12
AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE- CIECZ Autorzy: Janusz Lichota, Kazimierz Wójs, Piotr Podkomorzy ("Rynek Energii" - kwiecień 2016) Słowa kluczowe: akumulatory ciepła, elektrociepłownia Streszczenie. W artykule omówiono różne rodzaje akumulacji ciepła oraz zaprezentowano ciekawsze wyniki ze zbudowanych układów akumulacji ciepła w przemianie fazowej ciało stałe - ciecz. Pokazano schemat termody- namiczny elektrowni THEMIS, podano podstawowe dane z analizy techniczno-ekonomicznej tej elektrowni. Omówiono również podstawowe dane techniczne akumulatora z przemianą fazową zlokalizowanego w Carbone- ras w Hiszpanii. 1. WSTĘP Na rynku akumulatorów ciepła stosowanych w elektrociepłowniach najbardziej rozpo- wszechnione są akumulatory wodne. Woda ma wiele zalet jako nośnik ciepła m.in. jest bez- pieczna dla środowiska oraz można łatwo dostosować moc cieplną do zapotrzebowania. Po- wstaje pytanie, czy można znaleźć takie rozwiązanie akumulatora ciepła, które pozwoli na obniżenie nakładów inwestycyjnych oraz wzrost pojemności cieplnej w porównaniu do wo- dy? Od strony badawczej od lat 80-tych XX wieku pojawiło się szereg ciekawych rozwiązań nie używających wody do akumulacji ciepła. Parametrem umożliwiającym łatwe porównanie różnych metod akumulacji ciepła jest gęstość ciepła w jednostce objętości. Definiuje ona miejsce omawianych w artykule akumulatorów ciepła z przemianą fazową ciało stałe – ciecz wśród różnych metod akumulacji. Generalnie widoczne są następujące główne tendencje ba- dawcze: ciepło można zakumulować w przemianie fazowej, w procesie sorpcji na ciele sta- łym, w paliwie, w postaci przemiany chemicznej lub wewnątrz tlenków metali. Dotychcz a- sowa ewolucja techniczna doprowadziła jak na razie do wyboru tylko dwóch z tych rozwią- zań, z punktu widzenia rynku. Na rynku dostępne są akumulatory oparte o przemiany fazowe lub akumulatory adsorpcyjne wypełnione zeolitami lub sil ikażelami. Pozostałe technologie znajdują się w fazie badawczej. Pomimo teoretycznej możliwości osiągnięcia 500 kWh/m 3 w przypadku zeolitów, w zreali- zowanych instalacjach osiągnięto około 130 kWh/m 3 [14] ze względu na niemożność wyko- rzystania pełnego zakresu od 0% do 100% nasycenia zeolitu wodą. Wykorzystywane jest oko- ło 30-40% tego zakresu. Zależy to m.in. od rodzaju źródła ciepła i rodzaju odbioru ciepła. Teoretyczna gęstość objętościowa ciepła w akumulatorze wypełnionym innym materi ałem sorpcyjnym - silikażelem wynosi około 200 kWh/m 3 .

AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE … · 2016. 6. 23. · AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE- CIECZ Autorzy: Janusz Lichota, Kazimierz Wójs,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE … · 2016. 6. 23. · AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE- CIECZ Autorzy: Janusz Lichota, Kazimierz Wójs,

AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE-

CIECZ

Autorzy: Janusz Lichota, Kazimierz Wójs, Piotr Podkomorzy

("Rynek Energii" - kwiecień 2016)

Słowa kluczowe: akumulatory ciepła, elektrociepłownia

Streszczenie. W artykule omówiono różne rodzaje akumulacji ciepła oraz zaprezentowano ciekawsze wyniki ze

zbudowanych układów akumulacji ciepła w przemianie fazowej ciało stałe - ciecz. Pokazano schemat termody-

namiczny elektrowni THEMIS, podano podstawowe dane z analizy techniczno-ekonomicznej tej elektrowni.

Omówiono również podstawowe dane techniczne akumulatora z przemianą fazową zlokalizowanego w Carbone-

ras w Hiszpanii.

1. WSTĘP

Na rynku akumulatorów ciepła stosowanych w elektrociepłowniach najbardziej rozpo-

wszechnione są akumulatory wodne. Woda ma wiele zalet jako nośnik ciepła m.in. jest bez-

pieczna dla środowiska oraz można łatwo dostosować moc cieplną do zapotrzebowania. Po-

wstaje pytanie, czy można znaleźć takie rozwiązanie akumulatora ciepła, które pozwoli na

obniżenie nakładów inwestycyjnych oraz wzrost pojemności cieplnej w porównaniu do wo-

dy? Od strony badawczej od lat 80-tych XX wieku pojawiło się szereg ciekawych rozwiązań

nie używających wody do akumulacji ciepła. Parametrem umożliwiającym łatwe porównanie

różnych metod akumulacji ciepła jest gęstość ciepła w jednostce objętości. Definiuje ona

miejsce omawianych w artykule akumulatorów ciepła z przemianą fazową ciało stałe – ciecz

wśród różnych metod akumulacji. Generalnie widoczne są następujące główne tendencje ba-

dawcze: ciepło można zakumulować w przemianie fazowej, w procesie sorpcji na ciele sta-

łym, w paliwie, w postaci przemiany chemicznej lub wewnątrz tlenków metali. Dotychcza-

sowa ewolucja techniczna doprowadziła jak na razie do wyboru tylko dwóch z tych rozwią-

zań, z punktu widzenia rynku. Na rynku dostępne są akumulatory oparte o przemiany fazowe

lub akumulatory adsorpcyjne wypełnione zeolitami lub silikażelami. Pozostałe technologie

znajdują się w fazie badawczej.

Pomimo teoretycznej możliwości osiągnięcia 500 kWh/m3 w przypadku zeolitów, w zreali-

zowanych instalacjach osiągnięto około 130 kWh/m3 [14] ze względu na niemożność wyko-

rzystania pełnego zakresu od 0% do 100% nasycenia zeolitu wodą. Wykorzystywane jest oko-

ło 30-40% tego zakresu. Zależy to m.in. od rodzaju źródła ciepła i rodzaju odbioru ciepła.

Teoretyczna gęstość objętościowa ciepła w akumulatorze wypełnionym innym materiałem

sorpcyjnym - silikażelem wynosi około 200 kWh/m3.

Page 2: AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE … · 2016. 6. 23. · AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE- CIECZ Autorzy: Janusz Lichota, Kazimierz Wójs,

30

60

15

30

58.3

23.3

0.0032

2500

1305

861.1

777.8

638.9

541.7

222.2

722.2

611.1

388.9

83.3

69.4

55.6

120

100

20

60

50

80

30

40

58.3

23.3

0.0032

2500

1305

861.1

777.8

638.9

541.7

222.2

722.2

611.1

388.9

83.3

69.4

55.6

200

500

50

80

0.001 0.01 0.1 1 10 100 1000 10000

Żwir-woda

Zasobniki wodnewysokotemperaturowe

Sondy ziemne

Zasobniki wykorzystujące warstwywodonośne

Woda dT=50 K

Woda dT=20 K

Paliwo - wodór gazowy, p = 1 bar

Paliwo - wodór ciekły (-250 C)

Paliwo - Wodór (gazowy, p=700barów)

Termochemiczny - Ca(OH)2

Termochemiczny - MgSO4*7H2O

Termochemiczny - SrBr2*6H2O

Termochemiczny - MgCL2*6H2O

Termochemiczny - MgCl2/KCl/NaCl

Termochemiczny - FeCO3

Termochemiczny - Fe(OH)3

Termochemiczny - CaSO4*2H2O

Przemiana fazowa - A164

Przemiana fazowa - RT110 Paraffin

Przemiana fazowa - E117

Przemiany fazowe

Sorpcja

Zasobniki z materiałami stałymi

Zasobniki ciepłej wody użytkowej

Gęstość ciepła, kWh/m3

Rys. 1. Metody akumulacji ciepła i osiągane gęstości jego akumulacji. Skala logarytmiczna

(opracowanie własne na podstawie m.in. [14] )

Podstawową zaletą akumulatorów ciepła z przemianą fazową ciało stałe-ciecz jest konstrukcja

bezciśnieniowa oznaczająca niskie koszty zasobnika. W połączeniu ze względnie wysoką

Page 3: AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE … · 2016. 6. 23. · AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE- CIECZ Autorzy: Janusz Lichota, Kazimierz Wójs,

temperaturą wewnątrz zasobnika umożliwia to dołączenie obiegu parowego w celu wytwa-

rzania energii elektrycznej. Materiały oparte o przemianę fazową ciało stałe – ciecz mogą być

opisane pół-empiryczną zależnością Sizmanna z 1989 r. [7] opisującą zależność pomiędzy

ciepłem przemiany fazowej Elatent oraz temperaturą przemiany fazowej Tm, K

Elatent = 0.8...1.2 Tm , MJ/(m3K)

gdzie: Elatent - ciepło przemiany fazowej, Tm - temperatura przemiany fazowej, K

Zależność umożliwia łatwe porównanie pojemności cieplnej różnych związków chemicznych

w funkcji temperatury dostępnej dla akumulatorów nisko-, średnio- i wysokotemperaturo-

wych. Zależność zilustrowano na rysunku 2 określając jednocześnie rodzaj związku chemicz-

nego mającego przejście fazowe I-rodzaju w funkcji temperatury. Im wyższa temperatura

przemiany fazowej, tym większe ciepło przemiany fazowej. Wraz ze wzrostem temperatury

należy również zmienić skład chemiczny materiału.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

-100 0 100 200 300 400 500 600 700 800 900

Enta

lpia

prz

em

ian

y fa

zow

ej,

MJ/

m3

Temperatura topnienia, C

WęglanyFluorki

Chlorki

Wodorotlenki

Azotany

Alkohole

4

3

5

6

21

Rys. 2. Zależność pomiędzy entalpią przemiany fazowej a temperaturą przemiany dla różnych związków

chemicznych (opracowanie własne na podstawie materiałów ZAE Bayern [7])

Akumulatory niskotemperaturowe mogą być realizowane w oparciu o eutektyki woda – sól,

klatraty, hydraty soli, parafiny, kwasy tłuszczowe, glikole polietylenowe oraz alkohole. W

akumulatorach średniotemperaturowych można zastosować alkohole, azotany i wodorotlenki.

Akumulatory wysokotemperaturowe mogą być konstruowane z zastosowaniem wodorotlen-

ków, węglanów, chlorków i fluorków.

Akumulatory termochemiczne są w fazie badawczej. Obecnie następuje ich selekcja ze

względu na techniczne możliwości opanowania odwracalnego procesu rozłożenia substancji

1. Eutektyki woda – sól

2. Klatraty

3. Hydraty soli

4. Parafiny

5. Kwasy tłuszczowe

6. Glikole polietylenowe

Akumulator nisko- średnio- wysokotemperaturowy

Page 4: AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE … · 2016. 6. 23. · AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE- CIECZ Autorzy: Janusz Lichota, Kazimierz Wójs,

C na składniki A i B. Odwracalność oznacza z reguły istnienie dwóch reakcji chemicznych

masowo odpowiadających równaniu

C=A+B.

Reakcje zachodzą przy różnych temperaturach i ciśnieniach. Przykładem takiej przemiany

jest

Mg(OH)2(s) ↔ MgO(s)+H2O(g),

ΔH = - 81,0 kJ mol-1

Endotermiczna dehydratacja Mg(OH)2 umożliwia ładowanie ciepłem. Z kolei dodanie wody

do MgO powoduje reakcję egzotermiczną - rozładowanie cieplne akumulatora. Tlenek ma-

gnezu MgO pochłania parę wodną oddając ciepło przy temperaturze wynoszącej około 300

°C. Inne możliwe reakcje chemiczne obejmują następujące związki: MgCl+H2O,

Li2SO4+H2O, MgSO4+H2O [15]. Niektóre z tych materiałów nie są technicznie stabilne

w cyklu przemian. Przykładem jest sól magnezowa MgCl2*6H2O. Nie udało się uzyskać w

laboratorium z powrotem połączenia chlorku magnezu MgCl z 6-cioma cząsteczkami wody.

Akumulatory wodorowe wydają się atrakcyjną ideą ze względu na gęstość energii chemicznej

w jednostce objętości. Wodór powoduje jednak szereg problemów. Można je podzielić na :

pozyskanie wodoru i przechowywanie wodoru. Wodór jest ciekły tylko do około 23 K. W

takim przypadku do uzyskania tej temperatury i/lub przechowywania jest wymagana instala-

cja kriogeniczna pochłaniająca wiele energii. Przechowywanie wodoru w formie gazowej

wymaga ciśnień wynoszących około 700 barów przy dobrej gęstości energii 1305 kWh/m3

(nb. porównywalnej z mokrym drewnem). Istnieje również możliwość przechowywania wo-

doru w ciele stałym – podobne do łączenia cząstki wody z zeolitem. Wodór jest adsorbowany

na ciele stałym np. tlenkach metali. Pozyskanie wodoru metodą bezpośredniego rozkładu ter-

micznego wymaga temperatury wynoszącej około 2500 °C. Ponadto wiąże się z dużym za-

grożeniem wybuchem ze względu na wytworzenie gazowej mieszaniny wybuchowej H2 i O2.

Problemem jest również separacja składników gazowych termicznego rozkładu wody. Inną

metodą jest cykl przemian kwasu siarkowego zachodzący przy temperaturze około 900 ºC.

Kolejną jest reforming metanu parą wodną zachodzący w obecności katalizatora np. niklu

przy temperaturze wynoszącej około 800 °C. Stąd jest to ciągle otwarty temat badawczy.

2. KONSTRUKCJE AKUMULATORÓW PCM

Akumulator z materiałem PCM jest wynikiem wielokryterialnej optymalizacji i jest indywi-

dualnie dostosowany do źródła ciepła. Przykładowy zestaw kryteriów wyboru materiału aku-

mulującego ciepło wewnątrz akumulatora obejmuje zbiór warunków:

ciepło przemiany fazowej materiału H powinno być możliwie największe,

temperatura przemiany fazowej Tm powinna odpowiadać warunkom pracy elektrociepłow-

ni,

Page 5: AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE … · 2016. 6. 23. · AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE- CIECZ Autorzy: Janusz Lichota, Kazimierz Wójs,

materiał powinien być niekorozyjny względem materiału konstrukcyjnego akumulatora lub

korozja powinna być jak najmniejsza,

materiał powinien cechować się możliwie dużym współczynnikiem przewodzenia ciepła,

ze względu na wskaźniki opłacalności inwestycji cena materiału powinna być niska.

W przypadku projektów komercyjnych można dodać jeszcze jedno kryterium : materiał musi

być sprawdzony w praktyce. Według [3] w bazach danych właściwości chemicznych materia-

łów dostępnych jest około 150 000 pozycji. Co najmniej kilkaset materiałów ma dobrze opi-

sane właściwości fizyczne i chemiczne dotyczące ciepła przemiany fazowej, temperatury

przemiany fazowej, współczynnika przewodzenia ciepła [20]. Szybkość korozji materiału

konstrukcyjnego przez materiał akumulujący ciepło można zbadać tylko laboratoryjnie. Są to

badania obejmujące co najmniej 1000 h, więc tych informacji jest mniej i dotyczą głównie

soli fluorowych stosowanych w elektrowniach atomowych [17, 5, 4]. Najostrzejszym kryte-

rium, które redukuje ilość dostępnych substancji jest kryterium opłacalności inwestycji. Wy-

bierane są rozwiązania wymagające najmniejszych nakładów inwestycyjnych. Tabela 1 poka-

zuje kilka zrealizowanych w praktyce układów akumulacji ciepła. Z przeglądu wynika, że na

rynku zrealizowanych projektów dominuje azotan sodu NaNO3 oraz azotan potasu KNO3.

Główną przyczyną jest ich niska cena.

2.1. Akumulator elektrowni THEMIS

Elektrownia wykorzystującą akumulator wypełniony solą nosi nazwę THEMIS (franc. Ther-

mo-Hélio-Electrique-Mégawatt) [22]. W akumulatorach wykorzystano mieszaninę płynnych

soli 53%KNO3, 40% NaNO2 i 7% NaNO3 (wagowo). Zasada działania jest oparta o dwa aku-

mulatory, pomiędzy którymi przetłaczana jest płynna sól. W jednym znajduje się gorąca sól

(450 ºC), w drugim – schłodzona (250 ºC). W elektrowni słonecznej są dwa źródła ciepła:

wieża koncentrująca promieniowanie słoneczne z heliostatów oraz dodatkowe źródło ciepła

oparte o paliwo. Zasadę pracy opracowano w 1978 r. Fakt ten jest o tyle istotny, że jest to

pierwszy znany przypadek przemysłowego wykorzystania soli NaNO3 i KNO3 jako materiału

służącego do wytwarzania energii elektrycznej w procesie przemian energetycznych. Amery-

kańskie elektrownie SEGS powstały dopiero w 1984 r. Elektrownię uruchomiła firma EDF

w 1982 r. w Pirenejach. Całkowity koszt budowy elektrowni wynosił około 400 mln franków

francuskich (300 mln FRF bez podatków).

Przyjmując ostatni kurs wymiany do euro (1 FRF=0.152 euro) daje to dzisiaj kwotę około

60 mln euro. Biorąc jeszcze pod uwagę średnioroczną sprawność elektrowni wynoszącą 16%

oraz ilość wytwarzanej energii elektrycznej rocznie wynoszącą 3000 MWh widać, że w pol-

skich warunkach taki typ elektrowni jest nieopłacalny. Prosty czas zwrotu nakładów wynosi

400 lat (=60 mln euro/ 0,6 mln zł) dla obecnej ceny energii elektrycznej równej 200 zł/MWh.

Stwierdzenie o nieopłacalności nie dotyczy jednak samego akumulatora. 550 t soli po cenie

400 $/t daje dość małą kwotę 220 000 $. Elektrownia pracowała do 1983 r. Ponownie ją uru-

chomiono w 2004 r. Zasadę działania oraz schemat procesowy elektrowni pokazano na rys. 3.

Page 6: AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE … · 2016. 6. 23. · AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE- CIECZ Autorzy: Janusz Lichota, Kazimierz Wójs,

Tabela 1 Materiał akumulujący ciepło, rok uruchomienia instalacji, HTF – płyn transportujący ciepło, TES –

materiał akumulujący ciepło, Tpracy – temperatury pracy

Elektrownia Użyty materiał do akumulacji ciepła

THEMIS Targasonne/Francja/40 MWht/ 2.5MWe,

1983-86r. I od 2004 r., koncepcja 1978r.

HTF= stopione sole,

TES =stopione sole (azotan potasu KNO3 – 53%, azo-

tyn sodu NaNO2 – 40%, azotan sodu NaNO3 – 7%)

Tpracy = 450-250 ºC, para świeża 50 barów/430 ºC

Solar Two Barstow/CA/USA/110 MWht TES=1.5 mln kg 60%NaNO3 oraz 40% KNO3,

Tm=220 ºC

Planta Solar Tres, 2002-2007r., 588 MWh (16 h) HTR= stopione NaNO3/ KNO3,

TES = stopione NaNO3/ KNO3

Tpracy = 565-288 ºC

SSPS CESA I (PSA), 1983 r., 12 MWh HTF= olej termiczny, TES =stopione sole (azotany)

SSPS CERS I (PSA), 1981 r., 2.7 MWh HTF= płynny sód, TES =sód

Andasol I-SENER/Cobra. Guadix, Hiszpania, 2008 r.,

1010 MWh

1010 MWh/50MWe

880 MWh

HTF=para, 60%NaNO3 oraz 40% KNO3

Tpracy = 384-291 ºC

Tpracy = 560-260 ºC

Tpracy = 382-296 ºC

Andasol II- SENER/Cobra, Guadix, Hiszpania,2009 r. HTF= para, TES =stopione sole

Extresol I - SENER/Cobra. HTF= olej termiczny, TES =stopione sole

Instalacja DLR/Almeria/Hiszpania 14 ton NaNO3

SSPS LS3 (PSA), Hiszpania, 2004 r., 0.48 MWh HTF=olej termiczny, TES= beton

PS10, Abengoa, Sevilla, Hiszpania, 15 MWh przez 15

minut

HTF=para wodna, TES= para wodna-ceramika

PS20, Abengoa, Sevilla, Hiszpania, 20 MWh HTF=para wodna, TES= para wodna-ceramika

Rys. 3. Schemat termodynamiczny elektrowni słonecznej THEMIS (rysunek własny na podstawie [22])

Układ składa się z trzech odseparowanych od siebie obiegów. Występuje obieg przejmujący

moc 9 MWt z heliostatów, obieg akumulacji ciepła oraz obieg parowy wytwarzający energię

Page 7: AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE … · 2016. 6. 23. · AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE- CIECZ Autorzy: Janusz Lichota, Kazimierz Wójs,

elektryczną o mocy 2,5 MW. Pomocniczy kocioł olejowy ma kilka funkcji: topi sole w czasie

rozruchu elektrowni, utrzymuje temperaturę soli powyżej 200 °C, aby uniknąć skrzepnięcia

soli w przewodach, podgrzewa wodę uzupełniającą obieg parowy w czasie częściowego nała-

dowania akumulatorów, topi sól w czasie przerw w dostawie ciepła i ogrzewa biurowiec. Po-

jedynczy akumulator ma objętość 80 m3 i pojemność cieplną wynoszącą 40 MWh.

Podobną zasadę co w THEMIS zastosowano w elektrowni „Solar Two”. Do akumulacji za-

stosowano płynną sól eutektyczną (1.5 mln kg 60%NaNO3 oraz 40% KNO3). Elektrownia ta

może generować moc 10 MW. Stopiona sól jest pompowana z zimnego akumulatora na wieżę

skupiającą promieniowanie słoneczne, a następnie do gorącego akumulatora. Po wzroście

obciążenia gorąca sól może być pompowana przez wytwornicę pary i zimny akumulator.

2.2 Akumulator w elektrowni Litoral

Ten akumulator już wykorzystuje ciepło przemiany fazowej. Został on zbudowany po około

10-letnich badaniach przez DLR (Deutsche Zentrum für Luft- und Raumfahrt, Niemcy).

Znajduje się w miejscowości Carboneras (Almeria, Hiszpania) przy elektrowni węglowej Li-

toral, której właścicielem jest Endesa. Akumulator pobiera ciepło słoneczne ze zwierciadeł

parabolicznych oraz bloku węglowego i jest włączony w układ bloku węglowego.

Rys. 4. Schemat działania akumulatora

(rysunek własny na podstawie [9/10/11])

Akumulator jest podzielony na dwie części. Zadaniem pojedynczego akumulatora betonowe-

go jest przejmowanie wahań temperatury poniżej i powyżej temperatury przejścia fazowego

306 ºC azotanu sodu NaNO3. Na schemacie pokazano dwa akumulatory betonowe 1 i 2 w

celu łatwiejszego przekazania idei działania układu. Akumulator NaNO3 z kolei zmienia swo-

ją temperaturę tylko w przedziale 290-320 ºC, tj. wokół przejścia fazowego wykorzystując

kondensację pary wodnej. Akumulator betonowy „chroni” temperaturę przejścia fazowego w

akumulatorze z przemianą fazową. Wewnątrz akumulatorów widoczne jest połączenie rur w

układzie Tichelmanna. Jest to inna koncepcja w porównaniu do elektrowni SEGS lub

THEMIS, w której sól jest cały czas płynna. Ponadto źródłem ciepła może być blok węglowy

Page 8: AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE … · 2016. 6. 23. · AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE- CIECZ Autorzy: Janusz Lichota, Kazimierz Wójs,

lub kolektor słoneczny. Układ akumulacji ciepła charakteryzują następujące liczby: pojem-

ność cieplna - 0,72 MWh; masa azotanu sodu - 14 t; jednostkowa rzeczywista pojemność

cieplna akumulatora NaNO3 - 84 kWh/m3 (teoretyczna – 112); objętość akumulatora betono-

wego - 20 m3; jednostkowa pojemność cieplna akumulatora betonowego – 25,6 kWh/m

3; cał-

kowita pojemność akumulatora betonowego 474 kWh.

W czasie ładowania ciepłem akumulator betonowy 2 (wlot) przejmuje ciepło jawne pary ob-

niżając jej temperaturę z 500 ºC do około 315 ºC. Akumulator NaNO3 przejmuje ciepło utajo-

ne przy temperaturze 306 ºC. Para o ciśnieniu 110...107 barów i temperaturze około 320 ºC

kondensuje w ożebrowanych (aluminium) rurach stalowych wewnątrz akumulatora NaNO3.

Akumulator betonowy 1 (wylot) przejmuje ciepło przegrzewu poniżej 306 ºC. Temperatura

wrzenia NaNO3 wynosi 380 ºC, stąd m.in. wynika ochrona akumulatora NaNO3 przed zbyt

wysoką temperaturą ładowania przy pomocy akumulatora betonowego.

W czasie rozładowania kierunek przepływu wody i pary odwraca się. Woda najpierw prze-

pływa przez akumulator betonowy 1 i odparowuje (lub nie po spadku temperatury akumulato-

ra). Potem woda przepływa wewnątrz rur akumulatora NaNO3. Tam odparowuje uzyskując

temperaturę 288..292 ºC. Wewnątrz rur akumulatora NaNO3 panuje niższe ciśnienie niż w

czasie ładowania i wynosi 80 barów. Para mokra za akumulatorem NaNO3 wpływa do separa-

tora pary i jest suszona. Kondensat recyrkuluje do akumulatora NaNO3. Para sucha jest prze-

grzewana wewnątrz akumulatora betonowego 2, dopływa do bloku i generuje energię elek-

tryczną w turbinie. Możliwe są dwa sposoby pracy akumulatora: przy stałym ciśnieniu

(zmienna moc cieplna, maksymalnie chwilowo wynosi 700 kW) i zmiennym ciśnieniu (stała

moc cieplna). Zbudowana instalacja ma tylko jeden akumulator betonowy. Ze względu na

wielofunkcyjność instalacji skonstruowano skomplikowany układ połączeń rurowych. Umoż-

liwia on kilka trybów pracy. Poniżej przedstawiono własną analizę sposobu ładowania cie-

płem akumulatora.

67

9

10

11

1

P1

P2

5

2

8

500 °C/110 barów

3

290...320 °C/

107 barów

Para o coraz niższej

temperaturze

Woda

4

Rys. 5. Schemat ładowania akumulatora ciepłem;

(opracowanie własne na podstawie [9,10,11]), 1-

kolektory słoneczne, 2 – przewody umożliwiające

odprowadzenie pary lub wody do bloku węglowego,

3 - Przejęcie ciepła przy temperaturze< 290 °C oraz

temperaturze> 320 °C, 4 - akumulator betonowy, 5 -

regulacja temperatury przed akumulatorem

(schładzanie pary), 6 - separator pary,

7 - akumulator PCM, 8 - wyrównanie ciśnienia do

ciśnienia w bloku, 9 - para/woda, wylot;

ładowanie/rozładowanie ciepła, powrót do bloku

węglowego, 10 - para, wlot, ładowanie ciepła,

zasilanie z bloku węglowego, 11 - zimna woda,

wlot, rozładowanie ciepła

Para o temperaturze 500 ºC wpływa do akumulatora betonowego. Tam się schładza i prze-

pływa do „zimnego” akumulatora PCM. Temperatura pary za akumulatorem PCM jest niższa

niż 290 ºC, więc para jest zawracana do akumulatora betonowego. Akumulator betonowy

Page 9: AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE … · 2016. 6. 23. · AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE- CIECZ Autorzy: Janusz Lichota, Kazimierz Wójs,

pełni rolę akumulatora betonowego 1 ze schematu - przejmuje przyrost temperatury aż do

temperatury przejścia fazowego w akumulatorze PCM. Powyżej temperatury 320 ºC akumu-

lator betonowy przejmuje całe ciepło z bloku węglowego (przegrzew przy rozładowaniu).

Ciepło nie jest już kierowane do akumulatora PCM i układ można bez uderzenia hydraulicz-

nego przełączyć w pokazany poniżej.

35

6

7

8

1

P1

P2

4

500 °C/110 barów

290...320 °C/

107 barów

Para o coraz niższej

temperaturze

Woda

2

Rys. 6. Schemat ładowania akumulatora ciepłem po

wzroście temperatury wewnątrz akumulatora PCM

powyżej 320 ºC; (opracowanie własne na podstawie

[9,10,11]), 1- kolektory słoneczne, 2 – akumulator

betonowy 3 - separator pary 4- wyrównanie

ciśnienia do ciśnienia w bloku, 5 - akumulator

PCM, 6 - para/woda, wylot; ładowanie/rozładowanie

ciepła, powrót do bloku węglowego, 7 - para, wlot,

ładowanie ciepła, zasilanie z bloku węglowego, 8 -

zimna woda, wlot, rozładowanie ciepła

Przebieg rozładowania pokazano na rys. 7, 8 i 9. Woda może popłynąć dwiema drogami –

przez akumulator betonowy lub akumulator PCM. Oba strumienie łączą się dając temperaturę

pary wynoszącą 290 ºC (80 barów). Jeżeli akumulator betonowy ma temperaturę 450 ºC, to

para na wylocie jest przegrzana. Po schłodzeniu akumulatora betonowego można go np. odłą-

czyć.

35

7

8

1

P1

P2

4

290...320 °C/

107 barów

Para o coraz niższej

temperaturze

Woda

2

6

Rys. 7. Schemat rozładowania akumulatora; (opra-

cowanie własne na podstawie [9,10,11]), 1-

kolektory słoneczne, 2 – akumulator betonowy, 3 -

separator pary, 4- wyrównanie ciśnienia do ciśnienia

w bloku, 5 - akumulator PCM, 6 - para/woda, wylot;

ładowanie/rozładowanie ciepła, powrót do bloku

węglowego, 7 - para, wlot, ładowanie ciepła,

zasilanie z bloku węglowego, 8 - zimna woda, wlot,

rozładowanie ciepła

35

7

8

1

P1

P2

4

290...320 °C/

107 barów

Para o coraz niższej

temperaturze

Woda

2

6

Rys. 8. Schemat rozładowania tylko akumulatora

PCM; (opracowanie własne na podstawie [9,10,11]),

1- kolektory słoneczne, 2 – akumulator betonowy 3 -

separator pary 4- wyrównanie ciśnienia do ciśnienia

w bloku, 5 - akumulator PCM, 6 - para/woda, wylot;

ładowanie/rozładowanie ciepła, powrót do bloku

węglowego, 7 - para, wlot, ładowanie ciepła,

zasilanie z bloku węglowego, 8 - zimna woda, wlot,

rozładowanie ciepła

Page 10: AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE … · 2016. 6. 23. · AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE- CIECZ Autorzy: Janusz Lichota, Kazimierz Wójs,

Możliwe są również inne drogi przepływu wody w czasie ładowania. Woda może przepłynąć

tylko przez akumulator betonowy lub tylko przez akumulator PCM bez łączenia funkcji obu

tych akumulatorów.

Poniższe kierunki przepływu umożliwiają uzyskanie pary suchej (w akumulatorze PCM) i

przegrzanej (za akumulatorem betonowym). Woda najpierw przepływa przez akumulator

PCM, a potem przez akumulator betonowy.

35

7

8

1

P1

P2

4

290...320 °C/

107 barów

Para o coraz niższej

temperaturze

Woda

2

6

9

Rys. 9. Schemat rozładowania akumulatora PCM

i betonowego; (opracowanie własne na podstawie

[9,10,11]), 1- kolektory słoneczne, 2 – akumulator

betonowy 3 - separator pary 4- wyrównanie ciśnienia

do ciśnienia w bloku, 5 - akumulator PCM, 6 -

para/woda, wylot; ładowanie/rozładowanie ciepła,

powrót do bloku węglowego, 7 - para, wlot,

ładowanie ciepła, zasilanie z bloku węglowego, 8 -

zimna woda, wlot, rozładowanie ciepła, 9 – zawór

umozliwia regulacje temperatury pary

Po schłodzeniu akumulatora betonowego można go odciąć i doprowadzać parę bezpośrednio

z akumulatora PCM do bloku węglowego.

3. PODSUMOWANIE

W pracy pokazano miejsce akumulatorów z przemianą fazową pośród różnych możliwości

akumulacji ciepła. Omówiono konstrukcje układów akumulacji ciepła zastosowane w elek-

trowni THEMIS we Francji oraz w elektrowni Litoral w Hiszpanii.

LITERATURA

[1] Adames A. A.: Design considerations of 15 kW heat exchanger for the CSPonD project,

praca inżynierska MIT, 2010

[2] Bauer T., Laing D., Kröner U., Tamme R.: Sodium nitrate for high temperature latent

heat storage, The 11th International Conference on Thermal Energy Storage – Effstock

14-17 June 2009 in Stockholm, Sweden

[3] Fernández A.I., Martínez M., Segarra M., Cabeza L. F.: Selection of the materials with

potential in thermal energy storage, The 11th International Conference on Thermal Ener-

gy Storage – Effstock 14-17 June 2009 in Stockholm, Sweden

[4] Gomez J., Glatzmaier G.C., Starace A., Turchi C., Ortega J.: High Temperature Phase

Change Materials for Thermal Energy Storage Applications, NREL/CP-5500-52390 Au-

Page 11: AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE … · 2016. 6. 23. · AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE- CIECZ Autorzy: Janusz Lichota, Kazimierz Wójs,

gust 2011, Contract No. DE-AC36-08GO28308, materiał prezentowano na konferencji:

SolarPACES 2011 Granada, Spain September 20-23, 2011

[5] Gomez J. C.: High-Temperature Phase Change Materials (PCM) Candidates for Ther-

mal Energy Storage (TES) Applications, Milestone Report NREL/TP-5500-51446, Sep-

tember 2011, Contract No. DE-AC36-08GO28308

[6] Gil A., Arce P., Martorell I., Medrano M., Cabeza L.F., State of the art of high tempera-

ture storage in thermosolar Plants, The 11th International Conference on Thermal Ener-

gy Storage – Effstock 14-17 June 2009 in Stockholm, Sweden

[7] Hauer A.: Thermische Energiespeicher - Wohin geht die Entwicklung?, prezentacja ZAE

Bayern, 2013, http://www.wuerzburg.ihk.de

[8] Kaufmann S.: WÄRME2GO - Pilotprojekt mit mobilen Latentwärmespeichern im Neck-

ar-Odenwald-Kreis, Abfallwirtschaftsgesellschaft des Neckar-Odenwald-Kreises mbH

(AWN), Birkenfeld, 28. Februar 2013, prezentacja

[9] Laing D.: Nutzung von Wärmespeichern zur Integration erneuerbarer Energien, dena-

Konferenz, 27.09.2011

[10] Laing D.: Storage development for direct steam generation power plants, Parabolic

Trough Technology Workshop, March 09, 2007, Golden CO, USA

[11] Laing D., Bauer T., Steinmann W.-D., Lehmann D.: Advanced high temperature latent

heat storage system – design and test results, The 11th International Conference on

Thermal Energy Storage – Effstock 14-17 June 2009 in Stockholm, Sweden

[12] Mathur A., Kasetty R., Garay J., Dames C., Hardin C., Zare M., McDowell M., Hajela

G., Surampudi S., Kindler A., Shakkottai P., Venkatasetty H.: Heat Transfer and Latent

Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants, Final Re-

port, Report Number: DOE-GO18148 Phase I & 2, 2012, U.S. Department Of Energy,

Contract: DE-FG36-08GO18148

[13] Muthukumar P.: Thermal Energy Storage : Methods and Materials, prezentacja 2011 r.

[14] Oertel D.: Energiespeicher – Stand und Perspektiven, TAB, Arbeitsbericht Nr. 123,

Februar 2008

[15] Posern J.: Untersuchungen von Magnesiumsulfat-Hydraten und Sulfat/Chlorid-

Mischungen für die Eignung als Aktivstoff in Kompositmaterialien für die

thermochemische Wärmespeicherung, rozprawa doktorska, Bauhaus-Universität Weimar

2012

[16] Rogowska R.: Własności korozyjne cienkowarstwowych powlok TiN, CrN, TiCN otrzy-

mywanych metodą łukowo – próżniową, 2006 , Problemy eksploatacji nr 3

[17] Rudniak J., Sekret R.: Wykorzystanie energii promieniowania słonecznego a magazyno-

wanie ciepła, Rynek Energii nr 6 (121) 2015

[18] Tamme R.: Storage technology for process heat application, presentation, Preheat sym-

posium Freiburg, 2001

[19] Williams D. F., Toth L. M., Clarno K. T.: Assessment of Candidate Molten Salt Coolants

for the Advanced High-Temperature Reactor (AHTR), Oak Ridge National Laboratory,

U.S. DEPARTMENT OF ENERGY, kontrakt nr DE-AC05-00OR22725

Page 12: AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE … · 2016. 6. 23. · AKUMULATORY CIEPŁA Z PRZEMIANĄ FAZOWĄ CIAŁO STAŁE- CIECZ Autorzy: Janusz Lichota, Kazimierz Wójs,

[20] Zalba B., Marın J., Cabeza L.F., Mehling H.: Review on thermal energy storage with

phase change: materials, heat transfer analysis and applications, Applied Thermal Engi-

neering 23 (2003) 251–283

[21] Survey of Thermal Storage for Parabolic Trough Power Plants, Pilkington Solar Interna-

tional

GmbH / National Renewable Energy Laboratory, Cologne, Germany, 2000

[22] strona internetowa: http://www.archimedesolarenergy.com/molten_salt.htm;

http://www.latentspeicher.com/de; http://www.pcm-ral.de;

http://pyreneescatalanes.free.fr/Images/Thematiques/Batiments/Themis5.jpg

Rezultaty prezentowane w artykule zostały osiągnięte w ramach zlecenia statutowego:

Z09Z2/S50037 pt. Modelowanie procesów cieplnych i przepływowych w systemach energe-

tycznych - etap 2.

Udział w konferencji sfinansowano ze zlecenia statutowego Politechniki Wrocławskiej nr

Z09Z2/S50037.

HEAT ACCUMULATORS WITH SOLID-LIQUID PHASE CHANGE

Key words: heat accumulators, CHP

Summary. The article discusses different types of heat storage and shows interesting results of heat accumula-

tion in the solid- liquid phase change. Thermodynamic diagram of power station THEMIS was shown. Basic

technical-economic analysis of the data from this plant were provided. Basic technical data of the heat accumula-

tor located in Carboneras, Spain were also discussed.

Kazimierz Wójs, prof. dr hab. inż., jest kierownikiem Zakładu Mechaniki i Systemów Ener-

getycznych W9/Z2 Politechniki Wrocławskiej. Specjalizuje się w mechanice płynów.

Janusz Lichota, dr hab. inż., jest adiunktem naukowo-dydaktycznym w W9/Z2 Politechniki

Wrocławskiej. Specjalizuje się w systemach energetycznych i automatyce.

Piotr Podkomorzy, mgr inż., jest specjalistą ds. organizacji projektów.