AISC 360-05 Example 002

Embed Size (px)

Citation preview

  • 8/11/2019 AISC 360-05 Example 002

    1/6

    Software VerificationPROGRAM NAME: ETABS 2013

    REVISION NO.: 0

    AISC 360-05 Example 002 - 1

    AISC 360-05 Example 002

    BUILT UP WIDE FLANGE MEMBER UNDER COMPRESSION

    EXAMPLE DESCRIPTION

    A demand capacity ratio is calculated for the built-up, ASTM A572 grade 50,

    column shown below. An axial load of 70 kips (D) and 210 kips (L) is applied toa simply supported column with a height of 15 ft.

    GEOMETRY,PROPERTIES AND LOADING

    TECHNICAL FEATURES TESTED

    Section compactness check (compression) Warping constant calculation, Cw Member compression capacity with slenderness reduction

  • 8/11/2019 AISC 360-05 Example 002

    2/6

    Software VerificationPROGRAM NAME: ETABS 2013

    REVISION NO.: 0

    AISC 360-05 Example 002 - 2

    RESULTS COMPARISON

    Independent results are hand calculated and compared with the results from

    Example E.2 AISCDesign Examples, Volume 13.0 on the application of the 2005AISC Specification for Structural Steel Buildings (ANSI/AISC 360-05).

    Output Parameter ETABS IndependentPercent

    Difference

    Compactness Slender Slender 0.00%

    cPn(kips) 506.1 506.1 0.00 %

    COMPUTER FILE: AISC360-05EX002

    CONCLUSION

    The results show an exact comparison with the independent results.

  • 8/11/2019 AISC 360-05 Example 002

    3/6

    Software VerificationPROGRAM NAME: ETABS 2013

    REVISION NO.: 0

    AISC 360-05 Example 002 - 3

    HAND CALCULATION

    Properties:

    Material:ASTM A572 Grade 50E = 29,000 ksi,Fy= 50 ksi

    Section: Built-Up Wide Flange

    d = 17.0 in, bf= 8.00 in, tf= 1.00 in, h = 15.0 in, tw= 0.250 in.

    Ignoring fillet welds:

    A = 2(8.00)(1.00) + (15.0)(0.250) = 19.75 in2

    3 3

    32 (1 . 0)(8 . 0) (1 5 . 0)(0. 2 5)85.35 in

    12 12

    yI

    85.42 . 0 8 i n .

    19.8

    y

    y

    Ir

    A

    xx IAdI 2

    3 3

    2 4(0 .2 5 0 )(1 5 . 0) 2 (8 . 0 )(1 . 0 )

    2(8.0)(8.0) 1095 .65 in12 1 2

    xI

    1 2 1 1

    ' 1 7 1 6 in

    2 2

    t td d

    2 2

    4' (8 5.3 5) (1 6.0 )5462.583 in

    4 4

    y

    w

    I dC

    3 3 3

    42(8.0)(1.0) (15.0)(0.250)5.41 in

    3 3

    btJ

    Member:

    K = 1.0 for a pinned-pinned conditionL = 15ft

    Loadings:

    Pu= 1.2(70.0) + 1.6(210) = 420 kips

  • 8/11/2019 AISC 360-05 Example 002

    4/6

    Software VerificationPROGRAM NAME: ETABS 2013

    REVISION NO.: 0

    AISC 360-05 Example 002 - 4

    Section Compactness:

    Check for slender elements using Specification Section E7

    Localized Buckling for Flange:

    4.04.0

    1.0

    b

    t

    2 9 0 0 00 .3 8 0 .3 8 9 .1 5 2

    5 0p

    y

    E

    F

    p , No localized flange buckling

    Flange is Compact.

    Localized Buckling for Web:

    15.060.0

    0.250

    h

    t

    ,

    2 9 0 0 01 .4 9 1 .4 9 3 5 .9

    5 0r

    y

    E

    F

    r , Localized web buckling

    Web is Slender.

    Section is Slender

    Member Compression Capacity:

    Elastic Flexural Buckling StressSince the unbraced length is the same for both axes, they-yaxis will govern by

    inspection.

    6.86

    08.2

    12150.1

    y

    y

    r

    KL

    2

    2

    2

    2

    6.86

    29000

    r

    KL

    EF

    e= 38.18 ksi

  • 8/11/2019 AISC 360-05 Example 002

    5/6

    Software VerificationPROGRAM NAME: ETABS 2013

    REVISION NO.: 0

    AISC 360-05 Example 002 - 5

    Elastic Critical Torsional Buckling StressNote: Torsional buckling will not govern ifKLy>KLz, however, the check is included

    here to illustrate the calculation.

    yxz

    w

    eII

    GJLK

    ECF

    1

    2

    2

    2

    2

    2 9 0 0 0 5 4 6 2 .4 11 12 00 5 .4 1

    1 10 0 8 5.41 8 0e

    F

    = 91.8 ksi > 38.18 ksi

    Therefore, the flexural buckling limit state controls.

    Fe= 38.18 ksi

    Section Reduction Factors

    Since the flange is not slender,

    Qs= 1.0

    Since the web is slender,

    For equation E7-17, takef asFcrwith Q = 1.0

    2 9 0 0 04 .7 1 4 .7 1 1 1 3 8 6 .6

    1 .0 5 0

    y

    y y

    K LE

    Q F r

    So

    1 . 0 5 0

    38.20 .6 5 8 1 .0 0 .6 5 8 5 0 2 8 .9 k si

    y

    e

    QF

    F

    cr yf F Q F

    0.341.92 1 , w h ere

    e

    E Eb t b b h

    f b t f

    29000 0.34 290 001 .92 0 .250 1 15.0 in

    28.9 15.0 0 .250 28.9

    e

    b

    1 2.5 i n 1 5.0 i n e

    b

  • 8/11/2019 AISC 360-05 Example 002

    6/6

    Software VerificationPROGRAM NAME: ETABS 2013

    REVISION NO.: 0

    AISC 360-05 Example 002 - 6

    therefore computeAeffwith reduced effective web width.

    2

    2 12.5 0 .250 2 8.0 1.0 19.1 in eff e w f f

    A b t b t

    whereAeffis effective area based on the reduced effective width of the web, be.

    19.10.968

    19.75

    eff

    a

    AQ

    A

    1 .0 0 0 .9 6 8 0 .9 6 8s aQ Q Q

    Critical Buckling Stress

    Determine whether Specification Equation E7-2 or E7-3 applies

    290004.71 4.7 1 115.4 86 .6

    0 .9 6 6 5 0

    y

    y y

    K LE

    Q F r

    Therefore, Specification Equation E7-2 applies.

    When 4.71y

    E K L

    Q F r

    1 . 0 5 0

    38.180 .6 5 8 0 .9 6 6 0 .6 5 8 5 0 2 8 .4 7 k s i

    y

    e

    QF

    Fcr y

    F Q F

    Nominal Compressive Strength

    2 8 .5 1 9 .7 5 5 6 2 .3 k ip s n cr g

    P F A

    0.90 c

    0 .9 0 5 6 2. 3 5 0 6. 1 kip s c n cr g P F A > 420 kips

    506.1kips c n

    P