20
1 THE GREENLAND AIR TRANSPORT MODEL SYSTEM - A COMBINED TRANSPORT MODELLING AND OPTIMISATION PROBLEM Otto Anker Nielsen 1,a , Professor, Ph.D. Jeppe Rich ,a , Associate Professor, Ph.D. Mette Aagaard Knudsen ,a , Ph.D. student, M.Sc. Rasmus Dyhr Frederiksen ,b , M.Sc. Partner, Rapidis ltd. a Center for Traffic and Transport (CTT), Technical University of Denmark (DTU) Building 115, st.tv., 2800 Lyngby, Denmark b Rapidis Ltd., Jægersborg allé 4, 2920 Charlottenlund, Denmark SHORT ABSTRACT The paper describes a combined demand and optimisation model for air transport in Greenland. Demand and route choice for passenger and freight is addressed at the lower level problem, whereas the service network, flight schedules (time-table optimization), de- cision on airplane types (considering cost and capacity), and finally creation of airplane schedules are dealt with in the upper level problem. Due to special capacity restrictions combined with the need for a schedule based assignment model, this bi-level problem can- not be solved analytically. The lower level model is a non-analytical non-linear non- continuous mapping of the solution of the upper level problem. The model is now used by the Greenland Home Rule to decide upon a new airport struc- ture in Greenland (change of main airports and creation of new airports), policies to obtain more competition and to liberalise the market, and to design the main air transport system. In the paper, we present the model as well as a study in which the location of a new Atlan- tic Airport is analysed. The cost-benefit analysis indicates that the present airport structure is highly in-optimal and that significant benefits will result if the location of the new air- port is moved to Nuuk, the Capital of Greenland. 1. INTRODUCTION Being the worlds largest island, but with only 56,000 inhabitants in a mountainous arctic area with no possibilities for interurban road transport, air transport plays a central role for the society. However, the present transport network needs large public subsidies yet having very high user costs and often inconvenient transfers for the users. 1 Corresponding Author. E-mail address: [email protected] ; Tel.: +45 45251514; Fax: +45 45936412.

Air Transport Analysis Greenland

  • Upload
    abeh

  • View
    13

  • Download
    0

Embed Size (px)

DESCRIPTION

Air Transport Analysis Greenland

Citation preview

  • 1

    THEGREENLANDAIRTRANSPORTMODELSYSTEM-ACOMBINEDTRANSPORTMODELLINGANDOPTIMISATIONPROBLEM

    OttoAnkerNielsen1,a,Professor,Ph.D.JeppeRich,a,AssociateProfessor,Ph.D.

    MetteAagaardKnudsen,a,Ph.D.student,M.Sc.RasmusDyhrFrederiksen,b,M.Sc.Partner,Rapidisltd.

    aCenterforTrafficandTransport(CTT),TechnicalUniversityofDenmark(DTU)

    Building115,st.tv.,2800Lyngby,Denmark

    bRapidisLtd.,Jgersborgall4,2920Charlottenlund,Denmark

    SHORTABSTRACTThe paper describes a combined demand and optimisation model for air transport inGreenland.Demandand routechoice forpassengerand freight isaddressedat the lowerlevelproblem,whereastheservicenetwork,flightschedules(time-tableoptimization),de-cision on airplane types (considering cost and capacity), and finally creation of airplaneschedules are dealt with in the upper level problem. Due to special capacity restrictionscombinedwiththeneedforaschedulebasedassignmentmodel,thisbi-levelproblemcan-not be solved analytically. The lower level model is a non-analytical non-linear non-continuousmappingofthesolutionoftheupperlevelproblem.ThemodelisnowusedbytheGreenlandHomeRuletodecideuponanewairportstruc-tureinGreenland(changeofmainairportsandcreationofnewairports),policiestoobtainmorecompetitionandtoliberalisethemarket,andtodesignthemainairtransportsystem.Inthepaper,wepresentthemodelaswellasastudyinwhichthelocationofanewAtlan-ticAirportisanalysed.Thecost-benefitanalysisindicatesthatthepresentairportstructureishighlyin-optimalandthatsignificantbenefitswillresultifthelocationofthenewair-portismovedtoNuuk,theCapitalofGreenland.

    1. INTRODUCTIONBeingtheworldslargest island,butwithonly56,000inhabitants inamountainousarcticareawithnopossibilitiesforinterurbanroadtransport,airtransportplaysacentralroleforthesociety.However,thepresenttransportnetworkneedslargepublicsubsidiesyethavingveryhighusercostsandofteninconvenienttransfersfortheusers.

    1CorrespondingAuthor.E-mailaddress:[email protected];Tel.:+4545251514;Fax:+4545936412.

  • 2

    1.1 BackgroundThe main airport of Greenland is not located at the Capital (Nuuk), but at the locationSdr.StrmfjordatthebottomofthefjordSnderstrmfjord150km.fromthecost-lineandonly10km.fromtheicecap.Thislocationwasoriginallychosenduetohistoricalrea-sons, since the US built the runway and airfield during the Second World War. At thattime,themainconsiderationwastominimizeaccessibilityforpotentialGermansubma-rines. Clearly, today this objective has changed and with increasing air transport inGreenland,theefficiencyofthesystemhasbeenquestioned.Threemajorissueshavebeendiscussed; Thereisa feeder-trafficstructurebetweenNuukandSdr.Strmfjord.Thelinkhasto

    beservicedbyDASH7turbo-propairplanes(50seatmax.),whichisthelargestair-planethatcanlandandtake-offatthe899meterrunwayinNuuk.Tocompare,the4hour flights fromSdr.Strmfjord toCopenhagenarepresently servedbya245seatsAirbuses-200withadditionalcargofacilities.

    TherehavetobeanArtificialcommunityinSdr.Strmfjordtosupporttheoperationoftheairportandthereislargeoperationcostsassociatedwiththis.Asecondproblemisthat,asaresultofglobalwarming,thepermafrostonwhichtheSdr.Strmfjordrun-wayisbasedhasstartedtothaw,makingitcostlytomaintain.

    Fordomesticflights,aDash7airnetworkhasNuukashub.Therefore,theIslandop-erateswithtwohubs,eventhoughthepopulationisonly56,854inhabitants.

    EventhoughitmightseemveryobvioustobuildanAtlanticairportinNuuk,thedeci-sionisnot trivialduetotheconstructioncostsrelatedtothis.Realisinganeedforbetterdecision tools, the Greenland Home Rule asked the Technical University of Denmark(DTU)todevelopanintegratedsystemofatransportmodel,anairnetworkoptimizationmodel,andasocio-economicdecisionsupportmodel.

    1.2 Overviewofthemodelsystem

    Whilethewholemodelsystemincludesdemandmodels,andsocio-economicimpactmod-els,thepresentpaperfocusontheinteractionbetweentheassignmentmodelsandtheop-timisationmodels.Theroutechoicemodelassignspassengersontothe(air)network.Themodeloperateswithexacttimetables,andtakesintoaccountcapacityconstraints(seataswellasweightrestric-tions).Themodelisformulatedasastochastic(mixedprobit)multi-classuserequilibriummodel. A special consideration is that post (letters) have the highest priority, and thatpostal sacks literally can replace passengers. Passengers then have higher priority thanfreight.Thechoiceofthepassengersdependsonthenetwork,i.e.theleg-structure,thedeparturetimes(andfrequencies)andtheaircraftsbeingused(fastjet-plainsmaymakeadifferencecomparedtolesscomfortableslowpropelledairplanes).Theoptimizationmodeldesigntheoverallairtransportationnetwork,legstructure(depar-turetime),choosesplaintypes,andcalculatesthecostsofoperationsincludingtheneces-sarynumberofaircrafts.

  • 3

    1.3 DecisioncontextThemodelcontextmaybeconsideredtorepresentatthreeplayergameconsistingofandfindinganequilibriumbetween;

    1. Home rule decisions (which are feed into the system manually as exogenous as-sumptions)

    Airportstructure(location,lengthofrunways) Subsidiesand/orpackagesofroutes MinimumservicefrequenciesdefinedbytheHomerule

    2. Aircompanydecisions Legs(andgeneralstructureofnetwork) Schedule Airplaneallocation Non-Greenlandflights Fare

    3. Passengerdecisions Number of trips, destination, mode choice (domestic to some limited ex-

    tend), route choice, timeof travel (partlypart of route choice), fare level,company.

    1.4 ObjectfunctionsintheoptimisationmodelTheobjectfunctionoftheairmodelincludesthefollowingelements;

    1passenger(dis)utility+2costs_of_operation+3fare_revenueThefunctionismaximised,wherebythemodelcreatestheairnetwork.Thepassengerdis(utility)isafunctionoffrequency(dis-utilityoffewdepartures),waitingtime,traveltime,transfertime,numberoftransfers(theextradisutilityoftransfering),andfare.Thecostsofoperationsoftake-off(includinghandlingattheairport),adistancedependentcost and a turn-arround cost (the costs of not using the airplain between arrival anddeparture, i.e. lost returnof investment).Thesecostsdependon the typeofaircraft.Thetotalcostsusually increaseswith thesizeof theaircraft,however, theunitcostperPAX(passenger)isusuallylowerforlargeraircrafts.InGreenland,helicoptershavetobeusedto locations without runways, however, helicopters have a much higher unit cost thanairplanes.Thetwooveralloptimizationcriteriafortheservicenetworkdesignarepartlyconflicting;

    Tominimizetheoperationscostsandmaximizerevenue(companyobjectives) Tomaximizetheutilityforpassengersandsociety

    Theobjectfunctioncanbeconfiguredaspurecompanyprofitmaximization,i.e. Max[carerevenue-costsofoperations]

  • 4

    Normallyitisreasonabletoassumethatairlinecompaniestriestomaximizethisobjectiveandthattheroutenetworkwouldreflectsuchfunctioninacompletelyfreemarket2.

    Thefunctioncanalsobeconfiguredasapuresocioeconomicoptimization,i.e. Min[passenger(dis)utility+costofoperation]Inotherwords, thepassengersshouldobtainminimumgeneralised travelcost taking theoperationcostsintoaccount.Thissocio-economicoptimizationresultsinadifferentroutenetworkthantheoperationaloptimization. Incaseof substantialdifferencesbetween the twosolutions itcouldfavourregulations. I.e. a change in the operational conditions through subsidizes or taxes andduties

    Acombinedfunctioneveninasocio-economicvaluationcouldalsobeasolution,i.e.Min[1passenger(dis)utility+2operationcost+3ticketrevenue]

    Itcanbeargued,thatsinceashareoftheticketrevenuesissubmittedtotheHomerules,thisobjectivemightbereasonable.Thiscouldaswellbethecase,especiallyiftherevenuecomes fromforeigners.Also, itmightbe lessdistorting than the taxon income (less taxdistortion).3 is between 0 and -1. Isolated from Greenlands point of view it could beargued that theoperation costshas apartly increasing affect on employment and that2shouldbesetbelow1.

    Hence,inpoliticalanalysisitispossibletoimplementsensitivitycalculationsandevaluatethe optimized structure of the route network given different assumptions and politicalpriorities. Within the model tests so far there are however used a purely operationalconfigurationasitispresumedthatAirGreenlandprimarydesignstheroutenetworkfromprofitableconsiderations.

    1.5 PassengerbehaviourpredictionEachpassengerwilltypicallymaximizehis/herownutility.However,inaddition,itcanbeassumedthatpassengershaveincompleteknowledgeofalternativesandaswelldifferentpreferences.Asa result, themodeloperateswith twodifferentobjectivefunctions in thetrafficmodelandtheoptimisationmodelrespectively;

    Theobjectivefunctionforthetrafficmodeldescribesthepreferencesofthepassen-gers (e.g. the value-of-time) and includes a random term and stochastic coeffi-cients.

    Theobjectivefunctionoftheoptimisationmodelisweightedfunctionofsystemop-timalcriteriasandoperationalcriterias,whichbothisdeterministic.

    The different models operates by trip purpose (business, tourists, and natives), each one

    23may,however,belessthan1,iftheticketpriceincludestaxes.

  • 5

    withaseparateutilityfunction

    2. MAINSTRUCTUREOFTHEMODELThemodelframeworkconsistsoftwoseparatemodules;1. Demand models, which describe number of trips and destination choice. The models

    have been stratified according to trip purpose (business, tourists, natives, post, andfreight). In addition, most of the demand models have been formulated with separatemodulesfornationalandinternationaltrips.

    2. Supplymodels,whichdefinetheleg-structure(planeconnections),stockofplanes(typeandnumberofplanes), and thepassengerschoiceof routeasa functionof trafficde-mand.Theroutechoicemodelsdistinguishbetweenmodes,butevaluatetheassignmentsimultaneouslyduetocapacityconstraints,whichisaffectedbyallpurposes.

    OD-matrices are feed from demand models to supply models, describing the number oftravelersbetweenthedifferentairports.Thesupplymodelcalculatestraveltimeandcostsat the OD level, which is used to re-calculate demand. As a result, the two models williterateuntilequilibriumisreached.BecausetherearegreatseasonalvariationindemandandsupplyinGreenland,themodelissplitinto4models,oneforeachquarter.Thefigurebelowillustratestheoverallmodelstructure(notethefeedbackfromall5demandmodels).Figure1:Overallmodelstructure.

    Turismmodel.WorldtoGreenlandand

    domesticdistributionofturism

    Privatetravelermodel

    Businestravelermodel Airmailmodel Airfreightmodel

    RoutechoicemodelServicenetworkdesign

    SchedulingAircraftallocation

    Trafficvolumesfromthedemandmodelsto

    thenetworkmodels

    Feedbackoftraveltimes

    andtransportnetwork

    2.1 MainflowThemainflowinthemodelis;1. Run the demand models. These models calculate the transport demand on a weekly

    basis,i.e.numberoftripstoandfromeachairportandthedistributionoftripsbetweentheairports.Therebythismodelstepproduces5ODtripmatrices(Origin-Destinationmatrices)

    2. Thetripmatricesareatfirstdividedintothe7weekdayswhichisthensubdividedinto7timeintervals.Thesplit-functionsvarybetweenthe5trippurposes.

  • 6

    3. Thenextstepistherunofascenariogeneratorthatgeneratesthepossibleairlinecon-nectionsbetweenall theairports (incl. theheliports)given theavailableplane types,thelengthoftherunways,andthedistancebetweentheairports.

    4. Theplaneoptimizationmodeloptimizesthelegstructure(airlineconnectionsbetweentheairports),numberofdepartures,andtheusedplanetypeswithiterationswiththeassignmentmodelasaniterativeprocesswithanassignmentmodel

    5. Thesupplydatatraveltimes,costsetc.calledLoS(LevelofService)isaggregatedtoweeklybasisforeachtrippurposeasaweightedaverageofdaysandtimeperiods.

    6. Thedemandmodels(tourism,business,visiting,mailandcargo)arerepeatedwiththenewsupplydata

    7. Thematricesaresubdividedintoweekdaysandtimeperiodsasinstep2.

    8. Thecalculationswiththeplaneoptimizationmodelisrepeated

    9. Aplanebalancingmodel isstarted,whichcalculatesandbalancestheuseofaircraftmaterial.Duringtheprocesseachlegisupgradedandnewlegscouldbeadded.

    10. Thefinalassignmentmodel

    It couldbe argued that thedemandmodels and the supplymodels should iterate severaltimesbut there isanupgradefunctionbuilt in theassignmentmodelwhichupgrades thematerialafterthedemandcalculation.Thisissueisthereforelesscritical.

    3. ROUTECHOICEMODELThepassengerroutechoicemodelfindstheuser-equilibrium,e.g.thesituationwherenopassengersperceivedutilitycanbeimprovedbyhe/herunitarilychangingrouteatthede-siredtimeofdeparture.Routechoiceisdependentontrippurpose,preferencesofpassengers,andtheuseoftime.Theutilityisstronglyflowdependent,sincemostairportsinGreenlandcanonlybeservedbysmallairplains, themaintypebeingtheDASH7withmaximum50seats.Onlythreeinternationalcivilairportsexist3;

    Sdr.Strmfjord,whichisservedbya245seatAirbus-200 Nasarsuaq,whichisservedbya180seatBoing-757 Kulusuk,which isservedbyaanother turbo-propairplane(Fokker50which is

    quitesimilartoDASH7)

    3TheMilitaryairportlocatedatThuleisnotopenforcivilairtraffic.

  • 7

    Thestrictcapacityrestrictionscombinedwiththelowfrequencyledtothedecisiontoim-plement a Stochastic User Equilibrium timetable-based assignment model (Nielsen &Frederiksen,2006)thatisrunonaweeklyschedule(sincesomelegareonlyservedonceortwiceaweek).ThismodelwasthenmodifiedtoreflectanumberofspecialissuesinGreenland;

    Passengercapacityisastronglylimitingfactor;passengersaresimplyrejected,notonlydelayedase.g.inclassicalroutechoicemodels.Thiscausessomedifficultiesinthemodelformulationandsolutionalgorithm.

    Airmailhashigherprioritythanpassengers, i.e.aneedforasequentialapproachwithregardtothiscomparedtotraditionalmulti-classequilibriummethods.

    Payloadrestrictionsmayrestrictthenumberofpassengersandtheamountofcargo. Airplane(schedules)hastobepartofthemodel. Tripsmayevenhavetowaittothenextweekortheymayoriginfromtheweekbe-

    fore.Firstacyclicgraphapproachwasexploredforthis,whilstabeforeandafterdemandandnetworkperiodwasfinallydecided.

    3.1 UtilityfunctionsThe model has the following explanatory variables that are optimized in a linear-in-parameterutilityfunctionforeachclassofpassengers(andbysimulatingstatisticaldistri-butionsofeachpassengeraswell);SupposethattherearekpassengerclassesandiIroutealternatives,thentheutilityfunc-tionsisgivenas;

    Uk,i=k,edEDk,i+k,ldLDk,i+k,tpTPk,i+k,ttTTk,i+k,opOPk,i+k,itITk,i+cCi+k,iWhere;EDk,i:Earlydeparturepenalty(sortofhiddenwaitingtime)LDk,i:Latedeparturepenalty(traditionalhiddenwaitingtime)ITk,i:Traveltime(traditionalInvehicletimespendintheairplane)TTk,i:Transfertime.

    - Strongly non-linear, as long transfer times can be used constructively, e.g. onmuskoxtrips,orvisitingtheinlandiceatSdr.Strmfjordusinglongtransfertimesfore.g.tourism

    TPk,i:Transferpenalty(disutilitybynon-directtravels)OPk,i:Overnightpenalty(disutilityandcostwhenneedforovernighttransfers/stays)Ci:Cost(Ticketcosts)k,i:IndependentidenticalGumbelerror.

    Inthemodel,thebehaviouralparametersk,ed,k,ld,k,tp,k,tt,k,op,k,it,callfollowedlog-normal distributions (over the population), with the relative size between passengerclassesandtimecomponentsbasedonexperiencefromCopenhagen.

  • 8

    3.2 ChosenparametersSinceitisdifficultandcomputationalhardtoimplementnon-linearutilityfunctionstheassumednonlinearityinthetotaltraveltimeswasapproximatedbyusingahightransferpenalty(asproxyfornon-linearity)andalowvalueoftransfertime.Differentvaluesweretestedwhere40%ofthefreetraveltimegavethebestresult.

    Thescalingofthedifferenttimevaluesforeachpassengertrippurposesisingeneralsimi-lar.Howeverthehiddenwaitingtimeforvisitingtripsisassumedtohaveasmallerimpactontheutilitythanbusinesstripsandanevensmallerimpactfortourismtrippurposes.ForairmailandcargoitisassumedthattraveltimefromOtoDandthepriceofthetrans-portationistheonlyparametersinfluencingtheutility.Whichtimecomponentsthetripcanbesubdividedintoisconsideredwithoutinfluenceforcustomers.Theaccesstimeishow-evergivenahighertimevalueasthisisregardedasadiscomfortforcustomersandthefreightcompanies.

    TheticketpricesareingeneralpricedinDKr.BecausetherestofthevariablesarescaledintoDKrusingtimevaluesthecoefficientsforticketpricesisnormallysetto1.Fortheo-reticalreasonsthiscoefficientisfixed.Inthemodelitispossibletodefineamaximumwaittimeandamaximumearlydeparturetimetoimplementhowlongtimethepassengersarewillingtowaitandleavebeforetheplaneddeparture.Table1belowshowsthefinalparametersintheroutechoicemodel.

    Concerningtherandomvariation(theerrorterm)itisassumedtobeadditivenonnegativedistributed(gammadistributed)andthatthepassengersarefamiliarwiththeroutenetworkwhythevarianceisratedlow(5%).The last definitions describe the average weight per passenger inclusive luggage andweight units for mail and cargo. For some plane types the passenger seats can beexchangedwithmailsacks.Finally there is a specified rangingof the travellers,mails and cargo in themodel.ThisresultsfrominterviewsinGreenlandwheremailshavehigherprioritythanpassengersandpassengershavehigherprioritythancargo.

  • 9

    Table1Parametersintheroutechoicemodel

    Parametername Business Tourism Visiting Mail Cargo

    BASISValueoftime 2,29 1,62 1,62 1 0,5

    Accesstime(WalkTimeW) 3,435 2,430 2,430 1,500 0,750Variance(WalkTWVar) 0,3435 0,2430 0,2430 0,1500 0,0750Changetime(WaitTimeW) 0,916 0,648 0,648 1 0,5Variance(WaitTWVar) 0,0916 0,0648 0,0648 0,1000 0,0500Timetoairport(ConTimeW) 2,748 1,944 1,944 1 0,5Variance(ConTWVar) 0,2748 0,1944 0,1944 0,1000 0,0500Hiddenwaittimeinzone(WaitIZoneW) 0,687 0,162 0,486 1 0,5

    Variance(WaitZWVar) 0,0687 0,0162 0,0486 0,1000 0,0500Changepenalty(ChangePen) 137,4 97,2 97,2 0 0Variance(ChPenVar) 6,87 4,86 4,86 0 0Earlydeparture(EarlyDW) 0,687 0,162 0,486 1,000 0,500Variance(EarlyDVar) 0,069 0,016 0,049 0,100 0,050Ticketprice(CostW) 1 1 1 1 1Variance(CostVar) 0 0 0 0 0Distributiontype(DistAll) 7 7 7 7 7Variance(StocCofAll) 0,05 0,05 0,05 0,05 0,05Weightperseat(SeatUnitWeight) 100 100 100 100 100

    Seatsinplane(Seat) 1 1 1 1 0Cargoroom(Cargo) 0 0 0 1 1RankingLoad(PreLoad) 1 1 1 0 2

    3.3 CapacityrestrictionsIneachofthethreeassignmentstepsdescribedabovethecapacityrestraintsarehandled.Andforeachpassengerclassloadedintheiterationthefollowingprocedurearefollowed:

    Foreachdepartureintheroutenetwork:o Ifthepassengerclassisfreightwhichcannotbetransportedonpassenger

    seatsandtheplanetypedoesnothaveacargoroom,thedepartureisclosedfortravellers

    o Ifthepassengerclassonlycantravelonpassengerseatsandtheplanetypeonlyhasacargoroomthedepartureisclosedfortravellers

  • 10

    o Otherwisethedepartureisexaminedforexceededcapacity(seebelow).Ifcapacityisexceededthedepartureisclosedformoretravellers

    o Ifdepartureisnotclosedfornewpassengersorfreightitispossibleforthespecificpassengerclasstousethisdepartureinthisspecificiteration.

    3.3.1 ExaminationofexceededcapacityForeachdepartureexaminedforexceededcapacitythefollowingprocedurearefollowed.Incaseofprioriterationstepsthenumberofoccupiedpassengerseatsandthetotalpre-loadedweightis:

    Seatspreload,WeightpreloadThesumsofoccupiedseatsandweightinthecurrentiterationarecalculatedbyworkingthrougheachpassengerclassesloadedonthespecificdepartureinthecurrentassignmentcalculation.Inthisprocedurethethreerunningtotalsiscalculated:

    PassengerSeatstotal,Weighttotal,PostSeatstotal

    Thisisdoneasfollows:Foreachpassengerclassithetrafficinseatunitsisti:

    Iftionlycanusepassengerseats(passengers):o PassengerSeatstotal=PassengerSeatstotal+tio Weighttotal=Weighttotal+ti*seatunitweighti

    Iftionlycanusethecargoroom(cargo)o Weighttotal=Weighttotal+ti*seatunitweighti

    Ifticanusebothcargoroomandseats(airmail):o Iftheplanetypehascargoroom:

    Weighttotal=Weighttota+ti*seatunitweightio Iftheplanetypehasnocargoroom:

    PostSeatstotal=PostSeattotal+ti Weighttotal=Weighttotal+ti*seatunitweighti

    Forsomeplanetypesgroupsofseatsareremovedtomakeroomformaile.g.groupsof4,8or12seats.Ifthisisthecase,thePostSeatstotalisroundeduptothenearestmultiple.Afterwardsitistestedwhetherthecapacityrestraintsareexceededwhichisdescribedby:

    PlaneMaxSeats,PlaneMaxWeight,PlaneMaxPostSeatsThethefollowingistested:If

    (PassagerSeatstotal+PostSeatstotal)>(PlaneMaxSeats+Seatspreload)or

  • 11

    PostSeatstotal>PlaneMaxPostSeatsor

    Weighttotal>(PlaneMaxWeight-Weightpreload)Ifoneofthesecriteriaistruethecapacityisexceededandtheflightisclosedforthepre-sentiterationintheassignmentcalculation.

    4. NETWORKDESIGNMODELThenetworkdesignmodeldesign/forecastthe

    Airnetwork(servicenetwork),i.e.betweenwhichairportsthereisadirectleg. Schedule,inthemodelformulatedasdiscretedeparturetimesina30.min.segmen-

    tation Useofairplanes(typesandnumbers)

    Thisiscalculatedconditionalontheexpectedpassengerflows,whicharetheresultsoftheroutechoicemodelontheoutputofthenetworkdesign(i.e.abi-leveloptimisationprob-lem4).In the solution algorithm, the air model (the set of optimisation models) and the routechoicemodelisruniterativelyinatabu-searchalgorithm,whichturnedouttobethemostefficientsolutionalgorithm.Themodeltakesthefollowingdecisions;

    Passengerschoiceofroutes,andpossibleupgradingofairplanetypeduetothis Downgradingofairplanetypeduetosmallpassengervolumes Airplaneallocationmodel Removing or adding direct legs (conditional to the economics of operation and

    someminimumservicerestriction) Time-scheduledesign

    4.1 Mainsolutionalgorithm

    Themainsolutionapproachwasdecidedasfollows; Step1;Agrossnetworkisgenerated

    30minutesdeparturesbetweenallrelevantdestinationsFeasibleairplanesforeachlegisset

    Dependsprimarilyofthelengthsoftherunway Secondarilyfromthisbyhowlongitispossibletogowiththemost

    farreachingairplanethatcanoperate

    4Wherethesub-problemsarenon-linear,discreteandwithanon-closedformformulation,andis

    solvedinternallybyiterativeprocedures.

  • 12

    Step2;Calculationsaremadebasedonweeklyscheduleswith3daysadditionallybeforeandafter(somedestinationsmayhavedownto1connectioneachweek)

    Each leg (flight between airports) can be operated by a list of possible air-planetypeswithdifferentsizesandoperationscosts

    Basedonmodelledpassengerpotentials,alllegsaredowngradedtotheopti-maltypeofairplane

    Step3;Routechoicewithnocapacityconstraints,i.e.theoptimalscheduleises-timatedinthepassengersviewpoint

    Step4; Linkswithvery fewpassengers aredeleted (However, only to the extentthis does not violate minimum restraints). Since the graph was enormously, thisheuristicwasaddedinordertoreducetheoptimisationproblemtoasizethatcouldbesolvedbymorerigidmethodsinthelaterphasesoftheoveralloptimisational-gorithm.

    Step5;Downgradingofairplanestofitdemandbasedonpurebusinesseconomicdecision.

    Step6;Iterativenetworkimprovement6.1Closingoflegswithleastutility(givenasetofminimalcriteriaforopera-

    tionsandwhethertheleghasnotbeeninvestigatedbefore)6.2Anewassignmentismade.After5iterations,airplanesmaybeupgraded

    during assignment. The network is redesigned then due to possible in-creasedspeed

    6.3 Airplane disposition / scheduling (estimation of turn-arround costs andbalancingoflegsandairplanesonairports)usingaheuristicmethod.

    6.4Newstochasticcapacitydependentroutechoice(legscanbeclosed,up-gradedandusingbiggerandfasterplains),whichinfluenceroutechoices.

    6.5Theoverallutilityfunctioniscalculated.Ifthisisimproved,thechangestakesplace,otherwise,theyareregrettedandmarkedastabu

    6.6Stopcriterion Step4-6isrepeatedninetimeswithgraduallyincreasedrestrictions. Step7;detailedoptimizationoftheairplaneschedulingusingalinearprogramfor-

    mulatedintheMOSELsoftware. Step7aseparatemodulecalculatestheoperationcostincludingturnaroundcost. Step8;Finalroutechoicemodel

    Basically,thisheuristicfirstuseaverysimplepassenger-basedapproachtoreducethepos-sible solutionspace (step4). Inpractice thisapproach reduces theproblemsizewith re-specttonumberoflegsfrom58,000to5,000.

    Thenaheuristicisusedforthecalculationoftheoptimalairplanedispositionandschedul-ing.(Step6.3).Themethodforthisproblem,whichconsistoftwocoreelements,calcula-tionofturn-aroundtimeasalowerlevelproblemandbalancingofairplanesastheupperlevel problem, where the cost of balancing is given by the lower level calculation. This

  • 13

    heuristicprovidesamuchmorepreciseestimateoftheobjectfunctionvalue,thanjustthepassengerflows.However,itwasfirstfoundfeasiblefornetworksizesbelow5000legs.

    Finallyamorerigidoptimisationwasattemptedfortheairplanedispositionasthiswasfor-mulatedasamathematicalproblemandsolvedbyMOSEL.This,however,wasonlyabletosolveproblemsupto600legs,andwastooslowtoberuniterativelywiththetime-tableandlegoptimisationmodels.Itwasalsonecessarywithsimplificationstosolveitasapuremathematical.Inthefinalmodel,itwasthereforedecidednottousestep7,andtousetheheuristic(refertosection4.2)forthelaststepaswell.

    All-in-all using the above combination of heuristics made it possible to optimise the airnetwork inGreenland conditional to thepassengers choiceof route anddeparture time.Theoverallcalculationtimeisabout84hours,whichmaybeconsideredhigh,butwhichhoweverindeedwasabletopin-pointpossibilitiesofrestructuringtheairtransportnetworkwithconsiderablybenefitsforthesociety.

    4.2 LegbalancingThegeneralprincipleintheleg-balancingmodelistoensurebalanceforeachairportoneby one. By starting with the airport with the smallest number of legs, the balancingproblem with the fewest degrees of freedom is solved first. In this way, the algorithmalways finish in the largest hups (Nuuk, Sdr. Strmfjord), where it should be easier toensureabalance.Evenif thereisa lackofbalancehere(e.g.from45to44legs) it is inrelativetermslessproblematicthanifasmallairportareassigned1fromlegand2to-legs.The balance is ensured by successively removing legs if balance is not meet initially.Subsequentlybalanceisensuredbyplanetypesbyupgradinglegstolargerplanetypes.

    4.2.1 SolutionalgorithmSumBalOK:=0;SumBalEjOK:=0(Thetwobalancingvariablesareinitialised)Thesimplifiedturnaroundcostmodelisruninordertogenerateaninitialturnaroundcost(refertosection3).Airports are sorted according to the total number of trips in and out of the airport.LufthavneneAsorteresefterhvormangelegsdersamletgrtilogfralufthavnenForeachairportAinthesortedsequence(thesmallestairportfirst),legsarebalancedasfollows5{

    Legs,which isequal to theminimumservicecriteria ismarkedastabu.ThenumberoflegsLf(legs,whichdepartfromtheairport)andnumberoflegsLt(legs,whicharrivetotheairport)arecounted.IfLf>Lt{

    Ifatleastonefrom-legLf,whichisnotmarkedastabu{The from-leg Lf, which is not tabu and have the lowest

    5Thetrickisthatthelargertheairportthemorechanceofbeingabletobalance.Ifthereisbalancein

    thesmallairports,theriskoflargerairportsnotbeingbalancedissmaller.

  • 14

    object value (e.g., revenue operation costs turn-aroundcosts)6areremoved.BalA:=OK(theairportisbalanced)SumBalOK:=SumBalOK+1(thestatusvariablesisupdated)

    }Or(theairportcouldnotbebalanced)7BalA:=NOTOK(Theairportcouldnotbebalanced)SumBalEjOK:= SumBalEjOK + 1 (the status variables isupdated)

    }IfLt>Lf thesameprocedureasforfrom-legsarecarriedout,butwithto-legsremoved.Itshouldbenoted,thateventhoughbalanceisnotensuredfortheairportasawhole,thebalancingwillcontinueinthatitmightbepossibletoensureabetterbalanceonplanetypes.If there are at least two different plane types in an airport, legs for eachplanetypesareinvestigated.Thelargestplanetypeisinvestigatedfirstandtheprocedurecontinuesuntilthesecondsmallestairplanetype.8{

    ThenumberoflegsfromL(X)f(legs,whichdepartfromtheairportofplanetypeX)andthenumberoflegsL(X)t(legs,whicharrivetotheairport)arecounted.IfL(X)f>L(X)t{

    All to-legsofplane typeL(X-1)t,andwhicharrivefromanairportthatallowsplanetypeXexists9

    Ifthereisatleastonleginthisset10 Cturnarround:=null,Lopt:=null

    Foreachoftheselegs{The turnarroundcost is calculated for the set{all L(X) + the actual L(X-1)} by sameprinciple as for the simplified turnaroundmodel11.

    6Thisisthereasonwhythesimpleturn-aroundmodelneedstoberunbeforethesolutionalgorithm.

    Ifnot,therewouldnotbeanestimatefortheturn-aroundcosts.7Thepurposeofthisupdatingismainlyinternalvalidation.8Thesmallestairplaneisaresidualoftheotherupgrades.9Allto-legs,whichcanbeupgradedisdetected,however,onlywithinthepresentplanetype.10

    IftherearenotrelevantlegsoftypeX-1,thealgorithmproceedtocheckX-2and,etc.11

    Itwillgiveabiasedestimateoftheturn-aroundcostifonlythecalculationiscarriedoutforthe

  • 15

    If Cturnarround:=null or the calculatedturnarround cost for L(X-1); C(L(X-1)) L(X)f thesameprocedureiscarriedout,butwherefromlegsisupgraded.

    }}Thesimplifiedturnarroundcostmodelisrun13Thefollowinginformationisloadedtotheplaneoptimizationmodel{ Deletedlegs Upgradedlegs Newturnaroundcosts}

    4.2.2 DiscussionThe general plane optimisation model delete links one by one (or several links in oneprocess, but without considering balancing). Initially, up to 50% of all airports areunbalanced.However,becausemanyairportsmeet theminimumserviceconstraints, it isexpectedtobeless.Afterrunningtheheuristicfortheleg-balancing,mostifnotallairportswillbebalanced.Onlyinveryspecialcasesbalancingmaynotbemet.After the balancing on legs the balancing on plane types are carried out. It must beassumedthat,inmostcases,itispossibletoupgradeplanetypes.All-in-all the heuristic will ensure a much better balancing of the final solution. This

    actualL(X-1).However,thereisalimitedlistofalternatives,whichischeckedaccordingtotheFIFOprinciple(purelinearoperation).Asaresult,thecompleteisinvestigated.12

    TheactuallegisthebestcandidatesofarforupgradingofplanetypefromX-1toX.13

    Theleg-structureischanges,whichiswhyweneedtocalculatenewturnaroundcosts.

  • 16

    ensuresthattheinputtotheoptimisationmodelisbetter.However,itshouldbeunderlinedthateventhoughbalanceisensured,thefinalplaneoptimizationmodelmaystillupgradelegs inorder to reduce turn-aroundcosts.Also, itmay in rareoccasionsbebeneficial tointroduceemptylegs.

    5. MODEL APPLICATION: LOCATION CHOICE AND SIZE OF ATLANTICAIRPORT

    During2007,TheGreenlandHomeRulewill take themost important transportdecisionever,namely,thelocationandthesizeofanewAtlanticairport.Toillustratetheimpor-tanceof thedecision, theconstructioncostalonemayequate10-20%oftheannualGNPdependingon the specific location.Tohelp thisdecision, themodelhasbeenapplied tothreedifferentscenarios,whichvarieswiththelengthof therun-wayinNuukaswellasthe location in the Nuuk area14. The alternatives are compared in a social cost-benefitanalysisandbenchmarkedtoabasesituation,inwhichthelocationoftheAtlanticairportremainsinSdr.Strmfjord.Thethreescenariosareoutlinedbelow;

    Nuuk1799meter:Therunway inNuuk isextended to1799meterenablingforaBoeing-757toland.

    Nuuk2200meter:TherunwayinNuukisextendedto2200meterenablingforAir-bus-200toland.

    Nuuk3000meter:TherunwayinNuukisextendedto3000meterenablingforAir-bus-200toland.

    ApartfromthedifferenceinthelengthoftherunwayinNuukthereisconsiderablediffer-ence inconstructionandmaintenance costsandalso in thedemandestimates, especiallyfortourists.

    Theservicenetworkandthetrafficflowaremodeledinthereferenceyearwithandwith-outchangestothenetwork.Afterwards,theservicenetworkandthetrafficflowaremod-eled with the network changes and a new OD matrix is calculated on the basis of thechangeinthelevelofservice.

    Thetrafficflowof todayhasthreemainroutes;fromCopenhagentoSdr.Strmfjordandfrom Sdr.Strmfjord to either Nuuk or Illulissat. With the extensions of the runway inNuuk,thesemainrouteschangeinthatpassengerwilltraveldirectlybetweenCopenhagentoNuukandfromNuuktoeitherIllulissatorNarsarsuaq.Thechangestothenetworkre-sultsindirectroutesfromDenmarktoNuukanddirectroutefromIsland.Ingeneral,the

    14Thepresentrun-waycanonlybeextendedto2200meterandtwoalternativelocationshavebeen

    selectedforthe3000meteralternative,whichatpresentisassumedtohavethesameconstructioncosts.

  • 17

    numberof routes is reducedconsiderablywhenSdr.Strmfjord isclosedbecause agreatdealofthefeeder-trafficistakencareofbydirectroutes.Figure1:IllustrationofhowthenetworkstructurechangesasaresultofanewAtlanticairportinNuuk.

    Trafficflowinreferenceyear TrafficflowinscenarioNuuk2200

    Theresultsfromthethreescenariospointsinthesamedirection.TheservicenetworkhasalmostthesameroutesbuttheplanetypesdifferbetweenCopenhagenandNuuk(refertofigure4below).Thismakesaslightlydifferenceinlevelofservicewhichgiverisetodif-ferentdemandformations(ODmatrices).Also,sincetheuseofplanetypesdifferbetweenthescenarios,theproductioncostsdifferaswell.

    Figure2:B/CratiosfortheNuukscenarios.

    B/CratiofortheNuukscenarios

    0 1 2 3 4 5 6

    Nuuk1799

    Nuuk2200

    Nuuk3000

    B/Cratio

    In figure 2, the B/C ratios are shown foreachscenario.TheNuuk1799scenariohasturnedout tobe themost cost-effectiveofthethreeprojects.Themainreasonsforthedifferences in the projects are the initialcosts, production cost, and ticket revenueforoperators.Thisdifferenceresolvesinanimportant difference in the calculated in-ternalratewhichis26.3%forNuuk1799,20.9%forNuuk2200andonly8.9%forNuuk3000.

  • 18

    Onthefiguresbelowthedifferentbenefitandcostcomponentsisshown.Nuuk2200andNuuk3000haveequalbenefitsbecausethemodelsettingsallowsthesametypeofplanestoland,however,thereislargedifferencewhenlookingatcostcomponents.

    Benefit

    0 2000 4000 6000

    Nuuk1799

    Nuuk2200

    Nuuk3000

    Benefitmio.DKKChangeintotaloperat ioncost Changeintotalproduct ioncost

    Ticket revenueoperator LeavingKangerlussuaq

    Timesavings Ticket revenuepassenger

    Other

    Cost

    0 1000 2000 3000 4000 5000 6000

    Nuuk1799

    Nuuk2200

    Nuuk3000

    Costmio.DKKInit ialcost

    Changeintotaloperationrevenue

    Regulat ionsloss

    Other

    Figure3:BenefitandcostcomponentsforthethreeNuukalternatives.

    The model more than indicate that significant socio-economic benefits can be expected,when themainairportaremovedfromSdr.Strmfjord toNuuk.However,when judgingbetweenalarge(Nuuk2200orNuuk3000)andamedium(Nuuk1799)sizesolutioninNuuk, themediumsizesolution turnsout tobe theonewith thehighest internal rent,duetolowercosts.Clearly,theresultisbasedonthedemandestimatedfor2012.Ifasig-nificantincreaseinthenumberofpassengersbeyondthe2012levelisexpected,thecapac-itylimitsmaybemet,andthe2200maybepreferable.However,thesenumbersareverydifficulttoforecast,whichiswhytheGreenlandhome-rulehasdecidedtoforcastonlyto2012.

    Theapplicationshowsthatithasbeenpossibletoimplementamodelsystem.Allthough,themodelsisbasedonnumerousassumptions,itprovideanimportantdecisiontoolanditgivesaclearindicationthataswitchoflocationfortheAtlanticairportisbeneficial.

  • 19

    Theuseofdifferentplanetypesinreferenceyear

    TheuseofdifferentplanetypesinscenarioNuuk2200

    Figure4:IllustrationofhowthetypeofplaneschangesasaresultofanewAtlanticair-portinNuuk.

    Thepracticalimplementationandthecalibrationofthemodelturnedouttobeverycom-plex.However,inthefinalversion,themodelwasabletoreplicatethenetworkintheref-erenceyearsufficientlywell.Theouterloopbetweenthedifferentmodelcomponentscon-verged,andthefinalsolutionwasnotonlyabletobesimilarlyasgoodastheexistingsys-tem,butalsosuggestimprovements.

    6. CONCLUSIONInthepaper,acombinedtransportandoptimisationmodelforairtransportinGreenlandhasbeenpresented.Thestructureofthemodeliscomposedasabi-leveloptimisationproblem.Atthelowerleveloptimisation,demandandroutechoiceforpassengersandfreight isad-dressed,whereasat theupper leveloptimisation, the servicenetwork, theconfigurationofplanetypesandtheflightschedulingisdealtwith.

    Thecentreoftheupperleveloptimisationisanobjectivefunction,consistingofpassengerutility,operationcosts,andrevenuesfromsaleoftickets.Thefunctionmaybeformulatedasa function that represent a socio-economic optimum or an operator-optimum (air compa-nies),whichwillrepresentpartlyconflictingpurposes.Thepresentversionofthemodelonlyoptimisestheobjectivesoftheoperator,whichreflectsthepresentdecisioncontext.

  • 20

    The model is solved conditional on a number of constraints, e.g. capacity constraints forplanetypes(weightandseatconstraints),constraintsforvariouslegs(minimumservicelevelrequirements),mileageconstraintsforplanetypes,constraintsconcerningminimumrunwaylengths for certain airplane types, and finally certain airports (landing grounds) that canonlybeservedwithhelicopters.

    Themodelsolveacomplicatedproblem,with28airports,upto1000legsinthefinalflightschedulesandallocationofmanytypesofairplanestothenetwork.Thetestingshowsthatthemodelindeedisabletosolvetheproblemandthatthesolutionisbetterthanthepresentsystem.Moreoverthemodelisabletosuggestservicenetworksinfuturescenarioswheretheconstraintsarechanged.Typicallythisischangesofairportlocationsandlengthsoftherunway.ThemainscenariotobuildanAtlanticAirportintheCapitalNuukturnedouttohaveverypositivesocio-economiccharacteristics.

    1. Introduction1.1 Background1.2 Overview of the model system1.3 Decision context1.4 Object functions in the optimisation model1.5 Passenger behaviour prediction

    2. Main structure of the model2.1 Main flow

    3. Route choice model3.1 Utility functions3.2 Chosen parameters3.3 Capacity restrictions3.3.1 Examination of exceeded capacity

    4. Network design model4.1 Main solution algorithm4.2 Leg balancing4.2.1 Solution algorithm4.2.2 Discussion

    5. Model application: Location choice and size of atlantic airport6. Conclusion