21
The International Association for the Engineering Modeling, Analysis and Simulation Community Conference Agenda Contact Information NAFEMS Americas 130 N Prospect Street, Suite K Granville, OH 43023 Tel. 1.614.360.1922 Fax. 1.740.587.1505 [email protected] Aerospace Simulation Engineering Navigating the Digital Thread October 18th, 2018 | Seattle, WA (Lynnwood Convention Center) nafems.org/aerospace Keynotes from Jeff Plant (The Boeing Company), Dorian Colas (Facebook), and Robert M. Zacharias (GE Global Research) Two Tracks with presentations from industry, software providers, researchers, and academia Presentations from The Boeing Company, Facebook, GE Global Research, Altair Engineering, Aras Corporation, Dassault Systemes SIMULIA Corp, ESTECO, Lawrence Livermore National Laboratory, Numeca, SimuTech Group, TotalCAE, and more. Open Discussion on "Requirements of Certification by Analysis" led by Patrick Safarian (FAA) Learn more by visiting: nafems.org/aerospace

Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

The International Association for the Engineering Modeling, Analysis and Simulation Community

Conference Agenda

Contact Information

NAFEMS Americas 130 N Prospect Street, Suite K Granville, OH 43023Tel. 1.614.360.1922Fax. 1.740.587.1505 [email protected]

Aerospace Simulation EngineeringNavigating the Digital Thread October 18th, 2018 | Seattle, WA (Lynnwood Convention Center) nafems.org/aerospace

Keynotes from Jeff Plant (The Boeing Company), Dorian Colas (Facebook), and Robert M. Zacharias (GE Global Research)

Two Tracks with presentations from industry, software providers, researchers, and academia

Presentations from The Boeing Company, Facebook, GE Global Research, Altair Engineering, Aras Corporation, Dassault Systemes SIMULIA Corp, ESTECO, Lawrence Livermore National Laboratory, Numeca, SimuTech Group, TotalCAE, and more.

Open Discussion on "Requirements of Certification by Analysis" led by Patrick Safarian (FAA)

Learn more by visiting: nafems.org/aerospace

Page 2: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Conference Overview

Aerospace manufacturers and suppliers are facing an increasingly challenging and competitive marketplace as their products are becoming more complex via tighter integration of systems and cyber-physical environments. That being said, there are rising interests to incorporate Digital Threads as communication frameworks for sharing product lifecycle information seamlessly and Digital Twin methodologies for assessing virtually the expected and future operational physics-based capabilities of a product throughout its lifecycle. Utilizing these techniques in conjunction with the latest engineering simulation tools effectively, accurately and efficiently to meet business goals has never been more critical, as aerospace engineering continues to move into a highly-advanced technological space.

Located at the Lynnwood Convention Center in Lynnwood, WA, “Aerospace Simulation Engineering: Navigating the Digital Thread," will gather attendees from the aerospace industry in a non-competitive environment to exchange ideas, identify best practices, and drive the near-future direction of engineering simulation technology and utilization strategy.

This event aims to deliver information and insights on critical topic areas in a manner that maximizes the “take-away” value for attendees. An event agenda and concept championed by several leading figures in the aerospace industry will provide the opportunity to learn about the latest technologies and practices, which attendees can later share and apply within their own organizations.

SponsorsWe would like to extend a special thanks to the sponsors of the 2018 NAFEMS Americas Conference on, "Aerospace Simulation Engineering: Navigating the Digital Thread." Please be sure to visit and speak with each of our sponsors during the conference to see and hear about the latest advancements in their technologies.

2

Page 3: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

3

AGENDA - Thursday, October 18th

10:55

Track 1Chair: J. Draper, The Boeing Company

Intelligent Simulation Automation is Foundational to Leveraging the Digital Thread and Digital TwinsM. Panthaki, ARAS Corporation

Lunch (Room 1DE)

8:30 Plenary Session: Room 1BC | Chair: R. Dreisbach, NAFEMS Council Member and Chairman of Americas Steering Committee

Break (Room 1DE)

11:25

12:55

1:45

3:45

Networking Reception5:30

Room 1ARoom 1BC

Track 2: Case StudiesChair: P. Safarian, FAA

From Comfort to Safety: Addressing Aerospace Industry Processes through Model-Based Simulation R. Fu, Dassault Systemes SIMULIA Corp.

Digitalization & Aerospace: The Next Era of Engineering Simulations R. James, SimuTech

Hybrid Cloud HPC for Aerospace SimulationsA. Gugliemetti, TotalCAE

Track 1Chair: J. Ganguli, The Boeing Company

Importance of Mixed Fidelity Numerical Simulations in Fluid System Design in Realizing Digital Twin A. Jayanthi, Altair Engineering

Rapid, Robust Design of Space-Borne Optical Systems at NASA and Aerospace Corp. M. Panthaki, ARAS Corporation

Track 2: Case StudiesChair: M. Ladzinski, NAFEMS

Implementing the Digital Thread for Modeling, Simulation & Test S. Sullivan, Design Automation Associates

Agile Engineering: Software Development Tools for Simulation Management in the Aerospace Industry W. Elmer, Lawrence Livermore National Laboratory

Plenary Session: Room 1BC | J. Castro, The Boeing CompanyAerospace Simulation Engineering – LOTAR EAS, International Standards and How They Relate to the Digital Transformation Analysis J. Draper, The Boeing Company

Requirements of Certification by AnalysisP. Safarian, FAA

Break (Room 1DE)3:15

Program subject to change.

High Altitude Long Endurance Multidisciplinary Design Optimization of Empennage-Stabilized and Flying-Wing AircraftD. Colas, Facebook

Welcome & IntroductionA. Wood, Americas Regional Manager, NAFEMS

Boeing Navigates the Digital Thread in its Second CenturyJ. Plant, The Boeing Company

GE’s Digital Thread for Design (DT4D)R. Zacharias, GE Global Research

Hybridized 3D Simulation of Antenna Array for AircraftI. Wood, Dassault Systèmes SIMULIA Corp.

Application of Harmonic Methodology to the Modeling of Fan NoiseA. Demeulenaere, Numeca

Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO

Using a Fully-Integrated Analysis Platform for Ground-Based Telescope Design & AnalysisJ. Pura, MSC Software

Page 4: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

4

NAFEMS

As the only non-profit international association dedicated to the analysis, simulation, and systems engineering community, NAFEMS has established itself as the leading advocate for establishing best practices in engineering simulation. Over 30 years later, industry end-users, software and hardware solutions providers, researchers, and academic institutions continue to recognize NAFEMS as a valued independent authority that operates with neutrality and integrity. NAFEMS Americas supports over 350 member companies located in the Americas region who are actively engaged in the analysis, simulation, and systems engineering community.

NAFEMS Americas Steering CommitteeRodney Dreisbach (The Boeing Company, Retired), Chairman Jack Castro (The Boeing Company)Duane Detwiler (Honda R&D Americas)Brian Duffy (Technip USA)Graham Elliott (Bombardier)Mario Felice (Ford Motor Company)Joshua Huang (Exco Engineering)Ronald Krueger (National Institute of Aerospace)Edward Ladzinski (E.A. Ladzinski & Associates)Matthew Ladzinski (NAFEMS)Rodrigo Britto Maria (Embraer S.A.)Laura Michalske (Procter & Gamble Company)Tina Morrison (FDA)Dennis Nagy (Beyond CAE)Ahmed Noor (Old Dominion University)Frank Popielas (Popielas Engineering Consultantcy, LLC) Pat Prescott (Owens Corning Science & Technology) Marcus Reis (ESSS)Charles Roche (Western New England University)Andrew Wood (NAFEMS)

Exhibiton Hall (Room 1DE) Exhibit

- Dassault Systèmes SIMULIA Corp.- Altair Engineering- TotalCAE- ESTECO- Numeca International- MSC Software- ARAS Corporation

Conference VenueLynnwood Convention Center 3711 196th Street S.W. Lynnwood, Washington 98036 (p) 425.778.7155 / (w) lynnwoodcc.com

nafems.org/americas

Page 5: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Colas, Dorian 

Presenter Company: Facebook 

Presentation Title: High Altitude Long Endurance Multidisciplinary Design Optimization of Empennage‐Stabilized 

and Flying‐Wing Aircraft 

Submission Type: Keynote 

Keywords:  

Abstract:  

Recent progress in battery technology, solar cell efficiency, and material science have all dramatically improved the 

feasibility of solar‐powered high altitude flight. However, the large number of competing design drivers and 

couplings makes for a difficult design exercise. For instance, low structural mass fraction allows for high battery 

mass but typically means lowered structural mode frequencies and potentially unstable aeroelastic modes 

creeping in the operating envelope. A Multi‐Disciplinary Optimization (MDO) framework was therefore developed 

to fully exploit potential couplings and avoid design pitfalls as early as possible. In order to rapidly and accurately 

explore the design space, physics‐based first principles are emphasized and reliance on historical empirical data is 

minimized. Low Reynolds number aerodynamics, composite structures, aeroelastic modes, are all captured and 

corresponding models are validated against higher‐fidelity analysis tools. The resulting framework is applied on 

empennage‐stabilized as well as flying wing configurations. 

Page 6: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Demeulenaere, Alain 

Presenter Company: Numeca USA 

Presentation Title: Application of Harmonic Methodology to the Modeling of Fan Noise 

Submission Type: Sponsor Case Study 

Keywords: CFD, Harmonic, Fan Noise, Tonal Noise 

Abstract:  

An innovative computational approach, integrating mesh generation, CFD simultaneous analysis of noise source 

and propagation with acoustic radiation is presented and applied to the simulation of the Advanced Noise Control 

Fan (ANCF) developed by NASA Glenn Research Center. The tonal noise source and the sound propagation in the 

nacelle duct and the nacelle near field are simultaneously predicted, starting from the engine geometry and 

parameters, with a single CFD analysis based on the non‐linear harmonic (NLH) method. The sound radiation to 

the far field is then computed with the Green’s function approach implemented in a BEM frequency domain 

solver of the convective Helmholtz equation. The present method provides a gain of close to two orders of 

magnitude compared to standard approaches, based on time‐based full unsteady simulations. Instead of 

integrating in time the present approach uses a Fourier decomposition of the flow variables unsteady variations. 

Only selected frequencies are accounted for, which turns out as an advantage when focusing on clear tonal noise. 

The nonlinear harmonic method is mathematically very interesting, as it has been shown that bringing the Fourier 

terms induces the appearance of additional systems of equations that have the same nature as the time‐averaged 

ones. Those extra systems can be solved with the same numerical approach and same acceleration techniques, 

solving for the amplitudes and phases of the signal. Finally it is shown that the presence of liners can be taken 

into account in a very simple way, by integrating impedance boundary conditions. The setup and monitoring of 

harmonic runs is quite straightforward, as all equations just need to be converged to pseudo‐steady state, which 

is much more convenient than standard unsteady runs. The computational cost of harmonic runs is also limited, 

as the overhead compared to steady state is very easily computed, based on the extra number of equations. 

Page 7: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Draper, Joe 

Presenter Company: The Boeing Company 

Presentation Title: Aerospace Simulation Engineering – LOTAR EAS, International Standards and How They Relate 

to the Digital Transformation 

Submission Type: Presentation 

Keywords:  

Abstract:  

The LOTAR International EAS WG continues its ongoing efforts to communicate with users and software 

developers about progress towards supporting the need for LOTAR and management of EAS data. The case will be 

made that LOTAR of EAS data, use of international standards for data interchange for analysis and simulation data 

and laying the groundwork for their use in science and engineering will aid in advancing the use of computer‐aided 

analysis and simulation. 1: Standards for data interchange is the thread that connects the system of systems The 

themes at CAASE18 cover topics that are relevant to a discussion of LOTAR of EAS data (modelled on the Open 

Archival Information System ‐ OAIS) (CCSDS, 2012), efforts to encourage development of commercial off‐the‐shelf 

(COTS) ISO STEP AP209 ed2 (ISO TC 184/SC 4, 2014) translators and establishing best practices for LOTAR and data 

management. Standards for data interchange facilitate the planning of computer‐aided engineering (CAE) strategy 

and tactics as part of a simulation governance policy. In addition, it lays the groundwork for collaboration between 

all disciplines that are engaged in the lifecycle of product development, especially in the context of the “digital 

thread” that connects them as a system of systems as shown in Figure 1. Figure 1‐ "digital thread" with ULG 

lifecycle 2: The digital transformation will yield dividends for years to come This connectivity enables its users to 

enjoy many benefits of using well‐defined data models to capture input, context and results such as: process and 

knowledge capture, verification and validation; quality assurance; integration; data management; etc. as shown in 

Figure 2. Figure 2‐ CAE interoperability with AP209 ed2 It also breaks down barriers to the democratization of 

analysis and simulation, if sufficient effort is expended to: • Understand the design requirements • Define 

requirements for analysis and simulation methods to model the physics required to meet the design requirements 

• Collect input from the best available and appropriate sources to meet those requirements • Verify the validity of

this collection of requirements, methods, input and the simulation results • Preserve the pedigree of these data

(requirements, methods, input and results) The resulting outcome of such efforts facilitates sharing, learning and

advancing computer‐aided analysis and simulation. 3: Digital transformation will meet future challenges

proactively with data‐driven decisions based on simulations that adapt to change The LOTAR EAS WG and related

work are aligned with the theme of “Navigating the Digital Thread”. Well‐managed methods, input and results

from engineering analysis and simulation give businesses the ability to manage a valuable resource to assist

decision‐making in support of its strategies. With facts and data, it becomes possible to quantify the benefit of

using computer‐aided analysis and simulation. A product that demonstrates superior performance at a marketable

cost, that was predicted in advance, using reliable and repeatable processes that can be continuously improved,

can change a company’s ability to compete in the global economy. Facts and data can defeat fear and ignorance

that evolve in business cultures after previous attempts at automating or standardizing processes have failed. An

open and transparent “digital thread” can unlock potential, moderate risk and improve the bottom line. If that

“digital thread” is built on a system of non‐proprietary data interchange standards, the ability to migrate or morph

a company’s culture of product development and lifecycle management to fit new and improved processes

becomes reality. Removing barriers to change can make us nimble and able to adapt.    REFERENCES CCSDS, 2012.

Reference Model for an Open Archival Information System (OAIS), Recommended Practice, Issue 2, Washington:

Secretariat, The Consultive Committee for Space Data Systems (CCDS). ISO TC 184/SC 4, 2014. ISO 10303‐

209:2014(E) "Industrial automation systems and integration ‐‐ Product data representation and exchange ‐‐ Part

209: Application protocol: Multidisciplinary analysis and design", Geneva: International Organization for

Standardization.

Page 8: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Elango, Adarsh 

Presenter Company: ESTECO North America Inc 

Presentation Title: Adjoint Optimization Combined with Mesh Morphing for CFD Applications

Submission Type: Sponsor Case Study 

Keywords:  

Abstract:  This paper aims to investigate the applicability of Adjoint optimization combined with mesh morphing to the industrial practice, by the integration of commonly used commercial simulation software.

Adjoint techniques are efficient optimization methods in terms of accuracy of results and short computational cost, but normally are limited to in-house simulation codes, that allow the calculation of partial derivatives of the observable quantities within the model simulation. Commercial software such as ANSYS Fluent make available derivatives in function of mesh points, and combined with a mesh morphing tool as RBF Morph, derivatives can be automatically computed in function of design parameters, such as the amplifications of RBF solutions that control the shape of the mesh.

Integrating these software in the optimization platform modeFRONTIER from ESTECO, it becomes possible to apply efficient gradient based optimization algorithms, with the big advantage of a full automatic process integration, and a very short number of design simulations to optimize the objective function. Methodology details and CFD application benchmarks will be illustrated

Page 9: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Elmer, William 

Presenter Company: Lawrence Livermore National Laboratory 

Presentation Title: Agile Engineering: Software Development Tools for Simulation Management in the Aerospace 

Industry 

Submission Type: Presentation 

Keywords: Simrev, Agile, Simulation Management, Software Repository, High Performance Computing 

Abstract:  

An overview will be given of a python library called simrev, used for Simulation Revision and management. Simrev 

enables the hierarchy of an engineered system to be mirrored to a python program; mapping parts, subassemblies, 

and assemblies; to classes, modules, and submodules. Simrev facilitates geometry specification, meshing (with 

Cubit/Trelis), analysis keyword specification, material properties, boundary conditions, and interface definitions, 

analysis batch job submission, and results postprocessing. We will discuss benefits to collaboration and lessons 

learned from putting such a program under version control (using git), tracking and organizing team members’ 

contributions on Atlassian BitBucket (similar to github) and organizing agile development for analysis tasks and 

design objectives with Atlassian Jira. Building the “digital‐twin” is a process of continuous refinement to 

engineering models; the result of hundreds or thousands of validated analyses using CFD, FEA, and other 

engineering or physics codes. The simrev processor is a patent pending method that connects high performance 

computing simulation results (potential order of TB data) to the state of a code repository (usually order MB) in a 

way that is secure and traceable 1‐1 throughout the product lifecycle. Simrev captures the capital investment 

going into simulation with a “software‐twin.” By applying a wide range of existing enterprise management tools for 

software development, the software‐twin can move freely, efficiently, and automatically through the enterprise 

instead of remaining trapped in design silos like individual analysis results. Enterprise management tools provide a 

meeting space for domain experts and management, keeping them “on the same page” as the design is matured, 

design objectives are achieved, and risk is retired. Effective collaboration is the key to shortening time to market 

and meeting customer requirements with simulation, especially for systems with tight coupling between a diverse 

set of physics domains, e.g. aerospace, defense, and electronics. Simrev has been in use at LLNL for the past 

several years. It has been used to perform coupled simulations with the implicit thermo‐structural code Diablo 

(with heat flux and pressure applied from CFD analyses for multiple load cases), the implicit FEM code NIKE3D, the 

explicit FEM code Paradyn, and the implicit/explicit Multiphysics Arbitrary Eulerian‐Lagrangian code ALE3D (with 

domain mesh coupling). (ALE3D is becoming commercially available as a product called ALE3D for Industry, or 

ALE3D4I). Simrev is currently configured for use on LLNL HPC systems. However, this talk will propose future 

workflows involving other concepts from software including; “continuous deployment,” cloud‐based HPC analysis 

spawned by push updates; augmenting project manpower with programmers who are not engineering experts; 

automated system requirement checks through “unit tests” of subassemblies; Multiphysics “integration tests” of 

full systems with massively parallel HPC; and automated reporting of physical requirements, e.g. exceeding stress, 

temperature, or noise constraints, for automated reporting of risk burn‐down to decision makers. Simrev as a code 

library, and associated IP, is available for license. DISCLAIMER This document was prepared as an account of work 

sponsored by an agency of the United States government. Neither the United States government nor Lawrence 

Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or 

assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, 

apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. 

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, 

or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 

States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed 

herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National 

Security, LLC, and shall not be used for advertising or product endorsement purposes. Lawrence Livermore 

National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, 

National Nuclear Security Administration under Contract DE‐AC52‐07NA27344. 

Page 10: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Fu, Rachel 

Presenter Company: Dassault Systemes SIMULIA Corp 

Presentation Title: From Comfort to Safety: Addressing Aerospace Industry Processes through Model‐Based 

Simulation 

Submission Type: Presentation 

Keywords: Aerodynamic performance, Lattice Boltzmann, aeroacoustics, digital noise certification, light‐weighting, 

functional design, composites, antenna design, lightning strike 

Abstract: 

The aerospace industry is experiencing an industry revolution, with a move towards personalized air travel. There 

are over 70 companies working to make air taxi vehicles a reality, through a variety of design approaches. 

Personalized air travel has many feasibility barriers, which can be addressed through model‐based simulation 

within the Digital Thread. Many of the feasibility barriers for personal air taxis are technical challenges for the 

traditional aerospace industry as well. Rapid innovation is required to overcome these challenges, for personalized 

air travel to become a reality. The key feasibility barriers for personalized air travel are as follows: vehicle 

performance, certification, aircraft noise, vehicle efficiency, cost and affordability, and safety. In this presentation, 

we will demonstrate how simulation can help to address these challenges. CFD has already had a significant impact 

on aerodynamic performance over the last 30 years, by helping to reduce drag and make planes more efficient. 

However, the use of CFD has been generally limited to the center of the flight envelope, or cruise conditions. This 

presentation will focus instead on our ability to dramatically expand the use of CFD by enabling a digital 

exploration of the entire flight envelope. Noise targets for new aircraft developments will get significantly tougher 

in the next decade, due to tougher certification targets, airport regulations and community demands. We now 

have the capabilities to predict aircraft noise with a high degree of accuracy, moving the industry towards digital 

noise certification. Functional generative design tools for light‐weighting incorporate both simulation and design 

within the Digital Thread. These tools are changing the paradigm from simply checking if a design meets the 

requirements, to using optimization to find the design that best meets the requirements. Increased use of 

composites to improve vehicle efficiency, cost, and affordability has led to an increase in the amount of simulation 

required for composite structures. Composite design and simulation capabilities integrated within the Digital 

Thread help to streamline composite modelling iterations. Finally, static and transient electromagnetic simulations 

can be used to design communication systems and help ensure that communications and flight control systems 

remain operational during lightning strike. These capabilities help to address various safety concerns in the 

aerospace industry. 

Page 11: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Guglielmetti, Antonio 

Presenter Company: TotalCAE 

Presentation Title: Hybrid Cloud HPC for Aerospace Simulations

Submission Type: Sponsor Case Study 

Keywords:  

Abstract:  

Sponsor Track Case Study (abstract not required) 

Page 12: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: James, Rick 

Presenter Company: SimuTech Group 

Presentation Title: Digitalization & Aerospace: The Next Era of Engineering Simulations

Submission Type: Presentation 

Keywords: Simulation, digital twin, predictive analytics, reduced order models, ROM, validation 

Abstract:  

One of the next eras of economic value from engineering simulation such as CFD and FEA will come from 

combining it with Industrial Internet of Things (IIoT) and digital twin (DT) methodologies. The simulation‐based 

digital twin will help companies analyze smart machines in real‐world operating conditions and make informed 

decisions that will improve their performance far above what is possible today. Physics‐based and system 

simulations with big data analytics and industrial devices augmented with embedded intelligence can reduce risk, 

avoid unplanned downtime, and speed up new product development. The resulting efficiency and productivity 

gains will have a dramatic effect on an organization’s bottom line, as well as on the global economy. Engineering 

simulation has long been used to improve the design of nearly every type of physical product or process by 

evaluating multiple alternative designs before physical prototypes are built. Simulation has also been used for 

decades to model different operating scenarios to develop control strategies. These data and workflows can be 

incorporated into control algorithms to improve operations. The emerging IIoT has created the potential for a 

transformational voyage in which a product or process simulation model is tied, through the Internet, to sensors 

capturing data and to actuators controlling its operation. The digital twin of the physical product or process can be 

used to analyze, perform diagnostics and troubleshooting in real time, anticipate and communicate breakdowns, 

determine the optimal point to perform maintenance, tune the product to optimize its performance, and capture 

information that can be used to improve the next‐generation design. The economic value is real and significant. 

There are fundamental core components that comprise a successful DT strategy, such as a full‐fidelity simulation 

model that captures all multi‐physics interactions; an IIoT platform such as GE’s Predix, Amazon’s AWS, or 

Microsoft’s Azure; a systems‐level control over the simulation model (1‐D logic layout), sensor data inputs into the 

IIoT platform; and a tool or method for creating a reduced‐order model (ROM) of the simulation model. A CPU‐

intensive full‐fidelity simulation model typically cannot be a component of digital twins because most simulation 

models require hours, days, or months of single‐core CPU‐equivalent solve time, thus the need for the ROM. The 

result is that a properly tuned digital twin can be used to substantially increase the performance and reliability of 

the product or process while reducing its operating cost. The digital twin methodology allows for less unplanned 

downtime, improved product development feedback, increased reliability, lower maintenance costs, and better 

predictive and prescriptive maintenance. This discussion will cover both conceptual and practical ideas about 

these core components in order to illuminate the overall economic opportunity, basic technical components, and 

workflows. Some of the likely obstacles to a successful implementation will be reviewed, such as how original 

equipment manufacturers (OEM) are not necessarily the same company using the equipment in downstream 

production. The importance of standards for data compatibility will be addressed. High‐level protocols for the 

ROM will be suggested and combined with an overview of what a simple verification and validation (V&V) program 

could look like for an OEM to maximize the value and relevance of their simulation workflow and models. Rick 

leads SimuTech Group’s team of 85 professionals who focus on simulation‐driven product consulting, training and 

mentoring in structural, thermal, fluids, electrical, RF, electromechanical, signal integrity, drop test, and 

probabilistic design. He is an expert in FEA and CFD and has excelled as a consultant, expert witness, trainer, and 

leader. SimuTech solves the "unsolvable” and the most complex engineering problems using world‐class 

engineering skill combined with FEA, CFD, and electromagnetics. We are also thought leaders in re‐engineering 

client digital engineering work flow: we provide on‐premises supercomputing, public Amazon AWS EC2 cloud 

computing with SimuCloud™, and on‐demand video training with SimuTrain™. 

Page 13: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Jayanthi, Aditya 

Presenter Company: Altair Engineering, Inc 

Presentation Title: Importance of Mixed Fidelity Numerical Simulations in Fluid System Design in Realizing Digital 

Twin 

Submission Type: Presentation 

Keywords:  

Abstract:  

Thermal fluid systems that both heat and cool are often utilized in aerospace applications. They are also often 

found in continuous processes where heating is required at one point in the process and cooling (often for heat 

recovery) is required in a different part of the process. Because these systems utilize the same fluid for both the 

heating and cooling process, they are collectively referred to as “single fluid systems.” This article discusses 

considerations specific to the design and operation of single fluid systems, although some of these considerations 

are more widely applicable. Single fluid systems can operate in an efficient and trouble‐free manner or they can 

subject the owner to operational inefficiencies and maintenance problems, depending on whether certain design 

and operational pitfalls are avoided. GE’s Flow Simulator is a Fluid System Design software under Altair 

Hyperworks portfolio that encompass several numerical techniques that conquer the robustness issues of stiff fluid 

system designs. It is the only fluid system design tool GE utilized to develop world record efficient gas turbines and 

the more advanced aircraft engines in the industry. In this presentation, we will demonstrate several uses cases 

pertinent to turbomachinery and aerospace industry and focus on the importance of system level tool with mixed 

fidelity capabilities in realizing the concept of digital twin. We focus on the mixed fidelity capabilities of Flow 

Simulator which allows to seamless connect 1D‐3D models and the low fidelity 3D system models which are used 

to simulate the entire “mission” of the aero engine. A low fidelity 3D model of an under cowl of aero engine is 

presented in greater detail. 

Page 14: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Panthaki, Malcolm 

Presenter Company: ARAS Corporation 

Presentation Title: Intelligent Simulation Automation is Foundational to Leveraging the Digital Thread and Digital 

Twins 

Submission Type: Presentation 

Keywords: Intelligent Simulation Automation for SPDM, SPDM and the Digital Thread within PLM, Simulation 

Automation for Design Space Exploration and Generative Design, Simulation Driven Design, CAD/CAE Integration, 

Simulation Governance 

Abstract: 

The authors will describe why Intelligent Simulation Automation (ISA) is an essential component of a widening 

technology landscape in the aerospace industry, required to implement a successful transition from a major 

reliance on physical testing to one that also relies heavily on simulation for product verification and certification 

processes. ISA is also key to enabling a wide range of other strategic priorities including Digital Thread traceability 

within the PLM backbone, Digital Twin analysis for predictive maintenance and design improvements, design space 

exploration, generative design, and the quality assessment of additive manufactured products. At their core, each 

of these advanced technologies requires mainstreaming simulation automation and data management to work 

robustly across significant (and unpredictable) design changes and entire product families that share common 

functional/architectural characteristics. The current, manual, inefficient and silo’ed simulation process must be 

replaced by CAD‐enabled, “lights‐out” automation that ensures predictable, accurate and verifiable simulation 

results – Intelligent Simulation Automation enables this. The desire to automate simulation processes has existed 

for decades. The technique of choice is often scripting/programming, with unsatisfactory results, limited 

repeatability and minimal ROI. The ad hoc nature of this approach has resulted in fragmented solutions that do not 

work well across the entire design space, are difficult to comprehend, and isolated from other product 

information. Since the 1990’s, optimization (PIDO) tools, have provided “process integration” to automate 

simulation steps. However, design changes, essential for any design space exploration (DSE), rely on automatically 

editing model files without semantic knowledge of their content which significantly limits the design change scope 

that can be explored at higher fidelity. The authors will describe why more effective enterprise‐wide SPDM is 

foundational to achieving closed‐loop traceability with requirements, test results, and design data and Intelligent 

Simulation Automation which better comprehends design changes. ISA is a fundamentally different approach that 

works robustly across significant design changes and across an entire product family, while supporting the 

appropriate level of mixed‐fidelity models from 0‐D through 3‐D and the various physics. Different from the 

scripting and PIDO approaches, the introduction of a neutral CAE data model directly into the PLM platform for 

SPDM provides an abstract model which significantly expands the design scope of the automation templates, 

enabling analysts to focus on real simulation challenges instead of administration. The authors will present use 

cases in the aerospace, heavy equipment and electronics industries to demonstrate how various companies have 

achieved ROI using Intelligent Simulation Automation. 

Page 15: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Panthaki, Malcolm 

Presenter Company: ARAS Corporation 

Presentation Title: Rapid, Robust Design of Space-Borne Optical Systems at NASA and Aerospace Corp.

Submission Type: Sponsor Case Study

Keywords: 

Abstract: 

Analyzing the Structural Thermal Optical Performance (STOP) of space-borne optical systems is a complex, multidisciplinary, manual process that is prone to human error. Given the zero-gravity, harsh environment of space, not easily duplicated on earth, simulation-driven what-if trade studies of these satellite systems is crucial to ensuring that the launched systems work correctly the first time – failures are expensive and usually not correctable in space.

Is the use of intelligent templates essential to automating such complex simulation processes? If so, how can these templates be made robust across an entire family of products that share a common functional architecture? We will illustrate a graphical workspace that uses an underlying comprehensive engineering product data model to facilitate the rapid creation, reuse and execution of intelligent simulation automation templates.

We will review how optical system design teams at the Aerospace Corp. and NASA have used the Comet Simulation Automation Workspace to rapidly perform STOP analyses, including parametric, what-if trade studies of their system designs. The presentation will compare the efficiency and robustness of this automated process compared to the prior manual process.

Page 16: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Plant, Jeff 

Presenter Company: The Boeing Company 

Presentation Title: Boeing Navigates the Digital Thread in its Second Century 

Submission Type: Keynote 

Keywords:  

Abstract:  

To fuel Boeing’s goals for innovation, growth and performance in its second century, the company must transform 

itself into a fully digital enterprise. To do this, Boeing will embrace a Model Based Engineering (MBE) strategy that 

will maintain a continuous digital thread from product conception to customer delivery and beyond. This talk will 

discuss the strategies and challenges, both technical and cultural, that Boeing must overcome to be successful. 

Page 17: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Pura, James

Presenter Company: MSC Software

Presentation Title: Using a Fully-Integrated Analysis Platform for Ground-Based Telescope Design & Analysis

Submission Type: Sponsor Case Study

Keywords:  

Abstract:  

Where did our universe come from? Since the beginning of time, astronomers and physicists such as Galileo, Copernicus, and Einstein have dedicated their life’s work to this timeless question. Even today, investigating the universe’s origins remains hotly debated. To help answer this, the team at the Giant Magellan Telescope is building a 200 foot-high telescope that will help scientists uncover what has plagued scientists and science fiction enthusiasts alike: Are we alone? How did the first galaxies form? What is the fate of the universe?

The GMT is uniquely poised to answer these questions due to its ability to collect more light than other telescopes and to its’ uniquely high resolution (which will be the highest ever achieved in a telescope). The project issponsored by Astronomy Australia Limited, Carnegie Observatories, Harvard University, and other leading universities and research institutions from around the globe. Due to the complexity of the structure, placement ofmirrors, and movements that will occur during operation of the telescope, the engineering team at GMTO used MSC Software’s simulation tool, MSC Apex, to simplify and shorten their design and simulation workflow.

Page 18: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Safarian, Patrick

Presenter Company: FAA

Presentation Title: Requirements of Certification by Analysis

Submission Type: Presentation 

Keywords: 

Abstract: 

Recent advancements in the field of numerical analysis enable engineers to solve complex problems using finite element analysis. These advancements aid in the investigation of responses of physical problems to their environment in a way that was not possible in the past. Using these tools, the engineering communities would like to depend more extensively on analytical approaches to investigate the subjects of their studies, where testing was traditionally used for that purpose. There is also a desire to replace certification tests by test-validated FEM. In each case, the reliability of these numerical solutions are a major concern. Certain regulatory requirements allow analytical approaches to be used for compliance purposes as an option to testing. In all cases these regulations require validation of the analysis before the results can be accepted. The current presentation identifies the federal aviation regulations that allow analysis as a means of compliance for the structural problems and provides acceptable means of validation of this analysis. This presentation provides a brief introduction to finite element analysis as an analytical tool with steps and recommendations for building a compliant numerical model. Examples of most recent advancements in the field of numerical methods in the aerospace industry are presented and discussed.

Page 19: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Sullivan, Sean

Presenter Company: Design Automation Associates

Presentation Title: Implementing the Digital Thread for Modeling, Simulation & Test

Submission Type: Presentation 

Keywords: Simulation, Correlation, Analysis, Aerospace, Test, Work flow, As-designed, As-tested, PLM, Digital Thread, 3D Modeling, MBSE

Abstract: 

For the aerospace industry to completely embrace and implement digital processes, and as the commercial foot print of the aerospace industry expands beyond the traditional airliner to space exploration, it’s imperative that disconnected test and simulation processes/data be organized, linked and traceable. Manual and unstructured coordination and organization of details is overly burdensome and inefficient.

The ATC Catalyst (Automated Test Correlation) is a unique solution that drives information, accountability and automation into the testing and simulation processes. It does this by organizing and connecting test and simulation data to enterprise and organizational level automated workflows within a PLM system. This significantly improves test and simulation organizational back-and-forth communication, execution and efficiency as well as maximizes test and simulation investment by inserting traceable data into the digital thread so that it can be leveraged by the enterprise.

DAA will present an ATC example using the MARS Rover Battery pack to demonstrate the concept and cost savings to specific aero manufacturers. We will show an embedded PLM digital workflow that exemplifies how we ensure that all steps in the testing and verification process are completed with a high-level of visibility to the current program status. Inside of the workflow, the Mars Rover Battery Pack AS-designed requirements are used to develop a digital 3D CAE twin model. The CAD 3D modeling attributes, thru simulation can accurately provide placement coordinates for sensors for the test engineer.

Page 20: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Wood, Ian 

Presenter Company: Dassault Systèmes SIMULIA Corp 

Presentation Title: Hybridized 3D Simulation of Antenna Array for Aircraft 

Submission Type: Sponsor Case Study 

Keywords:  

Abstract:  

Sponsor Track Case Study (abstract not required) 

Page 21: Aerospace Simulation Engineering - NAFEMS · A. Demeulenaere, Numeca Adjoint Optimization Combined with Mesh Morphing for CFD Applications A. Elango, ESTECO Using a Fully-Integrated

Presenter Name: Zacharias, Bob 

Presenter Company: GE Global Research & Development 

Presentation Title: GE’s Digital Thread for Design (DT4D) 

Submission Type: Keynote 

Keywords:  

Abstract:  

GE is developing a framework to drive the Digital Thread upstream into engineering design. This framework is 

being developed for all GE Businesses, including GE Aviation (jet and turboprop engines), GE Power (power 

generation gas turbines), GE Renewables (wind and hydro turbines), and others. Here, the Digital Thread connects 

the multi‐disciplinary engineering part/component/product design process, manufacturing & supply chain, testing, 

and field service. This fully connected Digital Thread allows for changes and modifications to the part or product, 

throughout the product lifecycle, to be quickly and fully evaluated and assessed by the engineering, 

manufacturing, supply chain, and services teams. Technologies included in DT4D include 1) Design Space Mapping, 

Design System Integration & High Performance Computing; 2) Analytical and Field Big Data Management; and 3) 

Machine Learning / Scalable Analytics to correlate and understand trade‐offs between design, manufacturing and 

field parameters and product life, performance, reliability, and other metrics.