14
Nanofibrous Membranes Applicable in Lithium Ion Batteries Seyedeh Nooshin Banitaba 1 ; Dariush Semnani 1* Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran * Correspondence to: Dariush Semnani, Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran. Tel: +98 31 3391 5006; Fax: +98 31 3391 2444; Email: [email protected] Chapter 2 Advances in Textile Engineering Abstract This chapter aims to focus on the key role of the electrospun nanofibers in the recent progressions for the modification of the lithium ion battery’s characteristics. The use of nanostructured materials as various components (including cathode, anode, separator and electrolyte) of the lithium secondary batteries can potentiate their various features. The development of the elec- trospun electrodes gives the possibility for the preparation of high capacity batteries with an excellent cycle stability. In addition, fabrication of separators through electrospinning method can lead to the electrospun separators with higher electrolyte uptake and proper ionic conductivity. Furthermore, nanofi- brous membranes have the potential for use as solid-state electrolytes in lith- ium ion batteries. The ability of applying nanofibers in various components of the lithium ion batteries is promising for the fabrication of all-solid-state, flexible and lightweight nanofibrous batteries. 1. Introduction Energy has always been a crucial aspect of human life. Saving and converting energy plays a key role in mankind survival. Nowadays, it has been shown an increased interest and need for the development of portable electrical sources. These power sources are considered as one of the most significant parts in a wide variety of applications including notebooks, mobile

Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

Nanofibrous Membranes Applicable in Lithium Ion Batteries

Seyedeh Nooshin Banitaba1; Dariush Semnani1*

Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran

*Correspondence to: Dariush Semnani, Department of Textile Engineering, Isfahan University of Technology, Isfahan,

Iran.

Tel: +98 31 3391 5006; Fax: +98 31 3391 2444; Email: [email protected]

Chapter 2

Advances in TextileEngineering

Abstract

Thischapteraimstofocusonthekeyroleoftheelectrospunnanofibersin the recent progressions for themodification of the lithium ion battery’scharacteristics. The use of nanostructured materials as various components (including cathode, anode, separator and electrolyte) of the lithium secondary batteriescanpotentiatetheirvariousfeatures.Thedevelopmentoftheelec-trospunelectrodesgives thepossibilityfor thepreparationofhighcapacitybatterieswithanexcellentcyclestability.Inaddition,fabricationofseparatorsthroughelectrospinningmethodcan lead to theelectrospunseparatorswithhigherelectrolyteuptakeandproperionicconductivity.Furthermore,nanofi-brousmembraneshavethepotentialforuseassolid-stateelectrolytesinlith-iumionbatteries.Theabilityofapplyingnanofibersinvariouscomponentsofthelithiumionbatteriesispromisingforthefabricationofall-solid-state,flexibleandlightweightnanofibrousbatteries.

1. Introduction

Energyhasalwaysbeenacrucialaspectofhumanlife.Savingandconvertingenergyplaysakeyroleinmankindsurvival.Nowadays,ithasbeenshownanincreasedinterestandneedforthedevelopmentofportableelectricalsources.Thesepowersourcesareconsideredasoneofthemostsignificantpartsinawidevarietyofapplicationsincludingnotebooks,mobile

Page 2: Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

2

www.openaccessebooks.com

AdvancesinTextileEngineeringSemnaniD

phones,electricalvehicles,medicaltools,satellitesandmanymore.Abatterycomprisesofoneormoreelectrochemicalcellswhichareconnectedtoeachotherinseriesorparallel.Theelectrochemical cell is consisted of a negative electrode (anode), a positive electrode (cath-ode),aseparatorandanelectrolytesolution.Inbatteries,oxidation-reduction(redox)reactionsoccurring in the electrodes, lead to the conversion of the chemical energy to the electrical en-ergy [1,2].

Ingeneral,batteriesaredividedintotwocategoriesincludingnon-rechargeablebatter-ies(primarybatteries)andchargeablebatteries(secondarybatteries).Theredoxreactionisnotreversibleinprimarybatteries.So,thedischargeprocesscanbelastedtillcompleteconsump-tionsofallchemicalcompounds.However,theredoxreactionisabletoberestoredbyapply-ingapotentialbetween twoelectrodes in secondarybatteries.Lead-acid,Nickle-cadmium,Nickle-metalhybridandlithiumion(Li-ion)batteriesareofthecommonsecondarybatteries.Li-ionbatteriesarethemostpromisingchargeablebatteriesduetothehighestenergydensityalongwiththelightestweightandthesmallestsizebetweenthementionedsecondarybatteries[1,2].

Li-ion batteries are also comprised of the anode, the cathode, the separator and theelectrolyte solution (Figure 1).Lithiumatomisthelightestweightmetal.Itcaneasilyloseitselectron and produce a lithium ion. The electron and the lithium ion move quickly due to the smallsizeandlowmassdensity.WhentheLi-ionbatteryisfullycharged,thelithiumatomsareplacedintheanode.Aslithiumatomstendtobeintheformoflithiumions, losetheirelectrons.Theproducedlithiumionsdesiretomovetowardsthecathodeduetoconcentrationgradient.However,thismigrationispulledinbytheattractionforcebetweentheLiionsandtheelectrons.Whenanelectricaltoolsuchasalamporalaptopisconnectedbetweentwoelectrodes, electrons and lithium ions are transferred to cathode through the cord and electro-lyte,respectively.ThedischargeprocesscanbecontinueduntiltheconsumptionofallLiions.The chemical reactions in the anode and cathode electrodes, during the discharge process is giveninequation1and2,respectively.Inordertorechargethebattery,itissufficienttoapplyahigherpotentialtothebattery[1,2].

LiC6 →C6 + Li+ + e- (1)

MOx+ Li+ e- → LiMOx (2)

Page 3: Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

3

AdvancesinTextileEngineering

Figure 1:Schematicallyillustrationoflithiumionbatteries.

ThecharacteristicsoftheLi-ionbatteriessuchaspotential,capacityandenergydensitydepend on the ingredient features of the electrodes. In addition, safety and lifetimeof thebatteries are linkedwith the electrolyte and the electrolyte-electrode interface.Besides therawmaterialpropertiesofthebattery’scomponents,thesynthesisprocessplaysacrucialroleonbatteryperformance.Recently,researchershaveshownanincreasedinterestinapplyingelectrospun nanofibrousmembranes as components of the Li-ion batteries to enhance thementionedproperties[1,2].Thischaptersummarizestherecentresearchprogressestowardsthefabricationofthenanofibrousanode,cathode,separatorandelectrolyte.

2. Electrospun Nanofibers as Anode

TheelectrochemicalbehavioroftheLi-ionbatteriesisinfluencedbythechemicalandphysicalpropertiesof theanode.Highenergydensity , coulombefficiency and reversiblecapacityarecharacteristicsoftheidealanode.Since1991,carbon-basedmaterialshavebeenthebestchoiceastheanode.Highelectronicconductivity,longcyclelifeandlowcostareofotheradvantagesofthecarbon-basedmaterials.Inthemostcommercialbatteries,theanodesare made of graphite (capacity~300 mAh.g-1&energydensity~1-10Wh.kg-1) due to easily insertion of Li ions into the interspace between carbon layers during charging process.Agrowingbodyofliteratureshasfocusedonsilicon-basedanodeswhichshowedhighspecificcapacity around 3580 mAh.g-1.Alloyanodes(e.g.Li4Ti5O12)havealsoattractedaconsiderableattentionduetotheirhighspecificcapacity(400-2300mAh.g-1).However,thelargevolumetricchange (~400%) during charging-discharging processes limited the practical applications of siliconeandalloyanodes.Moreover,transitionmetaloxidesrevealappropriatecapacityrate(600-1000 mAh.g-1).Although, poor coulomb efficiency is amajor drawback of themetaloxideanodes[2-5].

Ithasconclusivelybeendemonstratedthatnano-sizedmaterialshavemoreaffinityfortheattractionof theLi ions resulting fromhighspecificsurfaceareaof thenanomaterials.The stronger adsorption ofLi ions enhances electrode activity and boosts capacity rate inthe anode terminal. In addition, diffusion length of theLi ions is decreased in nano-sized

Page 4: Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

4

AdvancesinTextileEngineering

materialswhichleadstotheimprovementofthechargetransfer.However,therearecertaindrawbacksassociatedwiththeuseofthenanostructuredanodes.Highlyporousstructureofthenanostructuredanodescausesreductionofvolumetriccapacity.Moreover,lowproductionrate and high cost are of other limitations [3,6].

Nano-sized anodes have been synthesized through different methods such aschemicalvapordeposition,self-assembly,solutiongrowth,electrospinningandmanymore.Electrospinningasasimpleandcosteffectiveroute,providesapossibilityforthefabricationofnanostructureswithtunablecharacteristics[3,6].Todatecarbonnanofibers(CNFs)havebeen prepared from various electrospun sources for applying as anode inLi-ion batteries.Kim et al. [7] reported a high capacity rate of 450 mAh.g-1 at 0.3 A.g-1fortheCNFelectrode,obtainedfromelectrospunpolyacrylonitrile(PAN).However,theas-fabricatedCNFelectrodeshowed poor cycle stability. In 2010, Ji et al. [8] presented superior cycle life and higherstorage capacity (556 mAh.g-1 at 0.05 A.g-1) forCNF electrode prepared fromelectrospunPAN/polypyrrolenanofibers.Taoet al. [6]usedwastewalnut shells for the fabricationofCNFswhichpresented200mAh.g-1 at 0.1 A.g-1.Poly(vinylidenefluoride)[9],polyimide[10],polyvinylalcohol[11]andpolyvinylpyrrolidone[12]havealsobeenreportedassourcesforthefabricationofCNFelectrodes.

Jietal.[13]examinedthatthestoragecapacitycanbeimprovedto604mAh.g-1 at 0.05 A.g-1 byintroductionofFe2O3nanoparticlestotheelectrospunCNFs.Inaddition,incorporationofSnnanoparticlestotheelectrospunCNFsshowedenhancementofthewholeelectrochemicalperformancesoftheanodeelectrodeapplicableinLi-ionbatteries[14].Studiesalsohaveshownthatinsertionofmanganeseoxide[15],titaniumdioxide[16],tindioxide[17]andmagnetite[18]nanoparticlesintotheCNFmembranescanboosttheelectrochemicalcharacteristicsofthe anode electrode.

LargevolumetricchangeduringLiinsertionandextractioninthesilicone-basedanodeshavebeenaseriouslimitationformanyearlierstudies.Thisvolumechangeleadstothepoormechanicalpropertiesandlowcyclelife.Studieshaveshownthatsilicone-loadednanotubesandnanofibersprovideaspecificstructurewhichisabletoabsorbtheappliedstressandpreventthecracks[19,20].Xueandcoworkers[21]reportedenhancementofthecyclestabilityfortheCNFanodeloadedwithSi/Cnanoparticles.Hwangetal.[22]demonstratedpropercyclingdurabilityandhighstoragecapacityof721mAh.g-1 foracore-shellnanofibrousanode (SiasthecoreandCastheshell).Wangetal.[23]showedlowchangesinthemorphologyoftheanodepreparedby theelectrospunSi/Cnanofibers. Inaddition,porousC/Sicompositenanofibershasshownlongcyclelifewithahighcapacityrateof1100mAh.g-1 at 0.2 A.g-1 [24].

Severalstudiesthusfarhavelinkedalloyssuchassilicon,tinandantimony-basedalloys

Page 5: Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

5

AdvancesinTextileEngineering

withCNFstoimproveelectrochemicalperformancesoftheanode.Jangetal.[4]reportedastable structurewithhighcapacity storageof560mAh.g-1 for theCNFsfilledwithCo-Snalloy.AnenhancementinthemechanicalstabilityalongwithpropercapacityratewasalsoillustratedbyincorporationofCu-Sn[25],Sn-Sb[26],Ni-Sn[27],Ag-Fe-Sn[28]andmanymorealloysintotheCNFanodes.

3. Nanofirbous Membanes as Cathode

CathodematerialinLi-ionbatteriesdependsontheappliedanodeintheelectrochemicalcell.WhenalithiummetalisusedasanodeinLi-ionbatteries,itisnotneededtoapplyalithiatedcathode.However,itisessentialtoutilizelithiatedcathodewhentheanodeiscarbon-based.Cathodematerialsignificantlyinfluencesthebatteryperformance.TransitionmetaloxidesandphosphatesarethemainchoicesasthecathodeofLi-ionbatteries.In1980,Goodenoughetal.introducedLithiumcobaltoxide(LiCoO2)ascathodewhichhasbeenthemostsuccessfulcathodeincommercialLi-ionbatteries.However,lowstabilityandhighcapacityfadinghavehindereditsfurtherapplications.OlivineLiMPO4(M=Fe,Mn,NiandCo)providesappropriateelectrochemical characteristics includingproper cycle life and specific capacity.Generally,olivinecathodematerialspresentedlowcyclestabilityandcapacityrate [29-32].

Lithiumlayeredmetalandvanadiumoxidesarethemainpromisingclassesofcathodematerials. Layered oxides have shown more stability in various temperatures and highercapacitystorage.Li-richedmetaloxides(xLi2MnO3.(1−x)LiMO2(M=Ni,Co,Mn))andNCM(LiNixCoyMnzO2 (x+y+z=1))areclassifiedaslayeredoxides.Notably,poorcyclelifeandthecapacitylossarethemaindrawbacksofthelayeredmetaloxidesascathodeofLi-ionbatterieswhichneedtobeimproved.LithiatedvanadiumoxidesincludingLiVO3,LiV2O5,Li1+xV3O8 and many more, have illustrated a high discharge capacity rate ( ).However,migrationof vanadium ions leads to the high capacity fading [29-32].

Much of the current literatures on the cathode of theLi ion batteries pay particularattention to the synthesis of the nano structure cathodes. Morphological and electrochemical featuresof theelectrospunLiCoO2 [29-32],OlivineLiMPO4,Lithiumlayeredmetaloxides[33]andlithiatedvanadiumoxides[34,35]havebeenwidelystudied.ReductionoftheLiionpath lengthandso increasing thediffusion rate improvecycle lifeand theelectrochemicalperformance [31].Chenet al. [30]preparednanofibrousLiCoO2 byannealingof thePVP/LiCoO2 at700°Cfor12hours.LiuandTaya[32]fabricatednanofibrousLiCoO2 membranesbyelectrospinningoflithiumacetate/cobaltacetate/PVPsolutions.TheresultedelectrospunLiCoO2 showedhigherstoragecapacitycomparedwiththecommonLiCoO2 cathodes. Zhang andcoworkers[2]suggestedelectrospunLiFePO4/CcathodeforcompensationoflowelectricalconductivityofLiFePO4andsoimprovementofthecyclestability.TheLiMn2O4poroushollownanofiberspresentedastablecyclingbehaviorover400cycles[36].Inaddition,electrospun

Page 6: Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

6

AdvancesinTextileEngineering

LiNi1/3Co1/3Mn1/3O2 andLiNi3/8Co1/4Mn3/8O2 nanofibers have shown a proper dischargecapacity ( 170 mAh.g-1)andretainedthecapacityabout90%after50cycles[33].Yuetal.[34]suggestedmesoporousV2O5nanofiberswiththestoragecapacityof370mAh.g

-1 and high cyclestabilityascathodematerial.Anetal.[37]fabricatedcarbonencapsulatedhollowporousnanofibersofV2O5ascathodeofLiionbatterieswhichshowedhighspecificcapacitywithanexcellentcyclingstability.

4. Electrospun Separators

Separatorisathinandporousmembrane,locatedbetweentheanodeandthecathode,whichpreventstheelectroniccontactoftwoelectrodes.Inaddition,separatorsmaintaintheliquid electrolyte and enable migration of Li ions between two electrodes during charge-dischargeprocess.Separatorsplayakeyroleinthebatteryperformance.Energydensity,cyclestabilityandsafetyofthebatteryareinfluencedbytheseparator’sfeatures.Anidealseparatorshouldoffersufficientchemical,electrochemical,dimensionalandmechanicalstabilities,highelectrolyteuptake(EU%),appropriateionconductivity(1-10mS.cm-1),lowthickness(20-25µm),highporosity(ɛ>60%),smallporesizes(˂1µm)andsoon.Inthemostcommercialbatteries,microporouspolyolefinmembranes(e.g.polyethylene(PE),polypropylene(PP)andtheirblends)areusedasseparator.Polyolefinmembranesprovideappropriatemechanicaland chemical stability against the electrodes and the electrolyte.However, lowwettability(EU~50%)of themembranesresultingfromlowporosity(~40%) leads to thepoor ionicconductivity(0.8mS.cm-1)andreducedcyclestabilityofthebattery.Inaddition,largeporesizesinthepolyolefinmatsmaycausepenetrationofelectrodecomponentsandinternalshortcircuits.Notably,preparationofapolyolefinmatwithsmallporesizesseemstobeimpossibleconsideringtheaveragediameterofthepolyolefinfibers(~1μm)[38,39].

Tomodifythefeaturesofthepolymermembranes,severalpolymershavebeenappliedtosynthesisof thepolymermembranessuchasPVDF,PANandpolymethylmethacrylate(PMMA).NumerousstudieshaveshownthatthemembraneelectrolytesbasedonthePVDF(ɛ~57%andEU~152%andσ~1.5mS.cm-1)andPAN(EU~70%andσ~1.5mS.cm-1) provideproperelectrochemicalstability,highelectrolyteuptakeandgoodionicconductivityat room temperature. Although, mechanical strength fading and reduction of ionic conductivity uponlongstorageareofundesirableeffectsofthePVDFandPANmembranes,respectively[40,41].

Non-woven fabrics and inorganic composites are two promising classes of theseparators.Non-wovenfabricmatsarecommonlymadefrombonding(physical,chemicalormechanicalbonding)ofvariousnaturalor syntheticfibers includingcelluloses,polyamide,polytetrafluoroethylene, PVDF, etc. Non-woven fabric mats provide a porous structurecontaininglargeporesizes.Thisformofseparatorsaretypicallyappliedasasupportmembrane

Page 7: Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

7

AdvancesinTextileEngineering

for the gel electrolytes. Inorganic composite separators are referred to porousmembranesformedbybondingof theceramicparticles suchasalumina, silicaandzirconia.Excellentwettabilityandthermalstabilityarethemaincharacteristicsoftheinorganiccompositemats.However,handlingofsuchseparatorsisstillachallengefortheassemblyofthebatteryduetopoormechanicalstrengthoftheceramicmats.Inaddition,tuningthethicknessoftheinorganiccompositesisproblematicbecauseoftheaffinityoftheceramicparticlestoaggregation[38,42].

Oneofthemostsignificantcurrentdiscussionsinmodificationoftheseparatorproperties,is fabrication of nanofibrous polymermembranes through electrospinningmethod.Highlyporousstructure (~90%)of theelectrospunmembranesprovidesproperpermeabilityandwettabilitywithsuitablepathwaysforthemigrationofLiionswhichleadtolithiumsecondarybatterieswithhigherpowerdensityandratecapability.ThemorphologicalandelectrochemicalcharacteristicsofthePVDF,PAN,polyethyleneterephthalate(PET)and(PMMA)nanofibershavebeenwidelystudiedaspromisingseparatorsinLiionbatteries.Theas-spunmembranespresentedhighaffinityfortheabsorptionofliquidelectrolytes.Inaddition,compatibilitywiththeelectrodes,excellentthermalandelectrochemicalfeaturesandtunablemorphologyareofotherdesirablepropertiesofthesenanofibrousseparators.Chaoandcoworkers[43]showedthattheelectrospunPANcouldenhancetheporosityandcyclestabilityupto76%and85%,respectively.Gopalanetal.[44]reportedthatelectrospunPVDF-PANnanofiberscouldreveal84%porosity, 300%electrolyte uptakewith a high conductivity of 7.8mS.cm-1 at room temperature.Inaddition,electrospunmembraneofPVdF-HFP/PMMAhasillustrated377%electrolyte uptakewith ionic conductivity of 2mS.cm-1 at ambient temperature.YanilmazandZhange[45]alsoshowedthepotentialof theelectrospunPMMA/PANnanofibers(ɛ~73%, EU ~ 370% and σ ~ 3.2mS.cm-1) as separator of the Li ion batteries.Moreover,recent evidences suggest that incorporation of nanoparticles into the nanofibers or coatingthemembraneswiththenanoparticlesincludinggrapheneoxide[46],silica[47-49],Alumina[50,51] and many more, can furtherly improve mechanical and electrochemical characteristics of the separators.

5. Nanofibrous Electrolytes

In general, electrolytes are used in a liquid form in commercial lithium secondarybatteries.Liquidelectrolytescontainorganicsolventsandlithiumsalts.ThepresenceoftheflammableandexplosivesolventsinthestructureoftheLiionbatteriesisabigconcernwhichthreatens the safetyof thesebatteries. Inaddition, ametal cover is essential for sealingoftheLiionbatteriesleadstothefabricationofinflexibleandheavystructures.Solidpolymerelectrolytes (SPEs) are an ideal choice for the fabricationof lightweight,flexible and safebatteries.However,lowionicconductivity( )oftheSPEslimitedtheirpracticalapplications.Aschematic illustrationof theLi ionbatterycomprising theSPEisshownin

Page 8: Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

8

AdvancesinTextileEngineering

Figure 2.Asitisapparent,theSPEactsasboththeelectrolyteandtheseparator.Infact,SPEssimultaneouslytransfertheLiionsandpreventthephysicalcontactofthetwopositiveandnegative electrodes [38].

SPEsarecommonlysynthesizedthroughdispersionofalithiumsaltinapolymermatrixbyusingahotpressingorasolutioncastingmethod.Numerouspolymers(e.g.PVDF,PAN,polyvinylalcohol(PVA),polyethyleneoxide(PEO))havebeenevaluatedasthepolymermatrixintheSPEs.Amongseveralpolymers,PEOhasbeenexaminedasthemostappropriatematrixduetotheabilityforthesolvationofvarioussaltsandadditives.Inaddition,PEOisanabundantandacost-effectivepolymer.Lithiumtetrafluoroborate(LiBF4),lithiumperchlorate(LiClO4) andlithiumhexafluorophosphate(LiPF6)areofcommonlithiumsalts.InSPEs,lithiumionsmigratethroughlocalmovementsofthepolymerchains.Inpolymerstructures,themobilityofthepolymerchainsoccurinamorphousregionsandaboveglasstransitiontemperature(Tg).So, the reductionsofcrystalline regionsandTgof thepolymermatrixcausean incrementin the ionic conductivityof theSPEsat ambient temperature.Numerouseffortshavebeendevoted toenhance ionicconductivityof theSPEs.Synthesisofsingle ionconductingandpolymer-in-salt electrolytes, preparationof copolymers andadditionofvariousplasticizersandfillersareseveralattemptshavebeenmadefortheenhancementoftheionconductivityoftheSPEs.Asanexample,withintroductionofplasticizersintotheSPEs,plasticizermoleculespenetratebetweenthepolymerchains,weakentheirinteractions,increasemovementsofthepolymerchainsandsoenhancetheionicconductivity.Inaddition,incorporationoffillerssuchasinertandactiveceramicfillers(titaniumdioxide(TiO2),aluminumoxide(Al2O3), silicon dioxide(SiO2),etc.)causesformationofmoreamorphousphasesinpolymerstructureswhichleads to the increase of the ionic conductivity [52,53].

Vignaroobanandcoworkers[54]presentedthattheionicconductivityofaPEO/LiTFelectrolytecanbeimprovedupto0.049mS.cm-1bytheadditionof10wt.%TiO2. Moreover, theobtainedionicconductivitycanbefurtherlyenhancedto0.16mS.cm-1byintroductionof50wt.%ECintotheas-preparedelectrolyte.Johanetal.[55]illustratedthationicconductivityof a PEO/LiCF3SO3/EC electrolyte can be improved from 0.3mS.cm

-1 to 0.8mS.cm-1 by

Figure 2: SchematicillustrationoftheLiionbatterywiththe(a)solidpolymerelectrolyteand(b)nanofibrouspolymer electrolyte.

Page 9: Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

9

AdvancesinTextileEngineering

theadditionof20wt.%Al2O3 nanoparticles.Embedding10wt.%TiO2 nanoparticles into the PVDF/LiClO4 polymermembranes yielded ionic conductivity of 0.7mS.cm

-1 at room temperature [56].

Recently,literatureshaveemergedthatofferapplyingelectrospuncrystalstructuresasfillerinSPEs.Besidetheincrementofamorphousphases,electrospunfillerscreatepathwaysfortransportationoftheLiionswhichenhancetheionicconductivity.Liuetal.[57]reportedahighionicconductivityof0.24mS.cm-1forthePAN-LiClO4electrolyteincorporatedwith15wt.%Li0.33La0.557TiO3 electrospun nanowires.Tang et al. [58] also presented that ionicconductivityofthePAN-LiClO4 SPEcanbeimprovedto0.13mS.cm

-1withtheadditionofLi7La3Zr2O12nanowires.Anenhancement in the ionicconductivityof theSPEshasalsobeenpresentedbytheadditionofwellalignedLi0.33La0.557TiO3nanowires[59],polyanilinenanofibers[60],Li6.4La3Zr2Al0.2O12nanowires[61]andsoon.

ItisworthtonotethatamajorproblemwiththeSPEs,synthesizedthroughthesolutioncasting method, is phase separation and formation of crystal phases of lithium salts or crystal regions of lithium salt-PEO.Thementionedunwanted crystalline regions trapLi ions andthereforedecreasethefractionoffreeionswhichleadtothereductionoftheionicconductivity.In 2017, Freitag et al. [62] showed that electrospinning technique can also be an efficientmethodfor thefabricationofSPEs.TheelectrospunPEO/SN/LiBF4hasshownthehighestconductivityofabout0.2mS.cm-1 atambienttemperature.Inaddition,theresultsconfirmedtheabsenceof theunwantedcrystallinephases includingLiBF4or (PEO)3/LiBF4 in the as-spunelectrolytes.Inanotherattempt,theyshowedthepotentialoftheelectrospunmembranescontainingsodiumsaltsasthesolvent-freeelectrolyteinsodiumionbatteries[63].In2018,Walkeetal.[64]evaluatedtheeffectofLiTFSIsaltontheelectrochemicalbehaviorofthePEO/SNelectrospunelectrolytes.TheelectrospunPEO/SN/LiTFSIelectrolyteshowedthehighestconductivity of 0.28mS.cm-1 at room temperature,while theSPEwith the same chemicalcomposition, fabricated by solution casting method, illustrated ionic conductivity of 0.05mS.cm-1.Inaddition,Banitabaetal.[65]examinedtheconcentrationeffectsofthepolymer,saltandplasticizeronthecharacteristicsofthePEO/PC/LiClO4 electrospun electrolytes. The optimumelectrospunelectrolytehasshowntheionicconductivityof0.05mS.cm-1,about30timesgreaterthanthepolymerfilmelectrolytewithsimilarchemicalcomposition.Moreover,the impact of the TiO2nanoparticlesonthevariouspropertiesofthePEO/PC-EC/LiClO4 has alsobeeninvestigated[66].

6. Concluding Remarks

Insummary,numerousresearcheshaveshownthepotentialoftheelectrospunnanofibersforbeingappliedasvariouscomponentsincludingelectrodes,separatorsandelectrolytesofthelithiumionbatteries.ElectrospunnanofibersprovideshorterpathwaysfordiffusionoftheLi

Page 10: Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

10

AdvancesinTextileEngineering

ionsinthenegativeandpositiveelectrodeswhichcauseenhancementofthecapacitystorageandchargetransfer.Applyingtheelectrospinningmethodforthefabricationofnanofibrousseparatorsimprovesporosity,electrolyteuptakeandionconductivitywhicharecrucialkeysforthedevelopmentofLiionbatteries.Inaddition,incorporationofelectrospunnanowiresinsteadofnanoparticlesasfillerintotheSPEssignificantlyimprovestheirionconductivity.Moreover,electrospunmembranesproposemoreionicconductivitycomparedwiththeSPEsassociatedwiththeiruniquestructures.Theoutstandingstructureoftheelectrospunnanofiberspotentiatethepossibilityofthefabricationoflightweightandflexiblenanofibrousbatterieswhichareapplicableinawidevarietyofprogressiveapplications.

7. References

1.B.Scrosati, J.Hassoun,andY.-K.Sun,“Lithium-ionbatteries.A look into the future,”Energy&EnvironmentalScience,vol.4,pp.3287-3295,2011.

2.X. Zhang, L. Ji,O.Toprakci,Y. Liang, andM.Alcoutlabi, “Electrospun nanofiber-based anodes, cathodes, andseparatorsforadvancedlithium-ionbatteries,”PolymerReviews,vol.51,pp.239-264,2011.

3.W.Qi,J.G.Shapter,Q.Wu,T.Yin,G.Gao,andD.Cui,“Nanostructuredanodematerialsforlithium-ionbatteries:principle,recentprogressandfutureperspectives,”JournalofMaterialsChemistryA,vol.5,pp.19521-19540,2017.

4.B.-O.Jang,S.-H.Park,andW.-J.Lee,“ElectrospunCo–Snalloy/carbonnanofiberscompositeanodeforlithiumionbatteries,”JournalofAlloysandCompounds,vol.574,pp.325-330,2013/10/15/2013.

5.P.Li,G.Zhao,X.Zheng,X.Xu,C.Yao,W.Sun,etal.,“Recentprogressonsilicon-basedanodematerialsforpracticallithium-ionbatteryapplications,”EnergyStorageMaterials,vol.15,pp.422-446,2018/11/01/2018.

6.L.Tao,Y.Huang,X.Yang,Y.Zheng,C.Liu,M.Di,etal.,“Flexibleanodematerialsforlithium-ionbatteriesderivedfromwastebiomass-basedcarbonnanofibers:I.Effectofcarbonizationtemperature,”RSCAdvances,vol.8,pp.7102-7109,2018.

7.C.Kim,K.S.Yang,M.Kojima,K.Yoshida,Y.J.Kim,Y.A.Kim,etal.,“Fabricationofelectrospinning‐derivedcarbonnanofiberwebsfortheanodematerialoflithium‐ionsecondarybatteries,”AdvancedFunctionalMaterials,vol.16,pp.2393-2397,2006.

8.L.Ji,Y.Yao,O.Toprakci,Z.Lin,Y.Liang,Q.Shi,etal.,“Fabricationofcarbonnanofiber-drivenelectrodesfromelectrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries,”JournalofPowerSources,vol.195,pp.2050-2056,2010.

9.Y.Yang,A.Centrone,L.Chen,F.Simeon,T.A.Hatton,andG.C.Rutledge,“Highlyporouselectrospunpolyvinylidenefluoride(PVDF)-basedcarbonfiber,”Carbon,vol.49,pp.3395-3403,2011.

10.N.T.Xuyen,E.J.Ra,H.-Z.Geng,K.K.Kim,K.H.An,andY.H.Lee,“EnhancementofConductivitybyDiameterControlofPolyimide-BasedElectrospunCarbonNanofibers,”TheJournalofPhysicalChemistryB,vol.111,pp.11350-11353,2007/10/012007.

11. F.UmmulKhair,U.AhmedJalal,K.Uemura,andY.Gotoh,“Fabricationofcarbonfibersfromelectrospunpoly(vinylalcohol)nanofibers,”TextileResearchJournal,vol.81,pp.659-672,2011/05/012010.

12.H.Niu, J.Zhang,Z.Xie,X.Wang, andT.Lin, “Preparation, structure and supercapacitanceofbondedcarbonnanofiberelectrodematerials,”Carbon,vol.49,pp.2380-2388,2011/06/01/2011.

13.L.Ji,O.Toprakci,M.Alcoutlabi,Y.Yao,Y.Li,S.Zhang,etal.,“α-Fe2O3nanoparticle-loadedcarbonnanofibersas

Page 11: Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

11

AdvancesinTextileEngineering

stableandhigh-capacityanodesforrechargeablelithium-ionbatteries,”ACSappliedmaterials&interfaces,vol.4,pp.2672-2679,2012.

14.Y.Yu,L.Gu,C.Wang,A.Dhanabalan,P.A.vanAken,andJ.Maier,“EncapsulationofSn@carbonNanoparticlesinBamboo-likeHollowCarbonNanofibersasanAnodeMaterialinLithium-BasedBatteries,”AngewandteChemieInternationalEdition,vol.48,pp.6485-6489,2009/08/172009.

15.L.JiandX.Zhang,“Manganeseoxidenanoparticle-loadedporouscarbonnanofibersasanodematerialsforhigh-performancelithium-ionbatteries,”ElectrochemistryCommunications,vol.11,pp.795-798,2009/04/01/2009.

16.W.Liu,T.Yao,S.Xie,Y.She,andH.Wang,“IntegratingTiO2/SiO2intoElectrospunCarbonNanofiberstowardsSuperiorLithiumStoragePerformance,”Nanomaterials,vol.9,p.68,2019.

17.H.-X.Zhang,C.Feng,Y.-C.Zhai,K.-L.Jiang,Q.-Q.Li,andS.-S.Fan,“Cross-StackedCarbonNanotubeSheetsUniformlyLoadedwithSnO2Nanoparticles:ANovelBinder-FreeandHigh-CapacityAnodeMaterialforLithium-IonBatteries,”AdvancedMaterials,vol.21,pp.2299-2304,2009/06/122009.

18.Y.He,L.Huang,J.-S.Cai,X.-M.Zheng,andS.-G.Sun,“StructureandelectrochemicalperformanceofnanostructuredFe3O4/carbonnanotubecompositesasanodesforlithiumionbatteries,”ElectrochimicaActa,vol.55,pp.1140-1144,2010/01/01/2010.

19.Y. Li,G.Xu,Y.Yao, L.Xue,M.Yanilmaz,H. Lee, et al., “Coaxial electrospun Si/C–C core–shell compositenanofibersasbinder-freeanodesforlithium-ionbatteries,”SolidStateIonics,vol.258,pp.67-73,2014/05/01/2014.

20.Z.-L.Xu,B.Zhang,andJ.-K.Kim,“ElectrospuncarbonnanofiberanodescontainingmonodispersedSinanoparticlesandgrapheneoxidewithexceptionalhighratecapacities,”NanoEnergy,vol.6,pp.27-35,2014/05/01/2014.

21.L.Xue,K.Fu,Y.Li,G.Xu,Y.Lu,S.Zhang,etal.,“Si/Ccompositenanofiberswithstableelectricconductivenetworkforuseasdurablelithium-ionbatteryanode,”NanoEnergy,vol.2,pp.361-367,2013.

22.T.H.Hwang,Y.M.Lee,B.-S.Kong,J.-S.Seo,andJ.W.Choi,“Electrospuncore–shellfibersforrobustsiliconnanoparticle-basedlithiumionbatteryanodes,”Nanoletters,vol.12,pp.802-807,2012.

23.L.Wang,C.X.Ding,L.C.Zhang,H.W.Xu,D.W.Zhang,T.Cheng,etal.,“Anovelcarbon–siliconcompositenanofiber prepared via electrospinning as anodematerial for high energy-density lithium ion batteries,” Journal ofPowerSources,vol.195,pp.5052-5056,2010/08/01/2010.

24.L.JiandX.Zhang,“Fabricationofporouscarbon/Sicompositenanofibersashigh-capacitybatteryelectrodes,”ElectrochemistryCommunications,vol.11,pp.1146-1149,2009/06/01/2009.

25.Z.Shen,Y.Hu,R.Chen,X.He,Y.Chen,H.Shao,etal.,“SplitSn-CuAlloysonCarbonNanofibersbyOne-stepHeatTreatment forLong-LifespanLithium-IonBatteries,”ElectrochimicaActa,vol.225,pp.350-357,2017/01/20/2017.

26.H.Jia,M.Dirican,C.Chen,J.Zhu,P.Zhu,C.Yan,etal.,“ReducedGrapheneOxide-IncorporatedSnSb@CNFCompositesasAnodesforHigh-PerformanceSodium-IonBatteries,”ACSAppliedMaterials&Interfaces,vol.10,pp.9696-9703,2018/03/212018.

27.H.-R.JungandW.-J.Lee,“PreparationandcharacterizationofNi-Sn/carbonnanofiberscompositeanodeforlithiumionbattery,”JournalofTheElectrochemicalSociety,vol.158,pp.A644-A652,2011.

28. J.Yin,M.Wada,Y.Kitano, S.Tanase,O.Kajita, andT. Sakai, “NanostructuredAg–Fe–Sn/CarbonNanotubesCompositesasAnodeMaterialsforAdvancedLithium‐IonBatteries,”JournaloftheElectrochemicalSociety,vol.152,pp. A1341-A1346, 2005.

29.Y.Mizuno,E.Hosono,T.Saito,M.Okubo,D.Nishio-Hamane,K.Oh-ishi,etal.,“Electrospinningsynthesisofwire-structuredLiCoO2forelectrodematerialsofhigh-powerLi-ionbatteries,”TheJournalofPhysicalChemistryC,

Page 12: Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

12

AdvancesinTextileEngineering

vol. 116, pp. 10774-10780, 2012.

30.L.J.Chen,J.D.Liao,Y.J.Chuang,K.C.Hsu,Y.F.Chiang,andY.S.Fu,“SynthesisandcharacterizationofPVP/LiCoO2nanofibersbyelectrospinningroute,”JournalofAppliedPolymerScience,vol.121,pp.154-160,2011.

31.Y.Gu,D.Chen,andX.Jiao,“SynthesisandElectrochemicalPropertiesofNanostructuredLiCoO2FibersasCathodeMaterials forLithium-IonBatteries,”TheJournalofPhysicalChemistryB,vol.109,pp.17901-17906,2005/09/012005.

32.Y.LiuandM.Taya,“Electrospinningfabricationandelectrochemicalpropertiesoflithiumcobaltnanofibersforlithiumbatterycathode,”inActiveandPassiveSmartStructuresandIntegratedSystems2009,2009,p.728806.

33.G.-H.Kim,S.-T.Myung,H.Bang, J.Prakash, andY.-K.Sun, “Synthesis andElectrochemicalPropertiesofLi[Ni1/3Co1/3Mn(1/3−x)Mgx]O2−yFyviaCoprecipitation,”Electrochemicalandsolid-state letters,vol.7,pp.A477-A480, 2004.

34.D.Yu,C.Chen,S.Xie,Y.Liu,K.Park,X.Zhou,etal.,“MesoporousvanadiumpentoxidenanofiberswithsignificantlyenhancedLi-ionstoragepropertiesbyelectrospinning,”Energy&EnvironmentalScience,vol.4,pp.858-861,2011.

35.Y.Liu,G.Gao,X.Liang,andG.Wu,“NanofibersofV2O5/C@MWCNTsasthecathodematerialforlithium-ionbatteries,”JournalofSolidStateElectrochemistry,vol.22,pp.2385-2393,2018.

36.L.Duan,X.Zhang,K.Yue,Y.Wu,J.Zhuang,andW.Lü,“SynthesisandelectrochemicalpropertyofLiMn2O4poroushollownanofiberascathodeforlithium-ionbatteries,”Nanoscaleresearchletters,vol.12,p.109,2017.

37.G.-H.An,D.-Y.Lee,andH.-J.Ahn,“Carbon-encapsulatedhollowporousvanadium-oxidenanofibersforimprovedlithiumstorageproperties,”ACSappliedmaterials&interfaces,vol.8,pp.19466-19474,2016.

38.S.S.Zhang,“AreviewontheseparatorsofliquidelectrolyteLi-ionbatteries,”Journalofpowersources,vol.164,pp. 351-364, 2007.

39.G.Venugopal,J.Moore,J.Howard,andS.Pendalwar,“Characterizationofmicroporousseparatorsforlithium-ionbatteries,”Journalofpowersources,vol.77,pp.34-41,1999.

40.G.Wu,H.-Y.Yang,H.-Z.Chen,F.Yuan,L.-G.Yang,M.Wang,etal.,“Novelporouspolymerelectrolytebasedonpolyacrylonitrile,”Materialschemistryandphysics,vol.104,pp.284-287,2007.

41.D.-W.Kim andY.-K. Sun, “Electrochemical characterization of gel polymer electrolytes preparedwith porousmembranes,”Journalofpowersources,vol.102,pp.41-45,2001.

42.M.Yoshio, R. J. Brodd, andA.Kozawa, Lithium-ion batteries: science and technologies: Springer Science&BusinessMedia,2010.

43.T.Cho,T.Sakai,S.Tanase,K.Kimura,Y.Kondo,T.Tarao,etal.,“Electrochemicalperformancesofpolyacrylonitrilenanofiber-basednonwovenseparatorforlithium-ionbattery,”Electrochemicalandsolid-stateletters,vol.10,pp.A159-A162, 2007.

44.A.I.Gopalan,P.Santhosh,K.M.Manesh,J.H.Nho,S.H.Kim,C.-G.Hwang,etal.,“DevelopmentofelectrospunPVdF–PANmembrane-basedpolymerelectrolytesforlithiumbatteries,”Journalofmembranescience,vol.325,pp.683-690,2008.

45.M.Yanilmaz and X. Zhang, “Polymethylmethacrylate/polyacrylonitrile membranes via centrifugal spinning asseparatorinLi-ionbatteries,”Polymers,vol.7,pp.629-643,2015.

46.J.Zhu,C.Chen,Y.Lu,J.Zang,M.Jiang,D.Kim,etal.,“Highlyporous

polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-

Page 13: Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

13

AdvancesinTextileEngineering

performancelithium–sulfurbatteries,”Carbon,vol.101,pp.272-280,2016/05/01/2016.

47.M.Yanilmaz,Y.Lu,J.Zhu,andX.Zhang,“Silica/polyacrylonitrilehybridnanofibermembraneseparatorsviasol-gelandelectrospinningtechniquesforlithium-ionbatteries,”JournalofPowerSources,vol.313,pp.205-212,2016.

48.M.Yanilmaz,Y.Lu,M.Dirican,K.Fu,andX.Zhang,“Nanoparticle-on-nanofiberhybridmembraneseparatorsforlithium-ionbatteriesviacombiningelectrosprayingandelectrospinningtechniques,”Journalofmembranescience,vol.456, pp. 57-65, 2014.

49.Y.Wang,S.Wang,J.Fang,L.-X.Ding,andH.Wang,“Anano-silicamodifiedpolyimidenanofiberseparatorwithenhancedthermalandwettingpropertiesforhighsafetylithium-ionbatteries,”Journalofmembranescience,vol.537,pp. 248-254, 2017.

50.H.-S.Jeong,S.C.Hong,andS.-Y.Lee,“EffectofmicroporousstructureonthermalshrinkageandelectrochemicalperformanceofAl2O3/poly(vinylidenefluoride-hexafluoropropylene)compositeseparatorsforlithium-ionbatteries,”JournalofMembraneScience,vol.364,pp.177-182,2010.

51. J. Lee, C.-L. Lee, K. Park, and I.-D. Kim, “Synthesis of anAl2O3-coated polyimide nanofiber mat and itselectrochemicalcharacteristicsasaseparatorforlithiumionbatteries,”JournalofPowerSources,vol.248,pp.1211-1217, 2014.

52.W.H.Meyer,“Polymerelectrolytesforlithium‐ionbatteries,”Advancedmaterials,vol.10,pp.439-448,1998.

53. J.-M.Tarascon andM.Armand, “Issues and challenges facing rechargeable lithiumbatteries,” inMaterials forSustainableEnergy:ACollectionofPeer-ReviewedResearchandReviewArticlesfromNaturePublishingGroup,ed:WorldScientific,2011,pp.171-179.

54.K.Vignarooban,M.A.K.L.Dissanayake,I.Albinsson,andB.E.Mellander,“EffectofTiO2nano-fillerandECplasticizeronelectricalandthermalpropertiesofpoly(ethyleneoxide)(PEO)basedsolidpolymerelectrolytes,”SolidStateIonics,vol.266,pp.25-28,2014/11/15/2014.

55.M.R.Johan,O.H.Shy,S.Ibrahim,S.M.MohdYassin,andT.Y.Hui,“EffectsofAl2O3nanofillerandECplasticizerontheionicconductivityenhancementofsolidPEO–LiCF3SO3solidpolymerelectrolyte,”SolidStateIonics,vol.196,pp.41-47,2011/08/11/2011.

56.Y.-J.WangandD.Kim,“Crystallinity,morphology,mechanicalpropertiesandconductivitystudyofinsituformedPVdF/LiClO4/TiO2nanocompositepolymerelectrolytes,”ElectrochimicaActa,vol.52,pp.3181-3189,2007/02/15/2007.

57.W.Liu,N.Liu,J.Sun,P.-C.Hsu,Y.Li,H.-W.Lee,etal.,“Ionicconductivityenhancementofpolymerelectrolyteswithceramicnanowirefillers,”Nanoletters,vol.15,pp.2740-2745,2015.

58.T.Yang,J.Zheng,Q.Cheng,Y.-Y.Hu,andC.K.Chan,“CompositePolymerElectrolyteswithLi7La3Zr2O12Garnet-TypeNanowiresasCeramicFillers:MechanismofConductivityEnhancementandRoleofDopingandMorphology,”ACSAppliedMaterials&Interfaces,vol.9,pp.21773-21780,2017/07/052017.

59.W.Liu,S.W.Lee,D.Lin,F.Shi,S.Wang,A.D.Sendek,etal.,“Enhancingionicconductivityincompositepolymerelectrolyteswithwell-alignedceramicnanowires,”Natureenergy,vol.2,p.17035,2017.

60.M.Deka,A.Nath, andA.Kumar, “Ionicconductionandphase separationstudies inPEO-P (VdF-HFP)-LiClO4-dedopedpolyanilinenanofibercompositepolymerelectrolytes-I,”IndianJournalofPhysics,vol.84,pp.1299-1305,2010.

61.K.K.Fu,Y.Gong,J.Dai,A.Gong,X.Han,Y.Yao,etal.,“Flexible,solid-state,ion-conductingmembranewith3Dgarnetnanofibernetworksforlithiumbatteries,”ProceedingsoftheNationalAcademyofSciences,vol.113,pp.7094-7099,2016.

Page 14: Advances in Textile Engineering - openaccessebooks.comopenaccessebooks.com/advances-in...applicable-in-lithium-ion-batter… · Li-ion batteries are also comprised of the anode, the

14

AdvancesinTextileEngineering

62.K.M.Freitag,H.Kirchhain,L.v.Wüllen, andT.Nilges, “EnhancementofLi ionconductivitybyelectrospunpolymerfibersanddirectfabricationofsolvent-freeseparatormembranesforLiionbatteries,”Inorganicchemistry,vol.56, pp. 2100-2107, 2017.

63.K.Freitag,P.Walke,T.Nilges,H.Kirchhain,R.Spranger,andL.vanWüllen,“Electrospun-sodiumtetrafluoroborate-polyethyleneoxidemembranesforsolvent-freesodiumion transport insolidstatesodiumionbatteries,”JournalofPowerSources,vol.378,pp.610-617,2018.

64.P.Walke,K.M.Freitag,H.Kirchhain,M.Kaiser,L.vanWüllen,andT.Nilges,“ElectrospunLi(TFSI)@PolyethyleneOxideMembranesasSolidElectrolytes,”ZeitschriftfüranorganischeundallgemeineChemie,vol.644,pp.1863-1874,2018.

65.S.N.Banitaba,D.Semnani,B.Rezaei,andA.A.Ensafi,“Morphologyandelectrochemicalandmechanicalpropertiesofpolyethylene‐oxide‐basednanofibrouselectrolytesapplicableinlithiumionbatteries,”PolymerInternational,vol.68,pp.746-754,2019.

66.S.N.Banitaba,D.Semnani,B.Rezaei,andA.A.Ensafi,“EvaluatingtheelectrochemicalpropertiesofPEO‐basednanofibrouselectrolytesincorporatedwithTiO2nanofillerapplicableinlithium‐ionbatteries,”PolymersforAdvancedTechnologies,2019.