22
AGENCY OF TRANSPORTATION OFFICE MEMORANDUM To: Ken Upmal, Highway Safety and Design, Project Manager From: Marcy Meyers, Geotechnical Engineer, via Callie Ewald, P.E., Senior Geotechnical Engineer Date: April 28 th , 2014 Subject: Bakersfield STP SCRP (11) – Geotechnical Data Report 1.0 INTRODUCTION We have completed our geotechnical investigation for the Bakersfield STP SCRP (11) project located along VT Route 108 (and intersecting with VT Route 36) in the Town of Bakersfield, Vermont. The proposed project consists of new utility placement, roadway reconstruction, and construction of a new retaining wall. This report summarizes the boring and laboratory testing information from our subsurface investigation and contains geotechnical foundation recommendations for the retaining wall design. 2.0 FIELD INVESTIGATION The field investigation was conducted between March 24 th and April 9 th , 2014. A total of sixteen borings were drilled to determine the soil strata for the proposed project. Eight solid stem roadway borings were performed approximately every 500 feet in alternating lanes of the roadway along the length of the project. Seven additional borings were performed between the roadway borings along the shoulders, using a larger 3-inch split spoon sampler to obtain subsurface information for the proposed utility placement. Finally, one boring was performed using the standard 2-inch split spoon sampler to obtain information for the construction of the new retaining wall. Northings and Eastings were attained using a handheld Trimble GPS unit and are based on the Vermont State Plane Grid NAD 83 coordinate system. Stations, offsets, and elevations were found using the Northings and Eastings and an existing survey. Boring location information is summarized below in Table 2.1. Table 2.1: Boring Locations Boring Scope Station (ft) Offset (ft) Northing (ft) Easting (ft) Elevation (ft) B-101 Roadway 182+35 6.0 830876.10 1561898.72 739.2 B-102 Roadway 187+34 -9.0 831295.83 1561977.04 739.7 B-103 Roadway 193+00 7.0 831851.43 1562106.13 740.5 B-104 Roadway 198+15 -8.5 832345.32 1562185.27 744.3 B-105 Roadway 203+47 6.0 832876.79 1562295.59 740.9 B-106 Roadway 208+95 -5.5 833389.40 1562371.95 734.8 B-107 Roadway 214+12 7.0 833900.53 1562487.84 722.7 B-108 Roadway 216+80 -5.5 834184.96 1562556.32 730.9 B-109 Roadway - Utility 184+00 -15.0 830978.06 1561907.52 737.7 B-110 Roadway - Utility 190+50 -12.0 831612.08 1562040.11 740.8 B-111 Roadway - Utility 131+45 9.0 832000.07 1562029.35 741.2

AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

AGENCY OF TRANSPORTATION OFFICE MEMORANDUM To: Ken Upmal, Highway Safety and Design, Project Manager From: Marcy Meyers, Geotechnical Engineer, via Callie Ewald, P.E., Senior

Geotechnical Engineer Date: April 28th, 2014 Subject: Bakersfield STP SCRP (11) – Geotechnical Data Report 1.0 INTRODUCTION We have completed our geotechnical investigation for the Bakersfield STP SCRP (11) project located along VT Route 108 (and intersecting with VT Route 36) in the Town of Bakersfield, Vermont. The proposed project consists of new utility placement, roadway reconstruction, and construction of a new retaining wall. This report summarizes the boring and laboratory testing information from our subsurface investigation and contains geotechnical foundation recommendations for the retaining wall design. 2.0 FIELD INVESTIGATION The field investigation was conducted between March 24th and April 9th, 2014. A total of sixteen borings were drilled to determine the soil strata for the proposed project. Eight solid stem roadway borings were performed approximately every 500 feet in alternating lanes of the roadway along the length of the project. Seven additional borings were performed between the roadway borings along the shoulders, using a larger 3-inch split spoon sampler to obtain subsurface information for the proposed utility placement. Finally, one boring was performed using the standard 2-inch split spoon sampler to obtain information for the construction of the new retaining wall. Northings and Eastings were attained using a handheld Trimble GPS unit and are based on the Vermont State Plane Grid NAD 83 coordinate system. Stations, offsets, and elevations were found using the Northings and Eastings and an existing survey. Boring location information is summarized below in Table 2.1.

Table 2.1: Boring Locations

Boring Scope Station (ft)

Offset (ft) Northing (ft) Easting

(ft) Elevation

(ft) B-101 Roadway 182+35 6.0 830876.10 1561898.72 739.2 B-102 Roadway 187+34 -9.0 831295.83 1561977.04 739.7 B-103 Roadway 193+00 7.0 831851.43 1562106.13 740.5 B-104 Roadway 198+15 -8.5 832345.32 1562185.27 744.3 B-105 Roadway 203+47 6.0 832876.79 1562295.59 740.9 B-106 Roadway 208+95 -5.5 833389.40 1562371.95 734.8 B-107 Roadway 214+12 7.0 833900.53 1562487.84 722.7 B-108 Roadway 216+80 -5.5 834184.96 1562556.32 730.9 B-109 Roadway - Utility 184+00 -15.0 830978.06 1561907.52 737.7 B-110 Roadway - Utility 190+50 -12.0 831612.08 1562040.11 740.8 B-111 Roadway - Utility 131+45 9.0 832000.07 1562029.35 741.2

Page 2: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

BAKERSFIELD STP SCRP (11) Page 2 of 10

Boring Scope Station (ft)

Offset (ft) Northing (ft) Easting

(ft) Elevation

(ft) B-112 Roadway - Utility 200+22 10.0 832522.08 1562235.48 743.7 B-113 Roadway - Utility 206+00 11.3 833104.99 1562341.22 738.8 B-114 Retaining Wall 209+47 23.0 833410.52 1562405.52 736.4 B-115 Roadway - Utility 211+50 -14.0 833650.16 1562410.32 723.7 B-116 Roadway - Utility 194+20 93.0 831954.84 1562216.29 743.5

The solid stem roadway auger borings were performed in general accordance with AASHTO T306, Processing Auger Borings for Geotechnical Explorations, to determine the subsurface profile to aid in the design and reconstruction of VT Route 108. A 4-inch sold stem auger flight was rotary drilled to 5 feet below the top of the roadway for the 8 roadway borings. The auger was then removed so that a visual observation of the soil profile could be made. This method has proven to be an efficient and reasonably accurate way to view changes in strata and obtain samples off the auger flights. The additional 7 roadway borings were performed using a 3-inch split spoon, also known as a California Sampler, for sampling. This sampler was used to attain a larger sample of material for testing directly under the pavement layer. The use of the 3-inch sampler is considered a modified penetration test, and therefore the N-values typically found according to AASHTO T206 Standard Method of Test for Penetration Test and Split-Barrel Sampling of Soils, cannot be used to determine soil parameters. The 3-inch split spoon samples were taken continuously from below the pavement layer to depths between 8 and 9 feet. This information was collected to determine the in-situ material at the location of the new drainage system along VT 108 and VT 36 and to determine whether or not the material excavated can be reused as backfill over the proposed pipe. The retaining wall boring was done using the standard 2 inch sampler in accordance with AASHTO T206, Standard Method of Test for Penetration Test and Split-Barrel Sampling of Soils. Split spoon samples and standard penetration tests (SPT) were performed continuously from below the ground surface to 12 feet, and then at 5 foot intervals until 25 feet. Soil samples were visually identified in the field and SPT blow counts were recorded on the boring logs when applicable. Soil samples were preserved and returned to the Materials and Research laboratory for testing and further evaluation. Upon completion of the laboratory testing, the boring logs were revised to reflect the results of the laboratory classification results. 3.0 FIELD AND LABORATORY TESTS The standard penetration resistance of the in-situ soil is determined by the number of blows required to drive a 2 inch OD split barrel sampler into the soil with a 140 pound hammer dropped from a height of 30 inches, in accordance with procedures specified in AASHTO T206. It is important to note that only boring B-114 was performed according to AASHTO T206. During the standard penetration test (SPT), the sampler is driven for a total length of 2 feet, while counting the blows for each 6 inch increment. The SPT N-value, which is defined as the sum of the number of blows required to drive the sampler through the second and third increments, is commonly used with established correlations to estimate a number of soil parameters, particularly the shear strength and density of cohesionless soils. The N-values provided on the

Page 3: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

BAKERSFIELD STP SCRP (11) Page 3 of 10

boring log are raw values and have not been corrected for energy, borehole diameter, rod length, or overburden pressure. The VT Agency of Transportation has determined a hammer correction value, CE, to account for the efficiency of the SPT hammer on the drill rig. For this project, a CME 55 track rig was used, with a CE=1.46. This value, included on the boring log, was used in soil parameter calculations for the proposed retaining wall. Laboratory tests were conducted on all samples to evaluate grain size, moisture content, percent finer than No. 200 sieve, and liquid and plastic limits when applicable. 4.0 SOIL PROFILE Borings were performed in the roadway throughout the project extents to determine the thickness of the asphalt pavement, classify the subbase and subgrade material, and gauge the groundwater level for excavation purposes. The boring in the location of the proposed retaining wall was performed to provide geotechnical foundation design recommendations for the retaining wall design. Review of the laboratory data and boring logs revealed the following information pertaining to the soil strata for both the roadway and the retaining wall foundation:

4.1 Roadway Borings (B-101 through B-108) The thickness of the asphalt pavement varied from 0.44 to 0.64 feet thick. The pavement overlies a layer of silty gravelly sand, which was encountered the entire length of the project. Groundwater was not encountered in any of the borings. All samples were deemed non-plastic. Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling notes which contain specific information regarding soil classifications, particle percentages, and depths of material. 4.2 Roadway Utility Borings (B-109 through B-116, except B-114) The thickness of the asphalt pavement varied from 0.34 to 0.74 feet thick. The pavement overlies a sandy gravel layer with a fines content of less than 18 percent to a depth of approximately 4 feet below the top of pavement. A mixture of silt and sand with a percent fines ranging as high as 48 percent exists below the sandy gravel layer. Groundwater was not encountered in any of the borings. All samples were deemed non-plastic. Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. The attached boring logs contain specific information regarding particle percentages, depths, and additional tests, if applicable. Also attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata.

Page 4: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

BAKERSFIELD STP SCRP (11) Page 4 of 10

4.3 Retaining Wall Boring (B-114) One boring was performed for the proposed retaining wall. The ground surface elevation at B-114 was 736.4 feet. Groundwater was encountered at a depth of 10.6 feet below ground surface during drilling operations and 14.2 feet below the ground surface once the casing was removed.

Depth (Below Ground Surface Elevation) Soil Profile 0 – 6 ft Very Loose Gravelly Silty Sand 6 – 15 ft Medium Dense Sand 15 – 20 ft Medium Dense Silty Sand 20 – 27 ft Medium Dense Sand

5.0 RECOMMENDATIONS

5.1 Roadway Utility Borings Based on the information available in the two borings along VT 36, it appears the in-situ material to depth contains less than 12% fines. As a result, the in-situ material that will be excavated for the drainage system installation along VT 36 may be reused as backfill.

The material in the borings taken along VT 108 contained a fines content up to 18% to a depth of 4 feet. The material became more silty with higher fines percentages below a depth of 4 feet. As a result, we recommend only the material to a depth of 4 feet below the pavement be reused as backfill for the drainage system installation along VT Route 108.

5.2 Retaining Wall AASHTO’s LRFD Bridge Design Manual (2012) was used as the reference for settlement and bearing capacity equations. Section 10.6.3.1.2 contains the equation used for bearing capacity. Neither depth factors nor load inclination factors were used in analysis as they were not considered pertinent. Hough’s Method, used to calculate settlement in normally consolidated cohesionless soils, can be found in section 10.6.2.4.2.

We recommend the bottom of footing to be 4 feet below the ground surface based on frost susceptibility and the silty sand bearing stratum at this site. A wall length of 165 feet was assumed for analysis based off the conceptual plans dated August 14, 2013. Although groundwater was encountered approximately 2 feet below the bottom of footing during boring operations, a conservative groundwater depth at the bottom of footing was used in analysis.

As per section 10.5.5.1 of the 2012 AASHTO LRFD Bridge Design Specifications, a resistance factor of 1.0 should be applied to the unfactored bearing resistance for use in service limit state design. Service limit state design includes, but is not limited to, settlement. Section 10.5.5.2.2 specifies that a resistance factor of 0.45 should be applied to the unfactored bearing resistance for use in strength limit state design for spread footings on rock and soil.

Strength limit state design includes, but is not limited to, checks for bearing resistance, sliding and constructability. Potential for overturning is limited by controlling the location

Page 5: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

BAKERSFIELD STP SCRP (11) Page 5 of 10

of the resultant of the reaction forces (eccentricity). Eccentricity, e, shall be limited as follows:

Foundations on soil: |e| < b/3 Foundations on rock: |e| < 0.45b

Eccentricity should be considered for settlement and bearing resistance design of spread footings by using effective footing widths based on AASHTO Section 10.6.1.3. All footing widths presented in this report are effective footing widths.

5.2.1 Bearing Resistance Based on the profile in Boring B-114, an assumed bottom of footing elevation located in the sand stratum, as well as empirical relationships, it was determined the soil has a friction angle, φ = 33° and density, γ = 115 lbs/ft3. Figure 5.1 below displays the minimum effective footing width per maximum bearing resistance, factored due to LRFD strength limit. For footing widths of 2, 4, 6 and 8 feet, the maximum bearing resistance is 3.6, 4.5, 5.5 and 6.4 kips/ft2 (ksf), respectively.

Figure 5.1 Factored bearing resistance. Load resistance factor, Φ=0.45

Soil settlement values were calculated for various footing widths based on the nominal bearing pressure. Found in Figure 5.2 are the settlement values for bearing pressures ranging from 0.5 to 3.0 ksf. Due to the more granular nature of the soils at the footing elevation, settlement is expected to occur during or immediately after construction.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 2 4 6 8 10

Bear

ing

Resis

tanc

e (k

sf)

Footing Width (ft)

Effective Footing Width vs. Bearing Resistance (factored)

Page 6: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

BAKERSFIELD STP SCRP (11) Page 6 of 10

Figure 5.2 Settlement vs. nominal bearing pressure

These calculations are based on the geometric and geotechnical assumptions outlined above. Sections 10.5.2 and 10.5.3 of AASHTO outline all design states relevant to spread footing design and their respective resistance factors. Table 5.1 shows the appropriate resistance factors for various design states.

Table 5.1 Summary of resistance factors Design State Resistance Factor, φ

Settlement 1.0 Scour 1.0

Bearing Resistance 0.45 Sliding 0.80

5.2.2 Global Stability Analysis A global stability analysis was conducted to evaluate the overall stability of the soil slope and proposed retaining wall. Using Slide version 6.0 developed by Rocscience, a slope stability analysis was performed which evaluated both compound and deep-seated failures for an 8.5 foot tall section of wall. According to the FHWA Soils and Foundations Manual Volume I, the Bishop Method is recommended to be used for slope stability analysis for non-cohesive soils. As a result, the Bishop Method produced a factor of safety against slope failure of greater than 1.3. A factor of safety of 1.3 is equivalent to a resistance factor of Φ=0.75, which according to AASHTO LRFD Section 11.6.2.3, is the resistance factor for overall stability of a retaining wall that does not support or contain a structural element. Figure 5.3 below shows an image of the retaining wall with the groundwater table at 2.9 feet below the ground surface, and the most critical failure surface using the Bishop Method.

0

1

2

3

4

0.00 0.50 1.00 1.50

Bear

ing

Pres

sure

(ksf

)

Settlement (in)

Settlement Based Upon Effective Footing Width and Bearing Pressure

B=2' B=4' B=6' B=8'

Page 7: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

BAKERSFIELD STP SCRP (11) Page 7 of 10

Figure 5.3 Retaining wall modeled in Slide 6.0

5.3 Retaining Wall Selection: A conceptual plan (end result) approach to retaining wall solicitation is recommended for all wall systems except conventional reinforced concrete walls and bin walls in which case detailed plans should be included in the bidding documents. In accordance with the Agency standard practice, projects containing earth retaining structures (except conventionally reinforced concrete and bin walls) shall use a concept drawing approach, i.e. fully detailed set of retaining wall plans will not be contained in the bidding documents. The design shall meet the requirements the 2012 LRFD Bridge Design Specifications. The concept drawing, furnished in the bidding documents will contain the following geometric and design project specific information:

A. Geometric

1. Beginning and end of wall stations. 2. Elevations on top of wall at beginning and end of wall station as well as all profile

break points. 3. Original and proposed ground line profiles in front of and behind the retaining

wall. 4. Cross sections at the retaining wall location at 24 foot intervals. 5. Horizontal wall alignment. 6. Details of wall appurtenances such as traffic barriers, coping, fencing, drainage,

location and configurations of signs and lighting including conduit locations. 7. Right of way limits.

Page 8: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

BAKERSFIELD STP SCRP (11) Page 8 of 10

8. Construction sequence requirements if applicable, including traffic control, access, and stage construction sequences.

9. Elevation of highest permissible level for foundation construction. Location, depth and extent of any unsuitable material to be removed and replaced.

10. Quantities table showing estimated square feet of wall area, and quantity of appurtenances and traffic barriers.

B. Design

1. Shear strength and consolidation properties of foundation soils. 2. Shear strength and unit weight of select backfill. 3. Shear strength of random fill or in-situ soil behind the wall. 4. Required design life of the structure (example: permanent mechanically stabilized

earth walls are commonly designed, based on corrosion, for minimum service lives of 75 years).

5. Nominal bearing resistance for the foundation soil and minimum footing embedment depth.

6. Maximum tolerable total and differential settlement. 7. Magnitude, location and direction of external loads due to bridges, overhead signs

and lights, traffic surcharge and rapid groundwater draw down. 8. Limits and requirements for drainage features beneath, behind, or through the

retaining structure. 9. Backfill requirements for both within and behind the retaining structure. (Both

material and placement requirements should be specified, i.e., gradation, plasticity index, electrochemical, soundness, maximum loose lift thickness, minimum density and allowable moisture content).

10. Special facing panel and module finishes or colors.

Geometric, geotechnical and structural considerations must be complementary for the conceptual plan to convey the desired end product to the bidders. In general, the specifications should refer to the Agency’s list of Approved Wall Systems in following link. http://vtransengineering.vermont.gov/sites/aot_program_development/files/documents/materialsandresearch/MandRSoilAPPROVED_Retaining_Walls_8-2012_Final.pdf.

It is recommended that the Redi-Rock, Recon, and T-wall systems be identified as acceptable options for this project and that other systems will be considered on a case by case basis. 5.4 Design Parameters Based on the soil profiles above, laboratory testing, and attached boring logs, the in-situ soil properties as well as engineering values for common construction materials can be found in Table 5.2. These values should be used in the design of the retaining wall foundation for this project.

The table below highlights the geotechnical design parameters of the in-situ soils as well as regularly specified aggregates. These values should be used when designing any substructure units. It is recommended that values of K0 be used for calculating earth pressures where the structure is not allowed to deflect longitudinally, away from or into the retained soil mass. Values for Ka should be utilized for an active earth pressure condition

Page 9: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

BAKERSFIELD STP SCRP (11) Page 9 of 10

where the structure is moving away from the soil mass and Kp where the structure is moving toward the soil mass. Ka and Kp values are based on a vertical back of wall and a horizontal ground surface behind the wall or structure.

Table 5.2 Engineering Properties of In-Situ Soils & Construction Materials

Design Parameter In-Situ V. Loose GrSiSa

In-Situ M. Dense Sa*

704.08 – Granular Backfill for Structures

Density, γ (lbs/ft3): 110 115 140

Internal Friction Angle, φ (degrees) 28 33 34

Coefficient of Friction, f - mass concrete cast against soil: 0.35 0.50 0.55

- soil against precast /formed concrete: 0.31 0.35 0.45

Active Earth Pressure Coefficient, Ka: 0.36 0.29 0.28 Passive Earth Pressure Coefficient, Kp: 2.77 3.39 3.54 At-Rest Earth Pressure Coefficient, Ko: 0.53 0.46 0.44 *Retaining wall bearing stratum

If a non-horizontal ground surface behind the wall or structure is used in design, the following equations should be used to determine the active earth pressure coefficient, Ka (AASHTO LRFD Section 3.11.5.3).

ka = sin2(θ+∅′f)Γ[sin2θ sin(θ−δ)] (3.11.5.3-1)

in which Γ = [1 + �sin(∅′f+δ) sin(∅′f−β)sin(θ−δ) sin(θ+β) ]2 (3.11.5.3-2)

Where: δ = friction angle between fill and wall taken as specified in Table 3.11.5.3-1 (degrees) β = angle of fill to the horizontal as shown in Figure 3.11.5.3-1 (degrees) θ = angle of back face of wall to the horizontal as shown in Figure 3.11.5.3-1 (degrees) ϕ’f = effective angle of internal friction (degrees) Refer to AASHTO LRFD Section 3.11.5.4 to determine the passive earth pressure coefficient, Kp for a non-horizontal ground surface.

Page 10: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

BAKERSFIELD STP SCRP (11) Page 10 of 10

5.5 Construction Considerations

5.5.1 Construction Dewatering Temporary construction dewatering may be required to install the utilities and retaining wall, which can likely be accomplished by open pumping from shallow sumps, temporary ditches, and trenches within and around the excavation limits. Sumps should be provided with filters suitable to prevent pumping of fine-grained soil particles. The water trapped by the temporary dewatering controls should be discharged to settling basins or an approved filter “sock” so that the fine particles suspended in the discharge have adequate time to “settle out” prior to discharge. All effluent, or discharge, should comply with all applicable permits and regulations.

Sumps and trenches should lie outside a 1V:1H line extending downward and outward from the edge of the footing. Installation and operation of the Contractor’s dewatering system should be integrated with other earthwork operations and sequence of cutting, filling, foundation construction, and backfilling.

5.5.2 Placement and Compaction of Soils Fills should be placed systematically in horizontal layers not more than 12 inches in thickness, prior to compaction. Cobbles larger than 8 inches should be removed from the fill prior to placement. Compaction equipment should preferably consist of large, self-propelled vibratory rollers. Where hand-guided equipment, such as a small vibratory plate compactor, is used the loose lift thickness shall not exceed 6 inches. Cobbles larger than 4 inches should be removed from the fill prior to placement.

Embankment fills should be compacted to a dry density of at least 90% of the maximum dry density determined in accordance with AASHTO T-99. Granular Backfill for Structures, or other select materials placed within the roadway base section shall be compacted to a dry density of 95% of the maximum dry density determined in accordance with AASHTO T-99.

6.0 CONCLUSION

We recommend this report be included with the contract documents when the project is advertised.

Please feel free to contact us at (802) 828-2561 if you have any questions, or you would like to further discuss this report. Typed boring logs are attached and are available in the CADD design files:

M:\Projects\10B248\Materials&Research

Attachments: Boring Logs (8 Pages) Roadway Boring Profile Sheet (2 Pages) Auger Notes (2 Pages)

cc: Read File/WEA Project File/CEE MLM

Z:\PDD\MaterialsAndResearch\Soils and Foundations\Projects\Bakersfield STP SCRP (11)\REPORTS\Bakersfield STP SCRP (11) Geotechnical Report.doc

Page 11: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

200

32-57-48-35

8-12-9-8

6-9-9-6

7.5

14.4

4.2

6.4

52.5

5.3

0.3

36.4

77.2

97.8

94.5

11.1

17.5

1.9

5.5

Asphalt Pavement, 0.0 ft - 0.56 ft

A-1-a, SaGr, brn, Moist, Rec. = 0.5 ft, Lab Note: Broken Rock was within sample.

A-2-4, Sa, brn, Moist, Rec. = 1.8 ft

A-3, Sa, brn, Moist, Rec. = 1.8 ft

A-3, Sa, brn, Moist, Rec. = 1.8 ft

Hole stopped @ 8.0 ft

Remarks:1. Drillers used a 3" split spoon sampler.2. Hole collapsed at 1.5 ft.

STATE OF VERMONTAGENCY OF TRANSPORTATION

MATERIALS & RESEARCH SECTIONSUBSURFACE INFORMATION

BORING LOG

BAKERSFIELDSTP SCRP(11)

Dep

th(f

t)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

VT-108

Boring Crew: DAIGNEAULT, JUDKINS

Date Started: 3/27/14 Date Finished: 3/27/14

VTSPG NAD83: N 830978.06 ft E 1561907.52 ft

Ground Elevation: 737.7 ft

Boring No.: B-109

Page No.: 1 of 1

Pin No.: 10B248

Checked By: MLM

Blo

ws/

6"(N

Val

ue)

Date Depth(ft)

Notes

Notes:

Hammer Fall:Hammer Wt:I.D.:Type:

03/27/14 No water to depth.

CE =

Moi

stur

eC

onte

nt %

Rig: CME 45C SKIDHammer/Rod Type: Auto/AWJ

3.0" S.S.3 in

140 lb.30 in.

H.S.A.3.5 inN.A.N.A.

Casing Sampler

Offset: -15.00

Gra

vel %

San

d %

Fin

es %

Groundwater Observations

CLASSIFICATION OF MATERIALS(Description)

Str

ata

(1)

Station: 184+00

1. Stratification lines represent approximate boundary between material types. Transition may be gradual.2. N Values have not been corrected for hammer energy. CE is the hammer energy correction factor.3. Water level readings have been made at times and under conditions stated. Fluctuations may occur due to other factors than those present at the time measurements were made.

BO

RIN

G L

OG

2 B

AK

ER

SF

IEL

D S

TP

SC

RP

(11)

.GP

J V

ER

MO

NT

AO

T.G

DT

4/2

8/1

4

Page 12: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

200

60-56-38-32

22-16-17-20

11-11-12-16

8.8

8.4

4.2

6.7

42.5

18.6

0.4

45.5

72.2

66.1

51.7

12.0

9.2

33.5

48.3

Asphalt Pavement, 0.0 ft - 0.48 ft

A-1-b, GrSa, brn, Moist, Rec. = 0.4 ft

A-1-b, Sa, brn, Moist, Rec. = 1.8 ft

A-2-4, SiSa, Lt/brn, Moist, Rec. = 1.6 ft

A-4, SiSa, Lt/brn, Moist, Rec. = 1.5 ft

Hole stopped @ 8.0 ft

Remarks:1. Drillers used a 3" split spoon sampler.2. Hole collapsed at 2.5 ft.

STATE OF VERMONTAGENCY OF TRANSPORTATION

MATERIALS & RESEARCH SECTIONSUBSURFACE INFORMATION

BORING LOG

BAKERSFIELDSTP SCRP(11)

Dep

th(f

t)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

VT-108

Boring Crew: DAIGNEAULT, JUDKINS

Date Started: 3/27/14 Date Finished: 3/27/14

VTSPG NAD83: N 831612.08 ft E 1562040.11 ft

Ground Elevation: 740.8 ft

Boring No.: B-110

Page No.: 1 of 1

Pin No.: 10B248

Checked By: MLM

Blo

ws/

6"(N

Val

ue)

Date Depth(ft)

Notes

Notes:

Hammer Fall:Hammer Wt:I.D.:Type:

03/27/14 No water to depth.

CE =

Moi

stur

eC

onte

nt %

Rig: CME 45C SKIDHammer/Rod Type: Auto/AWJ

3.0" S.S.3 in

140 lb.30 in.

H.S.A.3.5 inN.A.N.A.

Casing Sampler

Offset: -12.00

Gra

vel %

San

d %

Fin

es %

Groundwater Observations

CLASSIFICATION OF MATERIALS(Description)

Str

ata

(1)

Station: 190+50

1. Stratification lines represent approximate boundary between material types. Transition may be gradual.2. N Values have not been corrected for hammer energy. CE is the hammer energy correction factor.3. Water level readings have been made at times and under conditions stated. Fluctuations may occur due to other factors than those present at the time measurements were made.

BO

RIN

G L

OG

2 B

AK

ER

SF

IEL

D S

TP

SC

RP

(11)

.GP

J V

ER

MO

NT

AO

T.G

DT

4/2

8/1

4

Page 13: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

200

100

19-36-26-25

9-10-9-13

5.3

4.0

6.7

56.1

5.8

14.3

34.1

91.0

80.3

9.8

3.2

5.4

Asphalt Pavement, 0.0 ft - 0.74 ft

A-1-a, SaGr, brn, Moist, Rec. = 0.4 ft

Field Note:, No Recovery, Sampler stopped at 2.1 ft.

A-3, Sa, brn, Moist, Rec. = 1.7 ft

A-3, Sa, brn, Moist, Rec. = 1.8 ft

Hole stopped @ 8.0 ft

Remarks:1. Drillers used a 3" split spoon sampler.2. Hole collapsed at 3.2 ft.

STATE OF VERMONTAGENCY OF TRANSPORTATION

MATERIALS & RESEARCH SECTIONSUBSURFACE INFORMATION

BORING LOG

BAKERSFIELDSTP SCRP(11)

Dep

th(f

t)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

VT-108

Boring Crew: DAIGNEAULT, HOOK, JUDKINS

Date Started: 3/26/14 Date Finished: 3/26/14

VTSPG NAD83: N 832000.07 ft E 1562029.35 ft

Ground Elevation: 741.2 ft

Boring No.: B-111

Page No.: 1 of 1

Pin No.: 10B248

Checked By: MLM

Blo

ws/

6"(N

Val

ue)

Date Depth(ft)

Notes

Notes:

Hammer Fall:Hammer Wt:I.D.:Type:

03/26/14 No water to depth.

CE =

Moi

stur

eC

onte

nt %

Rig: CME 45C SKIDHammer/Rod Type: Auto/AWJ

3.0" S.S.3 in

140 lb.30 in.

H.S.A.3.5 inN.A.N.A.

Casing Sampler

Offset: 9.00

Gra

vel %

San

d %

Fin

es %

Groundwater Observations

CLASSIFICATION OF MATERIALS(Description)

Str

ata

(1)

Station: 131+45

1. Stratification lines represent approximate boundary between material types. Transition may be gradual.2. N Values have not been corrected for hammer energy. CE is the hammer energy correction factor.3. Water level readings have been made at times and under conditions stated. Fluctuations may occur due to other factors than those present at the time measurements were made.

BO

RIN

G L

OG

2 B

AK

ER

SF

IEL

D S

TP

SC

RP

(11)

.GP

J V

ER

MO

NT

AO

T.G

DT

4/2

8/1

4

Page 14: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

200

28-31-27-26

10-12-11-8

4-7-6-7

4.6

4.2

4.5

5.2

55.5

15.8

38.4

20.3

35.6

80.4

56.8

72.2

8.9

3.8

4.8

7.5

Asphalt Pavement, 0.0 ft - 0.34 ft

A-1-a, SaGr, brn, Moist, Rec. = 0.3 ft

A-1-b, Sa, brn, Moist, Rec. = 1.9 ft

A-1-b, GrSa, brn, Moist, Rec. = 1.8 ft

A-1-b, GrSa, brn, Moist, Rec. = 1.4 ft

Hole stopped @ 9.0 ft

Remarks:1. Drillers used a 3" split spoon sampler.2. Hole collapsed at 2.2 ft.

STATE OF VERMONTAGENCY OF TRANSPORTATION

MATERIALS & RESEARCH SECTIONSUBSURFACE INFORMATION

BORING LOG

BAKERSFIELDSTP SCRP(11)

Dep

th(f

t)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

VT-108

Boring Crew: DAIGNEAULT, HOOK

Date Started: 3/25/14 Date Finished: 3/25/14

VTSPG NAD83: N 832522.08 ft E 1562235.48 ft

Ground Elevation: 743.7 ft

Boring No.: B-112

Page No.: 1 of 1

Pin No.: 10B248

Checked By: MLM

Blo

ws/

6"(N

Val

ue)

Date Depth(ft)

Notes

Notes:

Hammer Fall:Hammer Wt:I.D.:Type:

03/25/14 No water to depth.

CE =

Moi

stur

eC

onte

nt %

Rig: CME 45C SKIDHammer/Rod Type: Auto/AWJ

3.0" S.S.3 in

140 lb.30 in.

H.S.A.3.5 inN.A.N.A.

Casing Sampler

Offset: 10.00

Gra

vel %

San

d %

Fin

es %

Groundwater Observations

CLASSIFICATION OF MATERIALS(Description)

Str

ata

(1)

Station: 200+22

1. Stratification lines represent approximate boundary between material types. Transition may be gradual.2. N Values have not been corrected for hammer energy. CE is the hammer energy correction factor.3. Water level readings have been made at times and under conditions stated. Fluctuations may occur due to other factors than those present at the time measurements were made.

BO

RIN

G L

OG

2 B

AK

ER

SF

IEL

D S

TP

SC

RP

(11)

.GP

J V

ER

MO

NT

AO

T.G

DT

4/2

8/1

4

Page 15: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

200

77-82-52-53

31-40-25-25

8-11-11-10

5.5

9.3

11.5

12.5

65.4

17.2

1.8

1.8

25.7

64.7

73.3

62.1

8.9

18.1

24.9

36.1

Asphalt Pavement, 0.0 ft - 0.58 ft

A-1-a, SaGr with Cobbles, brn, Moist, Rec. = 0.5 ft

A-1-b, Sa, brn, Moist, Rec. = 2.0 ft

A-2-4, SiSa, brn, Moist, Rec. = 1.9 ft

A-4, SiSa, brn, Moist, Rec. = 1.8 ft

Hole stopped @ 8.0 ft

Remarks:1. Drillers used a 3" split spoon sampler.2. Hole collapsed at 2.2 ft.

STATE OF VERMONTAGENCY OF TRANSPORTATION

MATERIALS & RESEARCH SECTIONSUBSURFACE INFORMATION

BORING LOG

BAKERSFIELDSTP SCRP(11)

Dep

th(f

t)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

VT-108

Boring Crew: DAIGNEAULT, HOOK

Date Started: 3/25/14 Date Finished: 3/25/14

VTSPG NAD83: N 833104.99 ft E 1562341.22 ft

Ground Elevation: 738.8 ft

Boring No.: B-113

Page No.: 1 of 1

Pin No.: 10B248

Checked By: MLM

Blo

ws/

6"(N

Val

ue)

Date Depth(ft)

Notes

Notes:

Hammer Fall:Hammer Wt:I.D.:Type:

03/25/14 No water to depth.

CE =

Moi

stur

eC

onte

nt %

Rig: CME 45C SKIDHammer/Rod Type: Auto/AWJ

3.0" S.S.3 in

140 lb.30 in.

H.S.A.3.5 inN.A.N.A.

Casing Sampler

Offset: 11.30

Gra

vel %

San

d %

Fin

es %

Groundwater Observations

CLASSIFICATION OF MATERIALS(Description)

Str

ata

(1)

Station: 206+00

1. Stratification lines represent approximate boundary between material types. Transition may be gradual.2. N Values have not been corrected for hammer energy. CE is the hammer energy correction factor.3. Water level readings have been made at times and under conditions stated. Fluctuations may occur due to other factors than those present at the time measurements were made.

BO

RIN

G L

OG

2 B

AK

ER

SF

IEL

D S

TP

SC

RP

(11)

.GP

J V

ER

MO

NT

AO

T.G

DT

4/2

8/1

4

Page 16: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

1-WH-WH-1(WH)

1-WH-1-1

(1)

1-1-2-2(3)

3-3-3-2(6)

4-5-5-6(10)

6-6-7-8(13)

8-7-8-8(15)

6-5-5-4(10)

6-6-6-9(12)

20.1

8.9

7.7

31.3

7.4

7.2

14.2

16.2

14.8

38.0

25.8

42.1

9.9

3.3

14.2

7.2

13.2

12.7

48.6

38.3

52.2

84.0

91.5

75.7

67.2

76.2

77.2

13.4

35.9

5.7

6.1

5.2

10.1

25.6

10.6

10.1

A-1-b, GrSa with grass, roots, & sticks, brn, MTW, Rec. = 0.8 ft

A-4, GrSiSa, brn, Moist, Rec. = 0.5 ft

A-1-b, GrSa, brn, Moist, Rec. = 1.0 ft

A-1-b, Sa, brn, MTW, Rec. = 1.1 ft

A-3, Sa, brn, Moist, Rec. = 1.2 ft

A-3, Sa, brn, Moist, Rec. = 1.4 ft

A-2-4, SiSa, brn, Moist, Rec. = 1.0 ft, Lab Note: Broken Rock was within sample.

A-2-4, Sa, brn, Moist, Rec. = 0.8 ft

A-3, Sa, brn, Moist, Rec. = 0.2 ft, Lab Note: Broken Rock was within sample.

Hole stopped @ 27.0 ft

Remarks:1. Hole collapsed at 20.7 ft.

STATE OF VERMONTAGENCY OF TRANSPORTATION

MATERIALS & RESEARCH SECTIONSUBSURFACE INFORMATION

BORING LOG

BAKERSFIELDSTP SCRP(11)

Dep

th(f

t)

5

10

15

20

25

30

VT-108

Boring Crew: DAIGNEAULT, HOOK

Date Started: 4/09/14 Date Finished: 4/09/14

VTSPG NAD83: N 833410.52 ft E 1562405.52 ft

Ground Elevation: 736.4 ft

Boring No.: B-114

Page No.: 1 of 1

Pin No.: 10B248

Checked By: MLM

Blo

ws/

6"(N

Val

ue)

Date Depth(ft)

Notes

Notes:

Hammer Fall:Hammer Wt:I.D.:Type:

04/09/14 10.6 While drilling.

04/09/14 14.2 Casing removed.

CE = 1.46

Moi

stur

eC

onte

nt %

Rig: CME 55 TRACKHammer/Rod Type: Auto/AWJ

SS1.5 in140 lb.30 in.

WB4 inN.A.N.A.

Casing Sampler

Offset: 23.00

Gra

vel %

San

d %

Fin

es %

Groundwater Observations

CLASSIFICATION OF MATERIALS(Description)

Str

ata

(1)

Station: 209+47

1. Stratification lines represent approximate boundary between material types. Transition may be gradual.2. N Values have not been corrected for hammer energy. CE is the hammer energy correction factor.3. Water level readings have been made at times and under conditions stated. Fluctuations may occur due to other factors than those present at the time measurements were made.

BO

RIN

G L

OG

2 B

AK

ER

SF

IEL

D S

TP

SC

RP

(11)

.GP

J V

ER

MO

NT

AO

T.G

DT

4/2

8/1

4

Page 17: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

200

102

28-39-13-14

5-15-17-17

7.0

7.2

18.0

10.2

47.6

51.3

24.4

23.9

41.9

35.8

58.4

29.8

10.5

12.9

17.2

46.3

Asphalt Pavement, 0.0 ft - 0.59 ft

A-1-b, SaGr with Cobbles, brn, Moist, Rec. = 0.53 ft, Lab Note: Some Broken Rock was withinsample.

A-1-a, SaGr with Cobbles, brn-gry, Moist, Rec. = 0.7 ft, Lab Note: Some Broken Rock waswithin sample.

A-2-4, GrSa with Cobbles, brn, Moist, Rec. = 1.9 ft

A-4, GrSaSi with Cobbles, brn, Moist, Rec. = 1.8 ft

Hole stopped @ 8.0 ft

Remarks:1. Drillers used a 3" split spoon sampler.2. Hole collapsed at 2.9 ft.

STATE OF VERMONTAGENCY OF TRANSPORTATION

MATERIALS & RESEARCH SECTIONSUBSURFACE INFORMATION

BORING LOG

BAKERSFIELDSTP SCRP(11)

Dep

th(f

t)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

VT-108

Boring Crew: DAIGNEAULT, HOOK

Date Started: 3/25/14 Date Finished: 3/25/14

VTSPG NAD83: N 833650.16 ft E 1562410.32 ft

Ground Elevation: 723.7 ft

Boring No.: B-115

Page No.: 1 of 1

Pin No.: 10B248

Checked By: MLM

Blo

ws/

6"(N

Val

ue)

Date Depth(ft)

Notes

Notes:

Hammer Fall:Hammer Wt:I.D.:Type:

03/25/14 No water to depth.

CE =

Moi

stur

eC

onte

nt %

Rig: CME 45C SKIDHammer/Rod Type: Auto/AWJ

3.0" S.S.3 in

140 lb.30 in.

H.S.A.3.5 inN.A.N.A.

Casing Sampler

Offset: -14.00

Gra

vel %

San

d %

Fin

es %

Groundwater Observations

CLASSIFICATION OF MATERIALS(Description)

Str

ata

(1)

Station: 211+50

1. Stratification lines represent approximate boundary between material types. Transition may be gradual.2. N Values have not been corrected for hammer energy. CE is the hammer energy correction factor.3. Water level readings have been made at times and under conditions stated. Fluctuations may occur due to other factors than those present at the time measurements were made.

BO

RIN

G L

OG

2 B

AK

ER

SF

IEL

D S

TP

SC

RP

(11)

.GP

J V

ER

MO

NT

AO

T.G

DT

4/2

8/1

4

Page 18: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

200

47-66-39-49

10-16-12-9

6-6-7-9

4.6

6.5

4.9

4.6

50.5

3.2

2.6

20.4

40.4

87.0

89.3

76.3

9.1

9.8

8.1

3.3

Asphalt Pavement, 0.0 ft - 0.48 ft

A-1-a, SaGr, brn, Moist, Rec. = 0.3 ft

A-3, Sa, brn, Moist, Rec. = 1.9 ft

A-3, Sa, brn, Moist, Rec. = 1.8 ft

A-1-b, GrSa, brn, Moist, Rec. = 1.7 ft

Hole stopped @ 8.0 ft

Remarks:1. Drillers used a 3" split spoon sampler.2. Hole collapsed at 2.9 ft.

STATE OF VERMONTAGENCY OF TRANSPORTATION

MATERIALS & RESEARCH SECTIONSUBSURFACE INFORMATION

BORING LOG

BAKERSFIELDSTP SCRP(11)

Dep

th(f

t)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

VT-108

Boring Crew: DAIGNEAULT, HOOK, JUDKINS

Date Started: 3/26/14 Date Finished: 3/26/14

VTSPG NAD83: N 831954.84 ft E 1562216.29 ft

Ground Elevation: 743.5 ft

Boring No.: B-116

Page No.: 1 of 1

Pin No.: 10B248

Checked By: MLM

Blo

ws/

6"(N

Val

ue)

Date Depth(ft)

Notes

Notes:

Hammer Fall:Hammer Wt:I.D.:Type:

03/26/14 No water to depth.

CE =

Moi

stur

eC

onte

nt %

Rig: CME 45C SKIDHammer/Rod Type: Auto/AWJ

3.0" S.S.3 in

140 lb.30 in.

H.S.A.3.5 inN.A.N.A.

Casing Sampler

Offset: 93.00

Gra

vel %

San

d %

Fin

es %

Groundwater Observations

CLASSIFICATION OF MATERIALS(Description)

Str

ata

(1)

Station: 194+20

1. Stratification lines represent approximate boundary between material types. Transition may be gradual.2. N Values have not been corrected for hammer energy. CE is the hammer energy correction factor.3. Water level readings have been made at times and under conditions stated. Fluctuations may occur due to other factors than those present at the time measurements were made.

BO

RIN

G L

OG

2 B

AK

ER

SF

IEL

D S

TP

SC

RP

(11)

.GP

J V

ER

MO

NT

AO

T.G

DT

4/2

8/1

4

Page 19: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling
Page 20: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling
Page 21: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

1 STATE OF VERMONT

AGENCY OF TRANSPORTATION MATERIALS & RESEARCH SECTION

SOILS & FOUNDATION UNIT DRILLING NOTES

PROJECT NAME: BAKERSFIELD PROJECT NUMBER: STP SCRP (11) SITE: VT 108 DATE: 4/2014 BORING CREW: HOOK, DAIGNEAULT TESTED BY: J. TOUCHETTE REVIEWED BY: M. MEYERS

B

OR

ING

No.

D

AT

E

DR

ILLE

D

ST

ATI

ON

(F

T)

O

FFSE

T

(FT

)

D

EPT

H

(

FT)

SAM

PLE

TY

PE FIELD DESCRIPTION LABORATORY RESULTS

SOIL TYPE, COLOR,

MOISTURE

%

MO

ISTU

RE

A

ASH

TO

CL

ASS

.

SO

IL D

ES.

%

GR

AV

EL

%

SA

ND

%

FIN

ES

LIQ

UID

L

IMIT

PLA

STIC

L

IMIT

B-101 3/24/14

182+35 6.0 RT 0.00 – 0.52 A Asphalt Pavement

0.52 – 3.0 A GrSa, brn, moist 5.4 A-2-4 SiSa 18.8 52.3 28.9

3.0 – 5.0 A Sa, brn, moist 4.7 A-2-4 Sa 0.8 83.9 15.3

NLTD

B-102 3/24/14 187+34 9.0 LT 0.00 – 0.57 A Asphalt Pavement

0.57 – 5.0 A GrSa, brn, moist 7.8 A-2-4 SiSa 17.0 49.9 33.1

NLTD

B-103 3/24/14 193+00 7.0 RT 0.00 – 0.64 A Asphalt Pavement

0.64 – 5.0 A Sa, brn, moist 5.8 A-2-4 SiSa 15.7 59.4 24.9

NLTD

B-104 3/24/14 198+15 8.5 LT 0.00 – 0.57 A Asphalt Pavement

0.57 – 3.0 A Sa, brn, moist 3.0 A-1-b SiGrSa 25.0 50.9 24.1

3.0 – 5.0 A SiSa, brn, moist 17.7 A-4 SiSa 2.6 59.0 38.4

NLTD

Cont.

Page 22: AGENCY OF TRANSPORTATION OFFICE …...Attached is a visual representation of the subsurface profile, interpreted by the borings, showing the various strata. Also attached are the drilling

BAKERSFIELD STP SCRP (11) 2

B

OR

ING

No.

D

AT

E

DR

ILL

ED

ST

AT

ION

(F

T)

O

FFSE

T

(FT

)

DEP

TH

(FT

)

SAM

PLE

TY

PE FIELD DESCRIPTION LABORATORY RESULTS

SOIL TYPE, COLOR,

MOISTURE

%

MO

ISTU

RE

A

ASH

TO

CL

ASS

.

SO

IL D

ES.

%

GR

AV

EL

%

SA

ND

%

FIN

ES

LIQ

UID

L

IMIT

PL

AST

IC

LIM

IT

B-105 3/24/14 203+47 6.0 RT 0.00 – 0.63 A Asphalt Pavement

0.63 – 5.0 A Sa, brn, moist 4.1 A-2-4 GrSiSa 21.3 51.8 26.9

NLTD

B-106 3/24/14 208+95 5.5 LT 0.00 – 0.53 A Asphalt Pavement

0.53 – 3.0 A Sa, brn, moist 3.7 A-2-4 GrSiSa 20.4 52.8 26.8

3.0 – 5.0 A SaSi, brn, moist 16.9 A-4 SiSa 12.8 50.7 36.5

NLTD

B-107 3/24/14 214+12 7.0 RT 0.00 – 0.56 A Asphalt Pavement

0.56 – 5.0 A GrSa, brn, moist 4.9 A-2-4 GrSiSa 22.4 48.2 29.4

NLTD

B-108 3/24/14 216+80 5.5 LT 0.00 – 0.44 A Asphalt Pavement

0.44 – 5.0 A GrSa, brn, moist 4.9 A-2-4 GrSiSa 25.9 46.6 27.5

NLTD

SAMPLE TYPE “A” = Auger

NLTD = No Ledge to Depth