7
1 University University Florida Florida Agricultural & Biological Engineering Transport of Colloidal Particles in the Vadose Zone University University Florida Florida Agricultural & Biological Engineering Outline • Introduction Transport Mechanisms l l • Pore-Scale Visualization Experimentation and Modeling University University Florida Florida Agricultural & Biological Engineering Colloids Natural Colloids Abiotic: All kinds of minerals, Particulateorganic All kinds of minerals, Particulate organic matter … Biotic: Viruses, Bacteria, & Protozoa (“Biocolloid”) Engineered Nanoparticles e.g. Buckyball (C 60 ), Nanotubes, Oxides University University Florida Florida Agricultural & Biological Engineering Size Range source: CERN http://microcosm.web.cern.ch/microcosm 10cm 1cm 1mm 1cm 100μm 10μm University University Florida Florida Agricultural & Biological Engineering Colloids in Subsurface • Facilitate contaminant transport Affect soil-profile Affect soil profile development • Microbial pathogens • Remediation Source: McCarthy and Zachara , ES&T 1989 University University Florida Florida Agricultural & Biological Engineering

Agricultural & Biological Engineering Outline - UF/IFASsoils.ifas.ufl.edu/lqma/SEED/SWS6262/Lecture notes/Gao-10.pdf · 3 University Florida Agricultural & Biological Engineering

Embed Size (px)

Citation preview

1

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Transport of Colloidal Particles in

the Vadose Zone

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Outline

• Introduction

• Transport Mechanisms

l l• Pore-Scale Visualization

• Experimentation and Modeling

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Colloids

• Natural Colloids

Abiotic:

All kinds of minerals, “Particulate” organic All kinds of minerals, Particulate organic matter …

Biotic:

Viruses, Bacteria, & Protozoa (“Biocolloid”)

• Engineered Nanoparticles

e.g. Buckyball (C60), Nanotubes, Oxides

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Size Range

source: CERN http://microcosm.web.cern.ch/microcosm

10cm1cm1mm

1cm

100μm10μm

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Colloids in Subsurface

• Facilitate contaminant transport

• Affect soil-profile Affect soil profile development

• Microbial pathogens

• Remediation

Source: McCarthy and Zachara , ES&T 1989

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

2

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

www.hanford.gov

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

• Introduction

• Transport Mechanisms

l l

Outline

• Pore-Scale Visualization

• Experimentation and Modeling

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Transport Processes

• Advection: transport due to bulk motion of the porewater.

• Dispersion: spreading arising from velocity

Vadose Zone

water & airin pores

arising from velocity variations.

• Deposition: processes that immobilize porewater colloids.

• Mobilization: processes that release colloids into porewater.

Zone

SaturatedZone

water fillspores

Water table

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Deposition Mechanisms

Vadose water & air

in pores

GrainAttachment

waterflow

bil

airwaterflow

bil

air

grai

n su

rfac

e

waterflow

(aroundbubble)

waterflow

(aroundbubble)

Water InterfaceAirAttachment

-e Pore-StrainingAttachment

waterflow

waterflow

Film-StrainingAttachment

immobilecolloidimmobilecolloidgr

ain

surf

ace

Zone

SaturatedZone

p

water fillspores

Water table

mobilecolloid

immobilecolloid

tot

mobilecolloid

immobilecolloid

tot

airbubble

mobilecolloid

immobilecolloid

airbubble

mobilecolloid

immobilecolloid

grai

n su

rfac

emobilecolloid

immobilecolloid

mobilecolloid

immobilecolloid

grai

n su

rfac

e

waterflow

wfilm

dp

mobilecolloid

airwaterflow

wfilm

dp

mobilecolloid

air

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Deposition Mechanisms

Film-StrainingAttachment

GrainAttachment

Air-Water InterfaceAttachment

Pore-StrainingAttachment

immobilecolloid

waterflow

air waterflow

(aroundbubble)

waterflow

immobilecolloid

waterflow

air waterflow

(aroundbubble)

waterflow

grai

n su

rfac

e

grai

n su

rfac

e

waterflow

wfilm

dp

mobilecolloid

mobilecolloid

immobilecolloid

tot

air

mobilecolloid

airbubble

mobilecolloid

immobilecolloid

immobilecolloid water

flow

wfilm

dp

mobilecolloid

mobilecolloid

immobilecolloid

tot

air

mobilecolloid

airbubble

mobilecolloid

immobilecolloid

immobilecolloid

grai

n su

rfac

e

grai

n su

rfac

e

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Mobilization Mechanisms

Vadose water & air

in pores

Film-ExpansionReleasewaterflow

waterflow

Air-Water InterfaceScouring

waterflow

waterflow

n su

rfac

e

ColloidDispersion

waterflow

tot

waterflow

totgrai

n su

rfac

e

ShearMobilization

waterflow

waterflow

Zone

SaturatedZone

in pores

water fillspores

Water tablewfilm

dp

mobilecolloid

immobilecolloid

wfilm

dp

mobilecolloid

immobilecolloid

grai

n su

rfac

e

mobilecolloidmobilecolloid

grai

n

mobilecolloid

detachedcolloid

mobilecolloid

detachedcolloid

mobilecolloidmobilecolloidgr

ain

surf

ace

3

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Mobilization Mechanisms

ShearMobilization

Air-Water InterfaceScouring

Film-ExpansionRelease

ColloidDispersion

waterflow

waterflow

waterflow

waterflow

tot

waterflow

waterflow

waterflow

waterflow

totgrai

n su

rfac

e

urfa

ce

mobilecolloid

mobilecolloid

wfilm

dp

mobilecolloid

immobilecolloid

mobilecolloid

detachedcolloid

mobilecolloid

mobilecolloid

wfilm

dp

mobilecolloid

immobilecolloid

mobilecolloid

detachedcolloid

grai

n su

rfac

e

grai

n su

rfac

e

grai

n s

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Immobile Water (storage zones for nanopoarticles?)

Other Mechanisms?

Air

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Water displaces air, which converts Immobile-water zonesto mobile-water zones and releases stored colloids

Other Mechanisms?

Air

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

• Introduction

• Transport Mechanisms

l l

Outline

• Pore-Scale Visualization

• Experimentation and Modeling

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Pore-Scale VisualizationsFluorescent & Bright Field Microscopy

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Three Deposition Mechanisms

Pore-Scale Visualizations

Three Deposition Mechanisms

4

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Particle Deposition (1)Captured by Air Bubble

100 μm

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Particle Deposition (2)Strained in Thin Water Film

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Particle Deposition (3)Trapped in Immobile Water

Air

100 μm100 μm

Water

Immobile water

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Two Mobilization Mechanisms

Pore-Scale Visualizations

Two Mobilization Mechanisms

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Immobile Water

Particle Mobilization (1)Expansion of Thin Water Film

Air

Water

100 μm

Gao et al. 2006. Water Resources Research, 42(1), W01410

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Immobile Water

Particle Mobilization (2)Conversion of Immobile Water

Air

Water

100 μm

Gao et al. 2006. Water Resources Research, 42(1), W01410

5

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Pore-Scale VisualizationsConfocal Laser Scanning Microscopy

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Image Analyses

Confocal Laser Scanning Image

COUNTING PARTICLES

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

w

ws KM

KNMM

11000

1500

2000

s

Image Analyses

wss C

X

Mk

dt

dC 2)1(

Kinetics!

0

500

1000

0 2000 4000 6000 8000 10000

Mw

Ms

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Outline

• Introduction

• Pore-Scale Visualization: Movies

l d• Column Experimentation and Modeling: Homogeneous & Heterogeneous

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Homogeneous ColumnsColumn Break Through Curves

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Flow Equations

• Darcy’s Law

• Laplace Equation (Steady Flow)

• Diffusion Equation (Transient Flow)• Diffusion Equation (Transient Flow)

• Richards Equation

• Brooks and Corey Equation

• Mualem–van Genuchten Equation

6

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Model Summary

• Column moisture content: One-dimensional form of the flow equation

E ample )]1([

kExample:

• Column chemistry: solute transport model

Example:

)]1([

z

kzt

z

Cv

z

CD

zt

C HHH

)(

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

• Particle transport: One-dimensional convection-dispersion equation

Example:

Model Summary

• Different kinetics expressions

z

qC

z

CD

zt

C

t

C

t

C knk

)(][

))1((...

))1(()( 1

First-order rate law

Second-order rate law

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Effects of Flow Perturbations on Clay Release

60

80

100

/L)

0.15

0.2Kaolinite

Steady Flow: Q0=10 mL/min

Transient Flow: Q1= 20 mL/min Q2=40 mL/min Q3=70 mL/min

0

20

40

60

0 2000 4000 6000 8000Cumulative Volume (mL)

C (

mg/

0

0.05

0.1

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

80

100

6

7

8

pH

Effects of pH Perturbations on Clay Release

0

20

40

60

2800 3800 4800 5800 6800

Cumulative Volume (mL)

C (

mg

/L)

0

1

2

3

4

5

pH

Kaolinite

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Heterogeneous Columns

• Coarse sand was packed in the center of the column surrounded by fine sandby fine sand

• Clay applied to column under conditions of steady flow and chemical conditions

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Simulations of Flow and Moisture

Θ

7

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Visualizations

100 μm

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Clay Transport through Saturated Heterogeneous Column

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Clay Transport through Unsaturated Heterogeneous Column

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Laboratory ColumnsIn-Suit Measurement

Cornell High Energy Synchrotron Source

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

Particle Facilitated Transport

Clay-Metal Transport

0.8

1

1.2

nte

nt

-0.2

0

0.2

0.4

0.6

0 500 1000 1500 2000

t (sec)

wat

er a

nd

Cd

co

n

w ater

Cd-Clay Complex

Model

UniversityUniversity FloridaFloridaAgricultural & Biological Engineering

www.hanford.gov