2

1mmx1.2mm = 1.2mm2

pHEMT Multilayer MMIC Amplifier 2GHz Amplifier

Slide 34 of NNN

The multilayer amplifier has similar performance as the planar type while reduced circuit size is achieved.

The measured data shifted to lower frequency as compared to the simulated result due to dc lead inductors.

pHEMT Multilayer MMIC Amplifier 2GHz Amplifier

Slide 35 of NNN

The concept of multilayer technology in designing compact circuits has been discussed.

Examples of multilayer CPW circuits in GaAs technology

have been reported and the results are discussed. It is shown that very low impendence CPW TLs can be

achieved using multilayer circuit concepts.

Compact multilayer CPW amplifiers have been designed, fabricated and measured at 2 GHz using the pre-fabricated GaAs pHEMTs. Miniaturized circuit size as 0.6 mm2 is realized.

The use of multifunctional approaches offered by multilayer

circuit concept is one of the concepts for future THz device design consideration.

Conclusion

Slide 36 of NNN

Acknowledgement

- Peter Kyabaggu - Kila Haris - Dr Emerson Sinulingga - Dr Junyi Yuan - Dr Qing Sun - Dr Tuyn Vo

13/07/2016

1

Additively Manufactured 3D and 4D RF Modules for mm‐Wave Applications

Prof. Manos M. Tentzeris

School of ECE, Georgia Tech, U.S.A.

[email protected]

13/07/2016

2

Enabling Technologies of the Future

F2

13/07/2016

3

Internet of Things

13/07/2016

4

Smart Computational Skins

13/07/2016

5

13/07/2016

6

• Antennas

• Capacitors 

• Inductors

• Micro‐fluidics

• Sensors

AM Flexible components

Fully inkjet‐printed 25 GHz patch antenna array [1]

Fully inkjet‐printed inductor [3]

Fully inkjet‐printed capacitors [2]

On‐Package Inkjet‐Printed 3D‐Interconnects for mmW

13/07/2016

7

3D‐Printed “Origami”/Shape‐Changing RF Energy Harvesting Modules

J.Kimionis, M.Isakov, B.S.Koh, A.Georgiadis and M.M.Tentzeris, ``3D‐Printed Origami Packaging with Inkjet‐Printed Antennas for RF Harvesting Sensors", IEEE Transactions on Microwave Theory & Techniques, Vol.63, No.12, pp.4521‐4532,December 2015.

13/07/2016

8

3D‐/4D‐Printed “Origami”/Morphing (PLA) RF Energy Harvesting/Comm/Thermal Modules 

R.Bahr, T.Lee, B.Somg, C.P.Wong and M.M.Tentzeris, "Self‐Actuating 3D printed Packaging for Deployable Antennas", to be presented in IEEE  ECTC Conference  Las Vegad, NV, May 2016.

“Origami”/Morphing Antenna with 3D Collapsible Reflector 

13/07/2016

9

Mode‐ and Frequency‐Reconfigurable Origami Helical Antenna

X.Liu, S.V.Georgakopoulos  and M.M.Tentzeris, “A Novel Mode and Frequency Reconfigurable Origami Quadrifilar Helical Antenna”, Procs. WAMI 2015. 

Fully Inkjet‐/3D‐/4D‐Printed Microfluidics Based Reconfigurable RF Devices

W.Su, B.S.Cook and M.M.Tentzeris, “Low‐Cost Microfluidics‐Enabled Tunable Loop Antenna Using Inkjet‐Printing Technologies”,Procs. 2015 EuCAP Conference, Lisbon, Portugal, April 2015. 

13/07/2016

10

Fully Inkjet‐/3D‐/4D‐Printed Microfluidics Based Reconfigurable RF Devices

W.Su, B.S.Cook and M.M.Tentzeris, “Low‐Cost Microfluidics‐Enabled Tunable Loop Antenna Using Inkjet‐Printing Technologies”,Procs. 2015 EuCAP Conference, Lisbon, Portugal, April 2015. 

3D‐Printed Reconfigurable Helical Antenna Based on Microfluidics and Liquid Metal 

Alloy

W.Su, R.Bahr, S.Nauroze,  “3D printed Reconfigurable Helical Antenna Based on Microfluidics and Liquid Metal Alloy”,to be presented in 2016 IEEE APS  Conference, Fajardo, Puerto Rico, July 2016.  

13/07/2016

11

• Printing of 5 to 30 layers of CNT ink

• Drying at 100°C for 10 hours, under vacuum 

• Chemical functionalization of film 

• Printing of electrodes with silver nanoparticle ink (SNP)

• Drying and sintering at 110°C for 3 hours

CNT sensor fabrication process

Picture of inkjet‐printed silver electrodes

• Response time comparable to that of commercial sensor

• Sensitivity of 8.5% to exposure to 28 ppm of NH3

• To our knowledge, highest sensitivity fully inkjet printed rGOammonia sensor

Results for rGO sensor

Measured sensitivity of rGO sensors (green) and reference NH3 concentration (blue)

13/07/2016

12

• High‐frequency operable• Smaller than a credit card• Chipless• Fully inkjet‐printed• Flexible• Low cost• Completely isolated from 

support• Cross‐polarized response

– Clutter isolation

Inkjet‐Printed Van‐Atta Reflectarray

• Very good linearity 

• Extremely high sensitivity (6.3x higher than state‐of‐the‐art passive RFID)

Printed Van‐Atta data sensitivity results

13/07/2016

13

Additively Manufactured Ambient Long‐Range RF Energy Harvester

R.J.Vyas, B.Cook, Y.Kawahara and M.M.Tentzeris, ``E‐WEHP: A Batteryless Embedded Sensor Platform Wirelessly Poweredfrom Ambient Digital‐TV Signals", IEEE Transactions on Microwave Theory and Techniques, Vol.61, No.6, pp.2491‐2505,June 2013.

S.Kim, R.Vyas, J.Bito, K.Niotaki, A.Collado, A.Georgiadis and M.M.Tentzeris, ``Ambient RF Energy‐Harvesting Technologiesfor Self‐Sustainable Standalone Wireless Platforms", Proceedings of IEEE, Vol.102, No.11, pp.1649‐1666, November 2014.

Near‐Field Energy Harvesting from Handheld 2‐Way Talk Radio (1W/464MHz)

J.Bito, J.G.Hester and M.M.Tentzeris, ``Ambient RF Energy Harvesting From a Two‐Way Talk Radio for Flexible WearableWireless Sensor Devices Utilizing Inkjet Printing Technologies", IEEE Trans. MTT, Vol.63, No.12, pp.4533‐4543, December 2015

13/07/2016

14

.V.Lakafosis, A.Rida, R.Vyas, L.Yang, S.Nikolaou and M.M.Tentzeris, ``Progress Towards the First Wireless Sensor NetworksConsisting of Inkjet‐Printed Paper‐Based RFID‐Enabled Sensor Tags", Proceedings of the IEEE, Vol.98, No.9, pp.1601‐1609,September 2010.

Inkjet‐Printed Human‐Motion Powered Wearable Sensor

13/07/2016

15

mmW 5G Strategic Needs 

Vehicles connected to WiFi and providing cellular feeding WiFi hotpots connectivity for passengers

5G in Consumer Products: smartphones, IoTand Security

Security imaging

Aircraft navigation radar

Mobile backhaul comm.(E‐band: 70, 80, 90GHz)

5G network [*]

5G and mm wave

Increasing automotive communication needs:• Higher automation levels,• Avalanche of wireless communication 

traffic volume and massive growth • 10‐100x higher data rates 4G LTE

Enable the functionality of:• Automated driving with safety• Intelligent navigation• In‐car smartphone‐like infotainment 

(Information Society on the road)• Predictive Maintenance• Digitalization of transport and logistics (e.g. 

Intelligent Transportation Systems (ITS))

Transparent RF for Autonomous Cars (V2X)

Vehicle‐to‐Everything (V2X): Any communication involving a vehicle as a source or destination of a message:• Vehicle‐to‐Vehicle (V2V)• Vehicle‐to‐Infrastructure (V2I)• Vehicle‐to‐Network (V2N)• Vehicle‐to‐Pedestrian (V2P)

07/07/2016

1

Slide 1of Tauno V-H

Millimetre Wave MCM Technologiesfor Communication and Sensing

Tauno Vähä-Heikkilä

VTT, MilliLab

[email protected]

WM08 Advances in Millimetre-Wave 3D Printing and MCM Technologies

Slide 2of Tauno V-H

• Background• Millimeter wave module technologies and

integration techniques• Antenna realizations• Summary

Outline

07/07/2016

2

Slide 3of Tauno V-H

• Currently foreseen bands between 50 GHz and 100GHz for 5G– V-band 57 GHz – 66 GHz– E-band 71 GHz – 76 GHz and 81 GHz – 86 GHz– W-band 92 GHz – 95 GHz

Millimeter Wave Frequency Bandsfor 5G

Slide 4of Tauno V-H

• Beam switching radio links• Mm-wave access points

Example Use Case Schenarios in 5G

07/07/2016

3

Slide 5of Tauno V-H

• Technologies used in prototyping phase targeting tohigher volumes– Ceramic platforms– Printed circuit board platforms– Silicon platforms

Millimeter Wave Integrated ModuleTechnologies

Slide 6of Tauno V-H

Low Temperature Co-fired Ceramics– LTCC Ceramic Integration Platform

n Multi-layer technology platform for wide variety applicationsn Hermetic packaging possible

07/07/2016

4

Slide 7of Tauno V-H

LTCC System-in-Packagen Packaging and integration technologyn Metallizations in several layers

n Vias between layersn Vias used for formimg EM sturctures like substrate integrated

waveguides, resonatorsn Several dielectric layers

n Can have cavities between the layersn Ceramic can be shaped to have 3D forms

Slide 8of Tauno V-H

LTCC as an Integration Platform forFront-End Modules and Filter Banks

LTCC can also be used inconsumer products

Source: www.epcos.com

07/07/2016

5

Slide 9of Tauno V-H

Example LTCC Tape Systems

TAPE Firedthickness[ mm ]

PermittivityEr

Tan d [ % ] TCE[ ppm/K ]

Ferro A6M 100, 200 5. 9 0.12 ( 2.5 GHz) >8

DuPont 951 40, 90, 130,200

7.8 0.15 ( 10 MHz) 5.8

DuPont 943 105 7. 4 ( 40GHz) 0.2 (40 GHz) 6.0

Heraeus CT2000 77 9.1 0.2 (2 GHz) 8.5

Heraeus HL2000 89 7.4 0.26 ( 2.5 GHz) 6.1

Heraeus CT 800 - 8.4 0.18 ( 1 kHz) 8.4

Heraeus CT707 105 6.4 0.46 ( 2.5 GHz) 8.1

Heraeus CT765 84 65 0.17 ( 2.5 GHz) 9.1

Heraeus CT702 - 5. 3 ( 30GHz) <0. 2 ( 30 GHZ) -

Heraeus CT703 - 7.0 ( 30GHz) <0. 2 ( 30GHZ) -

Thermal conductivity 2…4 W/mK for all LTCC materials

Slide 10of Tauno V-H

Typical LTCC Processing Parameters

Parameter Typical values withcommercial

manufacturer

VTT’s typical values

Min line width [µm] 100…150 50

Tolerances oflinewidths [µm]

±20 ±5

Layer-to-layerpositioning

accuracy [µm]

60 15

Min diameter of vias 150 100

Min spaces for vias 300 100

No. of layers 6-24 4-20

07/07/2016

6

Slide 11of Tauno V-H

Developments at VTT for MEMS and HarshEnvironment MMIC Packaging with LTCC at VTT

• Hermetic packaging– Important for MEMS

reliability

• Low temperature lid sealingprocess– 175 C instead 340 C

• Narrower sealing LTCC walls– 1.0 mm instead of 2.0 mm

MMIC

Slide 12of Tauno V-H

Case Example: LTCC Modules forHybrid Integration and Packaging

• 3D RF design transmission lines, antennas, filters• Flip chip of millimeter wave integrated circuits, diodes,• Hybrid integration to PCB

2x2 antenna array

Flip chipped MMICs

Place for SMA/K-connector

07/07/2016

7

Slide 13of Tauno V-H

Printed Circuit Board Modules

• High frequency laminates lamited on standard PCBs (like FR4)or metal

• Low cost in large volumes• Low epsilon good for antennas, low loss• Don’t support fine pitch flip chip

Example stack-up

Slide 14of Tauno V-H

• Provides accurate passives both for RF and DC, mainapplications in front-end modules

• Supports fine pitch flip chip down to 50um pitch• Supports mass production• Rather expensive for large antenna arrays but

suitable for terminals and sub-arrays in 5G

Silicon Based Modules

07/07/2016

8

Slide 15of Tauno V-H

Example IPD Results:Millimeter Wave Filter

• 3rd order band pass filter• Band width: 10 %• Pass band loss: 2.6 dB

Slide 16of Tauno V-H

• Typical interconnections between dies and module at mm-waves:– Bond wires: Reliable but don’t work well at mm-waves– Ribbon bond wires: Suitable for mm-waves with careful

design– Ball Grid Arrays (BGA): Ball size sometimes an issue– Stud bumps: A solution when bumps are needed for dies or

modules after fabrication finished– Solder bumps/ Copper pillars: Wafer level process, supports

mass production, lowest parasitics, requires advancedmodule technology

Millimeter Wave InterconnectionTechnologies

07/07/2016

9

Slide 17of Tauno V-H

Millimeter Wave InterconnectionTechnologies

Cu pillars, 60um diameterWafer level process

Stud bumps made with awire bonding tool

Slide 18of Tauno V-H

MM-Wave Antenna Examples

• Fixed beam antennas on different platforms– LTCC antennas– Taclam Plus antennas– LCP antenna

LTCC = low temperature co-fired ceramicLCP = liquid crystal polymer

07/07/2016

10

Slide 19of Tauno V-H

60 GHz Patch Antenna Arrays on LTCC

• Ferro A6-S LTCC: εr = 5.9, tanδ = 0.0015, tape thickness97 µm

• 4×4 antenna array size about 19 mm x 19 mm• -10 dB impedance bandwidth: 5.8 GHz• Maximum gain: 18.2 dBi• -3 dB beam width: 19.7°

A. E. I. Lamminen, J. Säily, and A. R. Vimpari, “60-GHz patch antennasand arrays on LTCC with embedded-cavity substrates,” IEEE Trans. Antennas Propag., vol. 56,no. 9, pp. 2865–2874, Sep. 2008.

θ (deg.)

Gai

n(d

Bi)

H-planesim. 60 GHzmeas. 61 GHz

-180 -140-100 -60 -20 20 60 100 140 180-80-70-60-50-40-30-20-10

01020

θ (deg.)

Gai

n(d

Bi)

sim. 60 GHzmeas. 61 GHz

E-plane

-180 -140 -100 -60 -20 20 60 100 140 180-80-70-60-50-40-30-20-10

01020

a) Radiating patches, b) reactive feed network,c) Wilkinson feed network

Slide 20of Tauno V-H

60 GHz Antennas on Taclam Plus

• Taconic TaclamPlus

– Low cost, teflon based

– Low dielectric constant and losses

17 μm thick copper clad

0.1 mm thick TaclamPlusεr = 2.2, tanδ = 0.0055

1 mm thick copper

Series-fed patch array

Chain-antenna arrayChain array H-plane patternPatch array H-plane pattern

J. Säily, A. Lamminen, and J. Francey, “Low cost high gain antenna arrays for 60 GHzmillimetre wave identification (MMID),” in Sixth ESA Workshop on Millimetre WaveTechnology and Applications, Espoo, Finland, May 2011, pp. 1–6.

07/07/2016

11

Slide 21of Tauno V-H

MM-Wave Antenna Examples

• Beam-switching antennas– 77 GHz end-fire antenna– 60 GHz integrated lens antenna

Slide 22of Tauno V-H

• Three embedded dipole antennas fed by microstriplines

• Antennas integrated with a GaAs PIN-diode switch

• Beam switching with 90° steps in the E-plane

• DC bias lines placed inside LTCC and connected tothe pads on the surface using vias

A. Lamminen and J. Säily, “77 GHz beam-switching high-gain end-fire antennaon LTCC,” in Proc. 20th International Conference on Applied Electromagneticsand Communications (ICECom 2010), Dubrovnik, Croatia, Sept. 2010.

-25

-20

-15

-10

-5

0

300

120

330

150

0

180

30

210

60

240

90

(a)

270

-25

-20

-15

-10

-5

0

300

120

330

150

0

180

30

210

60

240

90

(a)

-25

-20

-15

-10

-5

0

300

120

330

150

0

180

30

210

60

240

90 270

(a)

77 GHz Beam-Switching End-Fire Antenna

solid = simulationdashed =measurement

E-plane radiation patterns withthree switch configurations

07/07/2016

12

Slide 23of Tauno V-H

60 GHz Beam-Switching Integrated LensAntenna

• Feed array by VTT, lens antenna by IETR, France

• Feed array of 8 elements, GaAs pin-diode RF switches

• Design target for the Teflon lens: directivity 20 dBi, half-power beamwidth 15°,scan-angle range -30° ≤ θ ≤ 30°

Principle of beam-switching lens

A. Lamminen, J. Säily, R. Sauleau, and N. T. Nguyen, “Beamswitching lens antenna at 60 GHz for gigabit data rate wirelessindoor connections,” in Proc. of the 5th ESA Workshop onMillimetre Wave Technology and Applications & 31st ESA AntennaWorkshop, ESTEC, Noordwijk, 18 – 20 May 2009, pp. 776–783.

Slide 24of Tauno V-H

Beam-switching demonstrator

Measured H-plane patterns

60 GHz Beam-Switching Integrated LensAntenna

A. Lamminen, J. Säily, R. Sauleau, and N. T. Nguyen, “Beamswitching lens antenna at 60 GHz for gigabit data rate wirelessindoor connections,” in Proc. of the 5th ESA Workshop onMillimetre Wave Technology and Applications & 31st ESA AntennaWorkshop, ESTEC, Noordwijk, 18 – 20 May 2009, pp. 776–783.

07/07/2016

13

Slide 25of Tauno V-H

E-band Beam-Switching Integrated LensAntenna

• Feed array by VTT, lens antenna by Aalto University

• LTCC feed array of 8 elements, GaAs pin-diode RF switches

• Aperture-coupled patch antennas optimised for center frequency of 77 GHz

• SPDT PIN-diode switches by Hittite, SP4T switches by TriQuint

• Frequency tripler implemented on LTCC

• K-connector used for 26 GHz input signal

• PIN-diodes controlled with bias board of rocker switches

A. Karttunen, J. Säily, A. E. I. Lamminen, J. Ala-Laurinaho, R. Sauleau, and A. V. Räisänen, “Using optimized eccentricity Rexolitelens for electrical beam steering with integrated aperture coupled patch array,” Progress In Electromagnetics Research B, vol.44, pp. 345-365, 2012.

Slide 26of Tauno V-H

E-band Beam-Switching Integrated LensAntenna

100 mm diameterRexolite lens

Measured H-plane cuts withfeed offsets from 0 mm to

14 mm

A. Karttunen, J. Säily, A. E. I. Lamminen, J. Ala-Laurinaho, R. Sauleau, and A. V. Räisänen, “Using optimized eccentricity Rexolitelens for electrical beam steering with integrated aperture coupled patch array,” Progress In Electromagnetics Research B, vol.44, pp. 345-365, 2012.

07/07/2016

14

Slide 27of Tauno V-H

mmW Technology Beam Steering5G Proof-Of-Concept

LCP Antenna feeder switch matrix (73.5 GHz)

mmW back-haulprototype(73.5 GHz)

mmW Integrated Lens Antenna with 2D Scanning

Brooklyn 5G summit, April 2015

Slide 28of Tauno V-H

mmW Technology Beam Steering5G Proof-Of-Concept

8 degrees 34 degrees

Half powerbeam Widths

Access Point mmWRF Node (73.5 GHz)

Antennabeams inhorizontal

plane

Brooklyn 5G summit, April 2015

07/07/2016

15

Slide 29of Tauno V-H

• Module and antenna integration is an import part ofmm-wave hardware development

• VTT’s focus has been in integrated solutions– to lower front-end module cost– to have compact realizations including antennas– to avoid waveguide type packaging and interconnections

• Both silicon and ceramic based modules still havecommercial applications while PCB type modules areadvancing fast

Summary