56
Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

Embed Size (px)

Citation preview

Page 1: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

Adventures in

Sample Introduction

for ICP-OES and ICP-MS

Adventures in

Sample Introduction

for ICP-OES and ICP-MS

Geoffrey N. ColemanMeinhard Glass Products

A Division of Analytical Reference Materials International

Page 2: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

2

Sample Introduction Components

•ICP Torches

•Spray Chambers

•Nebulizers•Conventional

•High Efficiency

•Direct injection

•Accessories

Page 3: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

3

Overview

•Brief review

•Components•Torches

•Spray chambers

•Nebulizers

•What’s new....

Page 4: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

4

References

Richard F. Browner, Georgia Institute of Technology

Anders G.T. Gustavsson, Swedish Institute of Technology

Jean-Michel Mermet, Universite Claude Bernard-Lyon, France

Akbar Montaser, George Washington University

John W. Olesik, Ohio State University

Barry L. Sharp, Macauley Land Use Institute, Scotland “Pneumatic Nebulizers and Spray Chambers for Inductively Coupled Plasma Spectroscopy”, Journal of

Analytical Atomic Spectrometry, 1988, 3, 613 – 652 (Part 1); 939 – 963 (Part 2).

Page 5: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

5

Processes

Starting with a “homogeneous” solution sample....

•Nebulization

•Desolvation

•Dissociation

•ExcitationAll require energy and time.There is a “domino” effect.

Page 6: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

6

Interferences

•Nebulization

•Desolvation

•Dissociation

•Excitation

Probably 85% of significant interferences occur at nebulization, due to changes in surface tension, density, and viscosity.These are multiplicative interferences.

Page 7: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

7

Mean Droplet Size

d3,2

0.5

0.5

0.45 3l

g

1.5585

V597

10 Q

Q +

( )

NUKIYAMA AND TANASAWA EQUATION

d3,2 = Sauter mean diameter - (m)

V = Velocity difference of gas-liquid - (m/s)

= Surface tension - (dyn/cm)

= Liquid density - (g/cm3)

= Liquid viscosity - (Poise or dyn·s/cm2)

Ql = Volume flowrate, liquid - (cm3/s)

Qg = Volume flowrate, gas - (cm3/s)

S. Nukiyama and Y. Tanasawa, Trans. Soc. Mech. Eng., Tokyo, 1938-40, Vol. 4 – 6, Reports 1 – 6.

Page 8: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

8

Rule-of-Thumb

When the Total Dissolved Solids exceeds about 1000 ppm, changes in surface tension, density, and viscosity begin to affect the droplet size distribution and, thus, the slope of the analytical calibration curve.

Page 9: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

9

Interferences

Control by:

•Matrix Removal – usually not practical

•Swamping – risk of contamination

•Matrix Matching – probably most useful

• Internal Standard – line selection

•Method of Standard Additions – most tedious and time-consuming

Page 10: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

10

Single Droplet Studies

• Desolvation begins

• Evaporation from surface

• Droplet diameter diminishes

• Crust forms as solvent evaporates

•Internal pressure builds

•Droplet explodes

•Escaping water vapor cools immediate surroundings

•Particles dehydrate

•Particles evaporate

Page 11: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

11

Implications

•Large Surface Area/Volume

•Small Droplets•Faster desolvation and vaporization

•Narrow Size Distribution•Consistent desolvation and vaporization

•Well-defined excitation/observation zones

•Virtually no signal comes from droplets larger than 8 - 10 m

•Most signal comes from < 3 m.

Page 12: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

12

ICP Plasma Torches

•Tg 6000 – 9000 K

•Skin Effect•Electric

•Magnetic

•Pressure/Temperature

•Injection Velocity3 – 5 m/sec to overcome skin effectsInjector diameter 1.0 – 2.4 mm i.d.Carrier at 0.7 – 1.0 L/min

•Residence Time

•Highly Volatile Solvents

•Chemical Interferences

•Viewing Zone

Page 13: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

13

ICP Plasma Torches

End-on Viewing

•Must remove “tail flame”

•Ground state atoms

•Molecular species

•Larger injector diameters – longer residence time

•Significant chemical interferences

•Significant sensitivity improvement – up to 10x

Page 14: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

14

ICP Plasma Torches

•Outside: 16 – 18 mm

•Inner – Outer Gap: 0.5 – 1.0 mm

•Injector: 1.0 – 4.0 mm• 1.0 mm for volatile solvents

• 2.0 mm general purpose radial torch

• 2.4 mm general purpose axial torch

•Demountable Injectors• Ceramic (alumina) or sapphire for HF

• Flexibility

• Complexity

• Cost

Page 15: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

15

ICP Spray Chambers

Aerosol Conditioning• Remove droplets larger than 20 um

•Gravitational settling

•Inertial impaction

•Evaporation

•Recombination

• Reduce aerosol concentration

• Modify aerosol phase equilibria

• Modify aerosol charge equilibria

• Reduce turbulence of nebulization

Page 16: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

16

ICP Spray Chambers

Particle Motion in a Spray Chamber

Page 17: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

17

ICP Spray Chambers

Scott Double-Pass• Large volume (> 100 mL)

• Large surface area•Phase equilibria

• Stagnant areas

• Long stabilization time

• Long washout

• Drainage

Page 18: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

18

ICP Spray Chambers

Cyclonic with Baffle• Moderate volume: 50 mL

• Moderate surface area

• Entire volume swept by carrier flow

• Fast equilibration

• Fast washout

• Sensitivity enhanced by 1.2 – 1.5x

• Now most common type

Page 19: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

19

ICP Spray Chambers

•Desolvation begins in the spray chamber•Extent affects droplet size

•Affects amount transported to the plasma

•Maintain constant temperature

•Liquid on the walls must equilibrate with vapor•Minimize surface area

•Drain away excess quickly

Page 20: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

20

ICP Spray Chambers

•Speciation begins in the spray chamber•Volatile species in gas phase are more

efficiently transported than droplets

•Nebulization does not control the rate of sample introduction

•Cool spray chamber (especially for organic solvents)

•Minimize surface area

Page 21: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

21

Nebulizers

•Pneumatic•Self-aspirating

• Concentric

• Cross-flow

•Non-aspirating• Babington

• V-groove

• GEM Cone

• MiraMist

• Grid

• Fritted

•Other•Ultrasonic nebulizer

•Thermospray

•Spark ablation

•Laser ablation

•Specialty•HEN, MCN, MicroMist

•DIHEN, DIN

Page 22: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

22

Mean Droplet Size

NUKIYAMA AND TANASAWA EQUATION

d3,2 = Sauter mean diameter - (m)

V = Velocity difference of gas-liquid - (m/s)

= Surface tension - (dyn/cm)

= Liquid density - (g/cm3)

= Liquid viscosity - (Poise or dyn·s/cm2)

Ql = Volume flowrate, liquid - (cm3/s)

Qg = Volume flowrate, gas - (cm3/s)

S. Nukiyama and Y. Tanasawa, Trans. Soc. Mech. Eng., Tokyo, 1938-40, Vol. 4 – 6, Reports 1 – 6.

d3,2

0.5

0.5

0.45 3l

g

1.5585

V597

10 Q

Q +

( )

Page 23: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

23

Self-Aspirating Nebulizers

•Concentric•Gouy design (1897)

•Efficiency approaching 3%

•Glass

•Quartz

•Teflon

•Cross-flow•Efficiency approaching 2.5%

•Glass

•Sapphire

Page 24: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

24

Self-Aspirating Nebulizers

Glass Concentric

Page 25: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

25

Self-Aspirating Nebulizers

Glass Concentric

Page 26: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

26

Self-Aspirating Nebulizers

Page 27: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

27

Self-Aspirating Nebulizers

Page 28: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

28

Self-Aspirating Nebulizers

Cross-flow

Page 29: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

29

Non-aspirating Nebulizers

•Original Babington Design (1973)

•Very inefficient

•Could nebulize “anything”

•V-groove (Suddendorf, 1978)

•Much improved efficiency, > 1%

•Best choice for analysis of slurries

•Best choice for analysis of used oils

•Grid (Hildebrand, 1986)

•Efficiency approaching 4.5%

•Very difficult to maintain

Page 30: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

30

Non-aspirating Nebulizers

V-groove (Babington)

Page 31: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

31

Non-aspirating Nebulizers

• GEM Cone (PerkinElmer)

•Efficiency ~ 1.2%

• MiraMist/Parallel-Path (Burgener)

•Efficiency approaching 3 %

Page 32: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

32

Non-aspirating Nebulizers

• MiraMistParallel-Path

Page 33: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

33

Non-aspirating Nebulizers

Ultrasonic Nebulizer• Efficiency approaches 30%

• Sensitivity improves ~10x

• Droplet size < 5 m

• Potentially heavy solvent load

• Desolvation essentialMembrane separator available

• Desolvation interferences occur (eg., As III vs. As IV)

• Does not handle high solids well

Page 34: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

34

Sample Introduction Accessories

Desolvation: Apex Q from Elemental Scientific

• Sensitivity improves ~10x

• Uses concentric nebulizer and cyclonic spray chamber

• Desolvation interferences

• High solids problematic

• Available in HF-resistant version

Page 35: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

35

Sample Introduction Accessories

Spray Chamber Cooling: PC3 from Elemental Scientific• Sensitivity improves

• Reduces solvent loading

• Reduces oxide interferences in ICPMS

• Uses concentric nebulizer and cyclonic spray chamber

• Available in HF-resistant version

Page 36: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

36

Sample Introduction Accessories

•Fit Kits couple liquid and gas supplies to the nebulizer

•Especially useful for high pressure nebulizers

Page 37: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

37

The MEINHARD®

Nebulizer

Type A •Lapped ends – capillary

and nozzle flush

•Simple, monolithic design

Type C •Recessed capillary for

higher TDS tolerance

•Vitreous, fire-polished ends

•Stronger suction

Type K •Recessed capillary

•Lapped ends

•Lower Ar flow: 0.7 L/min

Page 38: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

38

The MEINHARD®

Nebulizer

0

0.2

0.4

0.6

0.8

1

1.2

%R

SD

Cd Cu Fe Mn

Element

TR-30-A3(8)

TR-30-A3(1)

TR-30-C1(12)

TR-30-K2/3(22)

0

20

40

60

80

100

120

140

160

180

200

PP

B

Cd Cu Fe Mn

Element

TR-30-A3(8)

TR-30-A3(1)

TR-30-C1(12)

TR-30-K2/3(22)

0

0.5

1

1.5

2

2.5

3

3.5

4

PP

B

Cd Cu Fe Mn

Element

TR-30-A3(8)

TR-30-A3(1)

TR-30-C1(12)

TR-30-K2/3(22)

0

2000

4000

6000

8000

10000

12000

Co

un

ts

Cd Cu Fe Mn

Element

TR-30-A3(8)

TR-30-A3(1)

TR-30-C1(12)

TR-30-K2/3(22)

Inte

nsit

y,

40

pp

bP

recis

ion

, 40

pp

bB

EC D

L

Page 39: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

39

The MEINHARD®

Nebulizer

Type A •Lapped ends – capillary

and nozzle flush

•Simple, monolithic design

Type C •Recessed capillary for

higher TDS tolerance

•Vitreous, fire-polished ends

•Stronger suction

Type K •Recessed capillary

•Lapped ends

•Lower Ar flow: 0.7 L/min

Page 40: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

40

Glass Concentric Nebulizer

•Advantages•Simple, single piece desgin

•All glass design, inert

•Permanently aligned - self aligning

• Easy to use

•Disadvantages•Low efficiency ( ~3%)

•Glass attacked by HF

•High or undissolved solids may clog capillary

Page 41: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

41

HF-Resistant Nebulizers

•Concentric nebulizers in Teflon PFA and Polypropylene from Elemental Scientific

•Typical flows: 50 – 700 L/min; 1 L/min

•Integral or demountable solution tubing

•Efficiency: 2 – 3%

MicroFLOW PFA

PolyPro

Page 42: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

42

HF-Resistant Kits

Complete Kits include:

•Demountable Torch

•Pt or Sapphire Injector

•Adapter

•Teflon PFA Spray Chamber

•Teflon PFA or Polypropylene Nebulizer

Page 43: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

43

Nebulizers

Page 44: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

44

Nebulizers

Page 45: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

45

Mean Droplet Size

NUKIYAMA AND TANASAWA EQUATION

d3,2 = Sauter mean diameter - (m)

V = Velocity difference of gas-liquid - (m/s)

Ql = Volume flowrate, liquid - (cm3/s)

Qg = Volume flowrate, gas - (cm3/s)

•Adjust annulus to increase V, but maintain Qg

•Adjust capillary to decrease Ql

d3,2

0.5

0.5

0.45 3l

g

1.5585

V597

10 Q

Q +

( )

Page 46: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

46

High Efficiency Nebulizer

Type A HEN

Page 47: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

47

High Efficiency Nebulizer

Page 48: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

48

High Efficiency Nebulizer

PN: TR-30-A3 MicroConcentric Nebulizer (Cetac) MicroMist (Glass Expansion)

Page 49: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

49

High Efficiency Nebulizer

•The HEN normally aspirates 30 – 300 L/min

•Design gas flow is 1 L/min of argon

•Normal operating pressure is 170 psi, 150 and 90 psi versions are available.

Page 50: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

50

High Efficiency Nebulizer

•Under normal operating conditions, a HEN exhibits a D3,2 of 1.2 – 1.5 m

•“Starved” TR-30-A3 exhibits D3,2 of 3.2 – 4.2 m

•Normal operating conditions for a TR-30-A3 yield a mean droplet size of about 15 m

Page 51: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

51

High Efficiency Nebulizer

Page 52: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

52

High Efficiency Nebulizer

•Type A Nozzle Geometry

•Smaller Sample Uptake Capillary

Liquid flow rate from 10-1200 l/min

•Small Bore Sample InputLow Dead Volume Connection (LC, CZE)

•Smaller Gas Annular AreaHigher Ar pressure - 150 psig

Page 53: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

53

High Efficiency Nebulizer

Applications:•Chromatography detection

•Capillary electrophoresis•Liquid chromatography

•Limited sample volume

•Minimize speciation interferences•Very high analyte transport•Much less discrimination between volatile

species and dissolved species

Page 54: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

54

Direct Injection HEN

•DIHEN is designed to be inserted directly into a demountable torch

•DIHEN is dimensionally similar to HEN (see table, slide 47)

•DIHEN is operationally similar to HEN, except•Normal carrier flow is 0.2 – 0.4 L/min

•Minimize speciation interferences• Easily introduce highly volatile solvents• Essentially 100% transport• Large-Bore version less prone to clogging, but noisy

Page 55: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International

55

DIHEN

•Typical demountable torch with DIHEN in place

•Detection limits better than conventional pneumatic nebulizer

•Detection limits not as good as HEN

Page 56: Adventures in Sample Introduction for ICP-OES and ICP-MS Geoffrey N. Coleman Meinhard Glass Products A Division of Analytical Reference Materials International