191

Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations
Page 2: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ALGEBRAIN

WORDS

AGuideofHints,Strategiesand

SimpleExplanations

GregoryP.Bullock,Ph.D.

Page 3: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Copyright©2014GregoryP.Bullock,Ph.D.AllRightsReserved.Thisbookmaynotbeusedorreproducedinpart,inwhole,orbyanyothermeanswhatsoeverwithoutwrittenpermission.Bullock,GregoryP.Algebrainwords:aguideofhints,strategiesandsimpleexplanationsMATHEMATICS/Algebra/GeneralSTUDYAIDS/StudyGuidesFirstEditionTheUnitedStatesofAmerica

Page 4: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TableofContentsINTRODUCTIONWhatIsThisBook?WhyDoYouNeedAlgebra?

REVIEWOFTHEBASICSTheRealOrderofOperations:GEMATheTruthaboutPEMDASTheUnwritten1PropertyCrisesofZeros,Ones&NegativesIntegers&WholeNumbersPrimeNumbersIs51aPrimeNumber?WhatisaTerm?Whatisa“Like-Term”?WhatisaFactor?FactoringTheProcedureforPrimeFactoringThePrimeNumberMultiplesTableTheGreatestCommonFactor(GCF)TheLeastCommonDenominator(LCD)GCFvs.LCD

FRACTIONSProcedureforAdding&SubtractingFractionsMultiplyingFractionsDividingFractions

OPERATIONSOFBASESWITHEXPONENTSMultiplyingBasesWithExponentsDividingBasesWithExponentsExponentsofExponents(a.k.a.PowersofPowers)

SOLVINGSIMPLEALGEBRAICEQUATIONS

Page 5: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

SolvingaSimpleAlgebraicEquationwithOneVariable(FirstDegree)Arrangement:DescendingOrderExpressionsvs.Equations

LINEAREQUATIONSADiagonalLine:AHorizontalLine:AVerticalLine:WhatDoes“Undefined”Mean?HowtoGraphaLinearEquationTheSlopeEquationThe4ImportantEquationsforLinesWhenx1=x2:Wheny1=y2:Parallel&PerpendicularLinesonaGraph

SOLVINGASYSTEMOF(TWO)LINEAREQUATIONSWhatDoes“SolvingInTermsOf”Mean?Graph&CheckTheSubstitutionMethodTheAddition/EliminationMethodExamplesforChoosingtheMethod

Interpretingthe“Solutions”OneSolution-ConsistentNoSolution-Inconsistent,ParallelInfiniteSolutions-Dependent

TRINOMIALS&QUADRATICSWhatAre“Solutions”toQuadraticEquations?SolvingQuadraticEquationsFactor&SolveTrial&Error/ReverseFOILMethodTheac/GroupingMethodCompletetheSquareTheQuadraticFormula

Page 6: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ThePartEveryoneForgets(TheLastStepoftheQuadraticEquation)Graph&Check

QuadraticswithZeroWhencis0:ax2+bx=0WhenBothb&care0:ax2=0Whenbis0:ax2+c=0“TheDifferenceofTwoSquares”ConjugatePairBinomialsTakingtheSquareRootofBothSidesTheSumofTwoSquaresSpecialWordsforSpecialCasesPerfectSquareTrinomialTheDifferenceofTwoSquares

Primevs.NoSolutionClarification:WhentheSolutionis0

RATIONALEXPRESSIONSProcedureforSimplifyingRationalExpressionsProcedureforAdding&SubtractingRationalExpressionsSimplifyingaComplexRationalExpressionAll-LCDMethod(detailedversion):SimplifyOverallNumerator&OverallDenominatorSeparatelyMethod(detailedversion)All-LCDMethod(shortversion)SimplifyOverallNumerator&OverallDenominatorSeparatelyMethod(shortversion)AnnotatedExample1UsingtheAll-LCDMethodAnnotatedExample2UsingtheOverallNumerator&DenominatorMethod

TheWrongWaytoSimplifyaRationalExpressionExtraneousSolutionsProcedureforSolvingEquationswithRationalExpressions&ExtraneousSolutionsCrossMultiplication

Page 7: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Cross-Multiplicationvs.CrossCancellingRADICALS,ROOTS&POWERSPerfectSquares&AssociatedSquareRootsListofPerfectSquares&AssociatedSquareRootsCommonPerfectCubes&AssociatedCubeRootsOtherPowers&Relationshipsof2,3,4&5Manipulating&SimplifyingRadicalsListofCommonRadicalFingerprintsExtraneousRootsinRadicalEquations

FMMs(FREQUENTLYMADEMISTAKES)TheTwoMeaningsof“CancellingOut”CheckingYourAnswersMiscellaneousMistakesScientificNotationonYourCalculatorWhatDoes“Error”onaCalculatorMean?

CLOSING

Page 8: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

INTRODUCTION

Page 9: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

WhatIsThisBook?

Thisbookisaguideofcommonmathandalgebratopicsthatareexplainedinanon-traditionalway.Itisnotatextbook,norisitaconventionalstudyguide.Thisisabookwherebasicmathematicalandalgebraictopicsareexplainedinlaymen’sterms,sometimesevenpurposefullyredundantterms,tomakeyourunderstandingeasierandyourlearningcurvefaster.It’smoreofaguideofsupplementalinformationandperspectivesonthemathyoumustlearn.

ItutoredCalculusfortheMathDepartmentinundergraduateschoolasapart-timejob,thenbeganteachingmathatthecollegiatelevel(BasicMathandArithmeticthroughCollegeAlgebra/Pre-CalcI)in2009toawiderangeofstudentsofvariousagesandmatheducationbackgrounds.Duringthattime,Ibegannoticingtrendsamongmystudentsandclasses.OnemajortrendInoticedwasthedivideamongpeoplewhoseemedto“getit,”andthosewhodidn’t“getit”aseasily,asquickly,orinthesamewayasthosewhodid.Althoughit’spointlesstoclassifystudentsintogroups,myjobasaninstructoristohelpbridgethegapandfindmechanismstohelpeveryone“getit.”

Asmyteachingstyleevolved,Inoticedthatalotofmath(eitherinthebooksortraditionallectures)wastaughtinasortof“mathlanguage,”meaningmostlyinnumbers,variablesandlinesofequationsandsimplificationsteps…whichisallwellandgood,becausethat’swhatmathis.ButIfoundthatmuchofitwaslefttointerpretation,whichsomewouldgetandsomewouldn’t.SoIstartedtranslatingthemathintowordedstepsandnotesandfoundthatstudentsrespondedpositivelytoit.ThiswasthebridgeoverthegapIwaslookingfor.Sincethen,Ibegangivingexplicitlywordednotesincluding,butnotlimitedto,stepbystepinstructions.Throughobservingcommonlearningpatternsamongstudents,Ialsowasabletopredictcommonquestionsorareasofconfusion,soIwouldgivenotestopreemptivelyanswerquestionssuchas“WhatdoIlookfor?”or,

“WhenshouldIusethis?”or,“Whatwillitlooklike?”

andpreparestudentsforfrequentmistakeareasbyalsoshowingwhatnottodo,alongwithwhattodo.Theseexperiencesinspiredmetorecordmynotesandmakethemavailabletoanystudentwhowishestheyhadanotherresourcetomakelearningmathandalgebraeasier.AsIstated,thisbookisnotatextbook,andbythatImeanIdon’tgiveextensiveexamplesandpracticequestionsthewaytextbooksdo.Mathtextbooksaregenerallyverygoodatgivingthemandcontainawealthofinformation.Buttraditionaltextbooksalsoteachinaveryrigidandoften

Page 10: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

bottom-upway.I’vefoundthatmanytextbooksteachcertaintopicstosuchasub-categoricallevelofdetailthatstudentslosesightofhowitconnectstothebiggerpicture.SowhatIofferareotherperspectivestothemathfromthetextbooks,andIsometimesunveiltheminamoretop-downway.

Page 11: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Ibelievethat:givingmultipleperspectives,givingdetailed,step-by-stepinstructions,showingexampleswithcommentary,connectingkeytopics,translatingmathterminology,answeringfrequentlyaskedquestions,highlightingcommonmistakes,anddrawingattentiontosomeofthemoreminute(yetimportant)detailswhich

sometimesslipunderstudents’radar,willexpediteyourabilitytorealizeandabsorbmaterial.Thiswillhelpyougetbettergradesandsaveyouvaluabletime,frustration,andevenmoney(ifitmeansyoudon’thavetorepeatacourse).Sometimesstudentslearnfasterbyseeingthingsinwords.In2010,IpublishedmyfirstbookGRADES,MONEY,HEALTH:TheBookEveryCollegeStudentShouldRead,whichisacollectionofadviceandstoriesonavarietyofcollege-relatedtopicsgearedtowardshelpingstudentsexcelandgetthemostoutoftheircollegeexperience.Init,Idedicated10shortchapterstohowtogetthebestgrades.Inoneofthosechapters,Iexplainhowimportantandhelpfulitistolistentothewordsofyourprofessors,andhowtakingnotesonwhattheysayissometimesbetterthanjusttryingtoquicklyrecordwhattheyputontheboard.That’sthebasisofthisbook:Puttingthemathintowords.WhenIwaswritingGRADES,MONEY,HEALTH,Ioriginallyintendedtoincludeachapteronsomebasicmathandalgebrahints,butmyamountofmaterialkeptgrowing,andIwantedtokeepthebookasshortaspossible,soIkeptthemathsegmentsout.Thenmymath-help-noteskeptgrowingandultimatelydevelopedintoitsownbook…thisbook,dedicatedentirelytomathandhelpinganyandeverymathstudent.

ThisisAlgebrainWords.

Page 12: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

WhyDoYouNeedAlgebra?Manystudents,especiallythosewhosemajorsarenotmathorscience,askthequestions,“WhydoIneedalgebra?”or,“WhenamIevergoingtousethis?”Thesearecompletelyvalidquestions.Ononehand,thatquestioncanbeaskedaboutanygeneraleducationclasswhichdoesnotseemtorelatetoone’smajor.Thegeneralstockansweris:Becauseitmakesyoumorewell-rounded.Andthat’strue,butformany,thatanswerisstillvagueandunacceptable.Withregardstomathspecifically,manyinstructorsputforthgreateffortandcreativitytoexhibitreasonsandscenariosastohowmathisusedineverydaylife.Iapplaudanyandallinstructorswhocanconvincinglyconveytheseanswers.Unfortunately,mostdonothavetheanswers,andevenmoreunfortunately,theytendtobe:

Willhelpyouwithmoneyandpersonalfinances,Willhelpyouwithmeasurementsaroundthehouse,Willhelpyoubeamoreefficientshopper,Youcanhelpachildwiththeirhomework,Willhelpyouunderstandtimesignaturesinmusic,Willtellyouhowlongitwilltakeyouandafriendtosplitajob,Etc.

Theseanswersareclichéandunsatisfactory.Thesetasksrequirelittletonoalgebra(althoughtheydorequireanunderstandingofdivision,fractions,anddecimals).Butthetruthis:thereareresources(likesmart-phoneapps,orjustaclassiccalculator)thatdomost,ifnotallofthosefunctionsforus.Anothertruthis:Thosewhoreallyneedandusealgebrafortheircareersareaselectfew.However,thatdoesn’tmeanyouhavenouseforit.Here’sthebetteranswertoyourquestion:Learningalgebramakesyoubetteratproblemsolving.Italsomakesyouawarethatthereisordertotheworldwelivein.Algebraisbasicallyaseriesofrules;youmightevenconsiderititsownlanguage.Everythinginourlivesrelatetounderstandingrulestohelpussolveproblemsandnavigatethroughlife.Thatincludes:

Laws,thelegalsystem,andcontracts;rules,regulations,andstrategiesofsportsandgames;negotiations;learninganewlanguage;criticalreading;computers,smartdevicesandelectronics;managingandworkingwithpeople;giving,takingandfollowingdirections;

Page 13: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

readinggraphs,chartsanddatatables;accomplishingtasksandgoalsofallsizes;andyes,evenfixingthingsaroundthehouse.

Isitallsolvingfor“x”?Obviouslynot,oratleastnotliterally,butwecanallbenefitfromlearninghowtonavigatethroughrules(and)tosolveproblems.Algebrawillhelpyoubemorelogicalandseelifemorelogically.There’sonemorething.Uponlearningandpassingalgebra,youwillfeelinspiredandempowered.Algebracanbeacomplicatedsubject.Ifyouconquerit,youwillthenhavetheconfidencetotakeonotherseeminglycomplicatedobstacles.Regardless,algebraisasubjectyouhavetotake.Noonesaysyouhavetolikeit,butyoumightaswellacceptitanddoyourbesttosucceedinit.Thisbookwillhelpyouthroughit.

Throughoutthebook,Ioftenreferyoutootherrelatedtopics,soI’veincludedhyperlinkstoallowyoutoquicklyjumptosuchreferredsections.Alsothroughoutthisbook,Iusethevariable“x”astheuniversalvariable,eventhoughmanyproblemsyouwillencounter(inclassorinlife)mayfeatureanunknownvariabledifferentthan“x”.

Page 14: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

REVIEWOFTHEBASICSFirst,wemustlookatafewbasicsthatwillbeusedandreferredtothroughoutthisbook.Fromyeartoyearandclasstoclass,youmayhavegraspedthemajorityofthematerialyou’velearned,andbuiltagoodfoundation.But,say,overasummerorholidaybreak,orjustfromnotusingitenough,youmayhaveforgottenafewofthemoreobscureprinciples.Theseareheretoquicklybringyoubackuptospeed.

Page 15: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheRealOrderofOperations:GEMAYoumayrememberthatwhenaddingterms,youwillgetthesamesumregardlessoftheorderinwhichyouadd.Youmayalsorememberthatthesameappliestomultiplication:Youwillgetthesameproductregardlessoftheorderofthefactorsyoumultiply.Theseare“commutativeproperties.”However,thisdoesnotapplytosubtractionordivision.Forsubtractionanddivision,ordermatters.Ordermatters,includingwhensubtractionand/ordivisionismixedinwithtermsbeingaddedand/ormultiplied.Sinceordermatters,thereareasetofrulesinplacetohelpuscalculatenumbersandtermsintheproperorder,andtoputconsistencyintothewaywedomath.Thesearetheorderofoperations.Often,booksorinstructorsdonotteachthiscompletelycorrectly.Here,itwillbeexplainedcompletely,withnothinglefttobemisinterpreted.1.SimplifyinsideGroupsfirst,ifpossible,frominnertoouter.Agroupisasetof(parentheses),[brackets],{braces},overallnumerators,overalldenominators,andradicands.2.Exponentsorroots,whichevercomesfirst,fromlefttoright.3.Multiplicationordivision,whichevercomesfirst,fromlefttoright.4.Additionorsubtraction,whichevercomesfirst,fromlefttoright.

Page 16: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheTruthaboutPEMDASManystudentsaretaughttheacronymandmnemonicdevicePEMDAS,whichstandsfor“Parentheses,Exponents,Multiplication,Division,Addition,Subtraction.”ImustwarntoyoubecarefulofPEMDAS;itismisleadingandincomplete.Ifyoulearntorelyonit,itcanfailyou.Letterbyletter,here’swhy:P:Thefirstorderisgroups,ofallsorts,asdescribedabove.Ifyouthinkofparenthesesonly,andyougettoothergroups,youmightthinkitappliestoparenthesesonly.AmoreappropriatefirstletterandwordshouldbeGforGroups.Groupsinclude,butarenotlimitedtoparentheses.E:Thismakesyouthinkofexponentsonlyinsteadofrootsaswell.Thisisn’tabigdeal,sinceradicalscanbeconvertedintoexponentform(whentheyare,theyarecalledrationalexponents),buttheyareofteninrootorradicalform,soyoumustbepreparedforthat.Whenbothexponentsandrootsappearinanequation,dowhichevercomesfirst,fromlefttoright.Also,rememberthatradicandsshouldbesimplifiedfirst,ifnecessary,astheyaretechnicallyagroup,asmentionedinthefirststep.MD:Thereasonthisismisleadingisbecausesomepeopleinterpretthistobechronologicallyliteral.Inotherwords,someseeMbeforeDandthinkmultiplicationmusthappenbeforedivision,butinfact,itmeansthatanyMultiplicationorDivisioncomebeforeanyAdditionorSubtraction.Butmultiplicationordivisionshouldbetreatedwiththesamepriority,andyou’resupposedtoperformwhicheverofthetwooperationscomesfirstfromlefttoright,inthedirectionyouread.Forinstance,if,inanequation,adivisionsigncomesbeforeamultiplicationsign,fromlefttoright,youdividefirstandmultiplynext.AS:Manyofteninterpretthisas“AisbeforeS,”(astheythinkMcomesbeforeD)butinfacttheyareofequalpriorityinthewayM&Dare.Additionorsubtractionshouldonlybeperformedafterallotheroperationsarecompleted.Thenyouperformeitheradditionorsubtraction,whichevercomesfirstfromlefttoright.Ifsubtractioncomesbeforeaddition,youwoulddothesubtractionfirst,thentheadditionnext.Ifanything,considerPEMDASaloosereminderofthecompleteOrderofOperations,althoughifitwereuptome,PEMDASbethrownawaycompletelyandreplacedwithGEMA:

Page 17: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

1. Groups(simplify,innertoouter)2. Exponentsorroots3. Multiplicationordivision4. Additionorsubtraction

Actually,since:

Rootsaretechnicallyaformofexponents,whenconvertedtorationalexponents*;Divisionistechnicallymultiplicationofafraction;andSubtractionistechnicallyadditionofnegativenumbers,

itcouldevenbecondensedtojust:

1. Groups,2. Exponents,3. Multiplication,4. Addition

*Note:Rootsareconvertedto“rationalexponents”whentheradicalsignisremovedandtheroot-numberismovedtothedenominatoroftheexponent.

Page 18: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheUnwritten1Youmustrememberthat“1”isoftennot(requiredtobe)writtenorshown,butisstillthere.Igiveanexampleshowingthe“1”writtenasboththecoefficientinfrontofx(couldbeanyvariable),thedenominatorofx,thepowerofx,andthedenominatorofthepower1(ofx).Movingright,Ishowitwiththedenominatorsremoved,andthenallthe1sremoved,showingjustx.

Howeverfundamentalthismayseem,itisaconceptstudentsoftenquestionorforget,andforthatmatter,sometimesfailtoimplementwhennecessary.Herearereasonsitishelpfultorememberthat“1”isstillthere:

Asacoefficientsoitsassociatedvariablecanbeaddedtootherlike-terms,suchas:x+3x=1x+3x=4x

orasinaddingradicals:

Asadenominator,especiallyfor(fractionconversionstolike-fractionsduring)addition/subtractionoffractionsasin:

Asadenominatorfor(inverting,thenmultiplyingafractionduring)divisionoffractionsasin:

Asapowerorroot,especiallyformultiplyingfactors(ofacommonbase)withexponents(inwhichyouaddtheexponents),asin:

Page 19: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations
Page 20: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Asapowerorroot,especiallyfordividingfactors(ofacommonbase)withexponents(inwhichyousubtracttheexponents),aswhensimplifying:

AsavalidplaceholderafteraGreatestCommonFactorhasbeenfactoredout,asin:3x+3=3(x+1)

Itisalsoworthremindingyouabouttheunwrittenoneassociatedwithanegativesign.Takealookatthefollowingexamples:-4,-x,- .Thesecanbethoughtofas:(-1)(4),(-1)(x),and(-1)( ),respectively.

Page 21: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

PropertyCrisesofZeros,Ones&NegativesTherearemanyfundamentalpropertiesinvolvingvariousoperationswith0,1andnegativenumbers(Iwillfocusmostlyon“-1”).Someareeasytoremember,however,someareeasytoconfuseorforget,buttheyarevitaltogetright.Intextbooks,theseareoftenthrownatyoufromdifferentdirections,atdifferenttimes,oftenwithvocabularyordefinition-likelabels.Thesearepropertiesinvolvingmultiplication,division,exponentsandroots.Foreaseandconvenience,I’vesummarizedtheimportantoneshereinthissection,leavingoutthelabels,butshowingtheproperty,thenexplainingitinwords,thewayyoumightsayit,hearit,orhearitinyourhead.Hearing(orreadinghowyoumighthear)theseshoulddrivehomeanextradimensionintoyourbrain,soyoucanmoreeasilyrecallthemlater.

Page 22: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

(#)(1)=#.Inwords:Anynumbertimesoneequalsitself,always,withnoexceptions.#÷1=#,

alsoseenasafraction: =#.Inwords:Anynumberdividedbyoneequalsitself,always,withnoexceptions.Forfractions:Anynumberoveroneequalsitself(thetopnumber).Likewise,anynumbercanbeassumedtobeoverone,andcaneasilybeconvertedtoafractionbyputtingitoverone.Any#orterm÷itself=1,

alsoseenasafraction: .Inwords:Anynumberortermdividedbyitselfequalsone,exceptwhenthatnumberiszero.Forfractions:Anynumber(orterm)overitselfequalsone,exceptwhenthosenumbersarezero.Anotherwaytosayitis,“anynon-zeronumberoveritselfequalsone.”Seethenextexample.

#÷ 0=undefined,alsoseenasafraction: =undefined.Inwords:Anynumberdividedbyzeroisundefined.Orasafraction,anynumberoverzeroisundefined.Anynumberdividedbyzerodoesnotequalzero.Youmightsay“youcan’tdivideanynumberbyzero.”

1÷0=undefined,alsoseenasafraction: =undefined.Inwords:Onedividedbyzeroisundefined,becauseanynumberdividedbyzeroisundefined,asshowninthepreviousexample.0÷ any#=0,withtheexceptionofwhenthedenominatoris0;Alsoseenasthe

Page 23: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

fraction: =0,exceptwhenthedenominatoriszero.Inwords:Zerodividedbyanynumberequalszero,withoneexception.Theexceptionis:Zerodividedbyzeroisundefined,becauseanynumberdividedbyzeroisundefined.Anotherwaytothinkofitis:0÷ anynon-zero#=0,and

=0.0÷1=0,

alsoseenasafraction: =0.Inwords:Zerodividedbyoneequalszero.Infractionform:zerooveroneequalszero.Thisexemplifiestwootherproperties,previouslyshown.Thisexamplefollowsthat:

Anynumberoveroneequalsthatnumber(thetopnumber),andZerooveranynon-zeronumberequalszero.

0÷ 0=undefined,

alsoseenasafraction: =undefined.Inwords:Zerodividedbyzeroisundefined,becauseanynumberdividedbyzeroisundefined.

Thisistheexceptiontotherulethat“anynumberoveritselfequalsone.”Itisalsotheexceptiontotherulethat“zerodividedbyanynumberequalszero.”Zerodividedbyzerodoesnotequalzero,assomemistakenlythink.

Thispropertyisespeciallyusefulwhenlookingat:

SlopesofVerticalLines(see:AVerticalLine,and:Whenx1=x2),andExtraneousSolutions(see:SolvingEquationswithRational

Page 24: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ExpressionsandExtraneousSolutions).

Sofar,wehavelookedatmanypropertiesandexampleswhichresultas:“Undefined”.Whendoingthesefunctionsonacalculator,youmightget“error.”Foramoreonthat,see:WhatDoes“Error”Mean?

Page 25: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Allbutoneofthepropertiesshownsofarinvolvedivisionwith0and1.Thefollowingsectionwillfocusonexponentsandrootsinvolving0,1andnegativenumbers.Base1=BaseInwords:Anybasetothepowerof1=thebase…whichisthesameastosay:Any#1=itself.Inwords:Anynumber(base)tothepowerofoneequalsitself(thatbase),asinthenextexample:1Any#=1.Inwords:Onetothepowerofanynumberequalsone,withnoexceptions.01=0.Inwords:Zerotothepowerofoneequalszero.10=1.Inwords:Onetothepowerorzeroequalsone.Any#0=1.Inwords:Anynumbertothepowerofzeroequalsone(withoneexception;seenextexample).Anotherwaytorememberitis:Anynon-zero#0=1.Inwords:Anynon-zeronumbertothepowerofzeroequalsone.00=undefined(anddoesnot=1or0).Inwords:Zerotothepowerofzeroisundefined.Likewise,zerotothepowerofzerodoesnotequaloneorzero.

Page 26: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Itisimportanttorememberthenamesofthecomponentsofaradical.Theterminsidetheradicalistheradicand.Theterminthe“v”istheroot.Also,althoughthesymbol,shapeandsetupofaradicalmaycloselyresemblelongdivision,theyarenotthesameinanyway.

Inwords:Thesquarerootofoneisone.Note:Thesquarerootmeans“totherootoftwo,”butthe“2”iscommonlyunwritten.Whentheradicalsignhasnonumberwritteninthe“v”area,itisimpliedtobetwo,meaningthesquareroot.

Inwords:Anynon-zeronumberrootofpositiveoneequalsone.

.Inwords:Anyradicandtotherootofzeroisundefined.The“rootofzero”canalsobecalledthe“zerothroot”orthe“zeroethroot.”Also,sometimesthisanswerisgivenas“infinity( ),”insteadofundefined.

Inwords:Thesquarerootofzeroequalszero.

Inwords:Anynon-zeronumberrootofzeroequalszero.

norealsolution…andmaybeexpressedas“i".Inwords:Thesquarerootofnegativeonehasnorealsolution.Itissaidtohaveno“real”solution,becausethesymbol(letter)“i”(for“imaginary”…asopposedto“real”)canbeusedinterchangeablywith .Inthatway,youcanconsider

ashavingasolution,butsinceitisnotarealnumber,itissaidtobe“norealsolution.”Thesymboliisusefultomanagemultipleoccurrencesofthesquarerootofnegativeonewithinanexpressionorequation.

Page 27: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Thefollowingexamplesdemonstratetheimportanceofthesecondorderofoperations,aswellasthecompleteandproperwordingofthatrule,mainlythatrootsaretobecomputedfirstbeforeanyothermultiplicationanddivisionoradditionandsubtraction.Noticespecificallythattherootis(tobe)computedfirst,andanyfactorsornegativesignsoutsidetheradicalareappliednext.

Inwords:Negativeofthesquarerootofpositiveoneequalsnegativeone.Itisimportanttonoticethatthenegativesignisoutsidetheradicalandisthusattributedtotheresultoftheradical,whichiscalculatedfirst,accordingtoorderofoperations.

norealsolutionInwords:Anyevennumberrootofnegativeonehasnorealsolution…andmaybeexpressedintermsof“i".

=norealsolution…andmaybeexpressedas“-i".Inwords:Thenegativeofthesquarerootofnegativeonehasnorealsolution,andthusmightbeansweredas“norealsolution,”oras“negativei.”Itisimportantnottomistakenlyseethisas“anegativetimesanegativeequalsapositive,”becausetheevenrootofanynegativenumberhasnorealsolution,firstandforemost,regardlessofifitismultipliedbyanegativeoutsidetheradical.Rememberingthatthesquareroot(oranyevenroot)ofanynegativenumbercan’tbefound(yieldsnorealsolution)isimportanttorememberwhen:

solvingquadraticequations,usingthequadraticformula,andunderstandingthegraphsofparabolas.

Page 28: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Inwords:Thecuberootofnegativeoneequalsnegativeone.

Inwords:Anoddnumberrootofnegativeoneequalsnegativeone,asinthelastexample.

Inwords:Thenegativeofthesquarerootofpositiveoneequalsnegativeone.Thisfollowstheorderofoperationsbytakingtherootfirst(ofpositiveone),thenattributingthenegativesignfrominfrontoftheradicalnext,whichisreallymultiplying(theresultoftheradical,whichhere,is1)bynegativeone(the“1”outsidetheradicalassociatedwiththenegativesignisunwritten).

Page 29: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Thefollowingexamplesinvolvingexponentsalsodemonstratetheimportanceoforderofoperations,andtheprioritizationofgroups(here,parentheses)andexponents,whichprecedemultiplication(ordivisionandadditionorsubtraction).Theplacementofanegativesignwithregardstotheparenthesesandthebasenumberisveryimportant.(-1)2=1Inwords:Thebasenegativeonesquaredequalspositiveone.Forthistobetrue,thenegativemustbeassociatedtothebase:oneinsidetheparentheses.(-1)even#=1Inwords:Negativeonetothepowerofanyevennumberequalspositiveone.(-1)3=-1Inwords:Thebasenegativeonecubedequalsnegativeone.(-1)odd#=-1Inwords:Thebasenegativeonetothepowerofanyoddnumberequalsnegativeone.-(1)2=-1Inwords:Anegativeoutsidetheparenthesestimespositiveonesquaredequalsnegativeone.Orderofoperationsdictatesthatexponentsmustbeperformedfirst,andpositiveonesquaredequalspositiveone.Sincethenegativeisoutsidetheparentheses,it’slikemultiplyingnegativeonetimespositiveone(positiveonebeingtheresultofonesquared).Finally…-12=-1Inwords:Negativeonesquaredequalsnegativeone.Orderofoperationsplaysaprominentroleinthisanswer.Specifically,theexponentmustbeappliedtothebaseofonefirst,andthenegativeisappliednext.Thisexampleisoften

Page 30: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

mistakenlyanswered“positiveone,”becausesomemistakenlyseethisasthesquareofnegativeone,ornegativeonetimesnegativeone.Thiswouldbedifferentifthenegativewereinsidetheparentheseswiththeone,andthepoweroftwowasoutsidetheparentheses,asshownfourandfiveexamplesback.Thisexamplenotonlyshowstheimportanceoftheplacementofsignsandparentheses(orlackof),butitalsoshowstheimportanceofhowthemathisheardorspoken.Ifyoulookbackathowthiswastranslatedinwords,youcan’tassumethatthenegativeisinparentheseswiththebase“1”.Forthatreason,whenspeakinganequationcontainingparentheses,youshouldbespecificastowheretheystart,end,andwhatisinsidethem.Istartedyouoffwithsomefundamentalproperties.Thisreviewwillhelpyoubrushuponthelittlethingsmanypeoplecommonlyforgetfromtheirpreviousmathexperience.Havingthesereminderswillgiveyouanextraedgeinsolvingproblems(especiallyproblemsthatappeartobecomplicated,butaren’t,onceyouapplytheseequalities).Formoreonradicalsandcommonlyusedroots,seethe:Radicals,Roots&Powerssectionlaterinthebook.

Page 31: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Integers&WholeNumbersThewords“integers”and“wholenumbers”arecommonlyconfusedandmisusedamongstudents.Thesewordsareusedtoproperlycommunicatemath,soitisimportantyouusethemproperly,aswellasunderstandwhentheyareused.Wholenumbersarepositive,non-decimal,non-fractionnumbers.Themainaspectstudentsoftenforgetaboutwholenumbersisthattheycanonlybepositive.Theycanalsobedefinedas“positiveintegers.”Oneplaceyouwillseewholenumbersusedareinchemicalformulasandchemicalreactionequations.Thesubscriptsinachemicalformulacanonlybewholenumbers.Andthecoefficientsinabalancedchemicalreactionequationalsocanonlybewholenumbers.Integersarealsonon-decimal,non-fractionnumbers,butcanbepositiveandnegative.Anyandallwholenumbersarealsointegers(wholenumbersarethepositiveintegers).Theword“integers”isoftenseenandusedduringfactoringoftrinomialsandquadratics.WhenfactoringusingtheTrial&Error/ReverseFOILMethod,youaretoldtolookatthe“integerfactorsofthefirst(ax2)andlast(c)terms”(although,sometimesfractionsanddecimalsarepermittedtoo,whereapplicable,whichisgenerallywhenthefirst(ax2)andlast(c)termsarefractionsordecimalstobeginwith).Also,theabsolutevalueofanyintegerresultsinawholenumber.

Page 32: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

PrimeNumbersAprimenumberisanumberwhichisnotdivisiblebyanynumberotherthanitselfand1(withoutresultinginanon-integernumber).Meaning,ifyoudivideaprimenumberbyanythingotherthanitselfor1,theresultwillbeadecimal(orequivalentfraction).Thefirstthirtyprimenumbersarelistedhereasareference,soifyoueverneedaplacetoquicklycheckanumber,youcanreferhere.Youcaneasilyfindmoreontheinternet.1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109…Whyaretheseimportanttoknow?Becauseknowingwhetheranumberisprimetellsyouwhetheryoucanproceedtofactorit.Ifitisnotprime,youcanfactorit.Ifitisprime,youcannotfactorit.Thisisusefultoknowwhenyouarefactoringnumbers(sometimesusingafactortree;seeyourtextbookformoreonfactortrees);whendoingfactortrees,yourgoalistofactorallnumbersintoprimenumbers.ThismaybeusedwhenfindinganLCDorintheprocessoffactoringtrinomialsintobinomials.Youalsousefactoringwithradicals,butinthosecases,youdon’talwaysneedtofactortoprimenumbers.Formoreonthat,see:Manipulating&SimplifyingRadicals.Polynomialscanalsobeprime,whichintheircasemeanstheycan’tbefactoredintopolynomialsanysmallerthanthemselves.Foranexampleofaprimepolynomial,see:TheSumofTwoSquares.Itisalsoworthnotingthattheoppositeofaprimenumberisacompositenumber,whichisanumberwithfactorsotherthanitselfand1.

Page 33: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Is51aPrimeNumber?Thenumber51isnotaprimenumber,butisoftenmistakenforbeingprime.Iguessitjustsomehowlooksprime…whateverthatmeans.It’sclearlynoteven(soit’snotdivisibleby2),andit’sjustanumberwedon’tuseasregularlyasthenumbers0through50.Plus,manyotherprimenumbersendin1,asseeninthelistofPrimeNumbers.Butdon’tletthisnumberslipunderyourradarwhenyouneedtoknowwhetheritisprime.Howcanyoutellitisn’tprime?Becauseitfollowsthetechniquethat:ifyouaddthedigitsofanumber,andthatsumisamultipleof3,thenthat(original)numberisalsodivisibleby3(andanotherinteger).Thedigits5+1=6,and6isclearlyamultipleof3,therefore51isalsodivisibleby3.Thenumber51canbefactoredto(3)(17),whichisactuallytheprime-factorizationof51.ThesefactoringstrategiesarediscussedmoreinTheProcedureforPrimeFactoring.Also,youwillnoticethenumber51inThePrimeFactorMultiplesTable.

Page 34: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

WhatisaTerm?Atermisanynumberorvariableorcombinationofthemthateitherstandsaloneorissetapartbyothertermswitha“+”or“-“sign.Termsmaybemadeupoffactors,buttermsarenotfactorsthemselves.Theycan’tbefactorsbecausefactorsaremultiplied,notsplitapartbyplusorminussigns.Becarefulnottouse“factor”and“term”interchangeably.

Page 35: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Whatisa“Like-Term”?Alike-termisatermwithacommonbaseandcommonexponent.Termsmusthaveboththesamevariable(letter)andthesameexponenttobeeligibletobecombined.Onlylike-termscanbeaddedorsubtracted(*seenotebelow).Iftherearetermsthatarenotvariables,theymustonlybeconstants(numbers)whichcountaslike-termsandcansimplybeaddedorsubtractedtogether.“Like-terms”alsoapplytoaddition&subtractionofradicals.Sinceanyradicalorrootcanbeconvertedtoandexpressedasanexponent(whenitis,itiscalledarationalexponent),thisfollowsthedefinitionof“like-terms.”“Like-radicals”canstillbeaddedandsubtractedevenifthey’renotinrationalexponentform.Youmaynotdealwithradicalswhenyoubeginthebasicsofalgebra;youusuallylearnabouttheselater.Formoreonhowlike-termsapplytoradicals,see:Manipulating&SimplifyingRadicals.*Note:Thisdoesnotmeanlike-termscannotbemultipliedordivided,becausetheycanbe.Thestatementreferredtoaboveismeanttoaccentuatethatnon-like-termscannotbeaddedorsubtracted.Tobeclear,anytermscanbemultipliedanddivided;theydon’thavetobe“like.”Non-like-termscanbemultiplied(however,whentheyaremultiplied,theyaretechnicallyfactors).Considertheterms:3x2and4x2.Theyarelikeandcanbemultipliedtoget12x4.

Page 36: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

WhatisaFactor?Afactorisanumberorvariablethatisorcanbemultipliedbyanothernumberorvariable.Factorscombineviamultiplicationtomakeaterm(andyes,factorsaremultipliedtogiveaproduct,butthissectionismeanttohelpdistinguishbetweenfactorsandterms,astheyareoftenusedincorrectlyinterchageably).Butoftentimes,toservetheirfunction,factorsarenotmultipliedtogether,rathertheyarefactoredfromlargernumbersortermsandshownasunmultiplied,individualfactors.Unmultipliedfactorsjustlooklikenumbersorvariablesstandingnexttoeachother(ofteneachinparentheses).Convertingalargernumberortermintofactorsisdonebyfactoring.

Page 37: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

FactoringFactoringisawayofbreakingdownalargernumberortermintoitsfactors.Factoringisperformedusingdivisionandtrial&error(explainedinTheProcedureforPrimeFactoring).Thisisoftendonetocomparefactorstootherfactors,sowhencommonfactorsarefound,theycanbecancelledoutorgroupedtogetherbyadjustingtheexponent,dependingonthesituation.Also,termsareoftenfactoredintoprimefactorswhenyoudoafactortree.Formoreonfactoringnumbers,see:PrimeNumbersandThePrimeNumbersMultipleTable.Factoringtermswithvariablesisabitdifferent.ItisexplainedinTheGreatestCommonFactor,afewsectionslater.

Page 38: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheProcedureforPrimeFactoringForsmallernumbers,findingtwostartingfactorsmaybeeasytofigureout.Butforalargenumber,itmaynotbeaseasy,andthisisaplacestudentrunintotrouble.Inthiscase,youcanuseaprocesswhichstartsfromaneasyplace,butyoumustknowtheprocessandfollowitproperlyandsequentially.Thisprocessinvolveslookingforasmallprimenumberthatthenumberyouarefactoringisdivisibleby(actually,youarelookingforthesmallestprimenumberthatthenumberyouarefactoringisdivisibleby).Thisistheprocess:Askyourselfifthenumberyouarefactoringisdivisiblefirstbythesmallestprimenumber(2),thenthenextlarger(3),andkeepworkingyourwayupuntilyoufindit.YoumayneedtocheckbacktothelistofPrimeNumbersonceyougobeyondtheprimenumbersyouknowbyheart.Withinthisprocessaresub-processesthatyoushouldapplyasyouworkyourwayuptheprimenumbers.Thefollowingarethosehelpfulsub-processes:

Page 39: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

For2:Checktoseeifthenumberyouarefactoringiseven.Specifically,checktoseeifthelastdigitofthenumberiseven.Ifitiseven,thentheoriginalnumberyouarefactoringisdivisibleby2.Thenyoushoulddivideitby2tofindtheotherfactor.Ifitisnoteven,thenthenumberisnotdivisibleby2,norisitdivisiblebyanyotherevennumber:4,8,10,12,etc.Next,testifitisdivisibleby3…For3:Addupthedigitsinthenumberyouarefactoring.Ifthesumofthedigitsisdivisibleby3,thentheoriginalnumberyouarefactoringisalsodivisibleby3.Thenyoushoulddivideitby3tofindtheotherfactor.Ifthesumofthedigitsisnotdivisibleby3,thentheoriginalnumberisalsonotdivisiblebyanyothermultipleof3suchas6,9,12,15,18,etc.Next,testifitisdivisibleby5…

Page 40: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

For5:Ifthenumberyouarefactoringendsineither5or0,thenitisdivisibleby5.Ifdoesn’tendin5or0,thenitisalsonotdivisiblebyanyothermultipleof5.Next,testifitisdivisibleby7…For7andhigher:Takethenumberyouareattemptingtoprimefactor,divideitby7,andanalyzethequotient.Ifthequotientcomesoutasawholenumber,thentheprimenumber7youdividedbyisafactor,andthequotientistheotherfactor.

Ifthequotientcomesoutasadecimal,thenthenumberyoudividedisnotafactor.Repeatthisprocessbyattemptingtodividebythenexthigherprimenumberuntilyougetaquotientwhichisawholenumber.Youmayneedtorepeatthisprocessonthewholenumberquotientuntilyouendupwithallprimenumbers(factors).YoumightalsorefertomyTableofPrimeNumberMultiplestoexpeditetheprocess.Onceyouhavefoundallthefactorsneeded,orhavecompletedthefactortree,presentyourfactorsaccordingtoyourbookorteacher’sinstructions.

Page 41: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ThePrimeNumberMultiplesTable

Whenstudentslearnmultiplication,theyaresometimesgivenatableshowingthenumbers1-10(orhigher)alongthetop(row)anddownalongtheleft(column),toeasilyfindtheproductoftwonumbers.Studentsarealsotaughtprimenumbers,especiallywhenlearningto(prime)factornumbers.Asintheexampleof“51”discussedpreviously,theretendtobesomehighernumberswhicharenotprimenumbers,butmayeitherappeartobe,orstudentsgiveuptryingtofigureoutiftheyarethroughdividinguptheprimenumberslist,accordingtothesuggestedprocedureforfactoringlargenumbers(andfindingwhattheyaredividedby).SoIcreatedahelpfultoolIcallaPrimeNumberMultiplesTable.Itisimportantyouunderstandwhatitisandhowtoreadit.Thistableismeanttobeanextensionfortheprocedureusedtoprimefactoranumber,accordingtoTheProcedureforPrimeFactoring.

Page 42: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

3 7 11 13 17 19 23

3 9 21 33 39 51 57 69

7 21 49 77 91 119 133 161

11 33 77 121 143 187 209 253

13 39 91 143 169 221 247 299

17 51 119 187 221 289 323 391

19 57 133 209 247 323 361 437

23 69 161 253 299 391 437 529

29 87 203 319 377 493 551 667

31 93 217 341 403 527 589 713

37 111 259 407 481 629 703 851

41 123 287 451 533 697 779 943

43 129 301 473 559 731 817 989

47 141 329 517 611 799 893 1081

53 159 357 561 663 867 969 1173

First,youwillnoticethatthenumbersacrossthetoprowanddownthe

leftcolumnareprimenumbersonly.Also,noticethattheprimenumbers2and5arenotshowninthetable.Thatisbecauseitwouldbeawasteofspacebecauseyoucaneasilytellifanynumber,nomatterhowbig,isdivisibleby2(becauseitwouldbeeven)or5(becauseitwouldendin0or5).Eventhoughthemethodfordeterminingifanumberisdivisibleby3issimple,Iincluded3anyway,becauseyoucan’talwaystellifanumberisamultipleof3justbylookingatit,thewayyoucanforanevennumber.

Ifandwhenyouareattemptingtofactoralargenumber,youshouldlookforthatnumberinthistable.Ifyoufindit,thenyouautomaticallyknowitisaproductofthetwoprimenumbersfromthetoprowandleftcolumnitcomesfrom.Ifyournumberis:

lessthan1173,notfoundinthistable,(andnotamultipleof2,3or5,asyoushouldhavecheckedinthebeginning),

thenyournumbermustbeprime.Ifyournumberisgreaterthan1173,thenyou

Page 43: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

mustcontinuecheckingit(bydividingit)withprimenumbersbeyondtheprimenumber53.

Inshort,thistablewillsaveyoualotofguess-workandtrial&error.Althoughthisismeanttobeatime-saverandatooltohelpyoufamiliarizeyourselfwithproductsofprimenumbers,youstillmustbeabletofigureitoutthelongway(withoutthetable),asI’msureyouwon’tbepermittedtousethistableorbookduringatest.

Page 44: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheGreatestCommonFactor(GCF)TheGCFisthelargestfactorthatcanbefactoredoutofeveryterminvolved.Anotherwaytothinkofitis:thebiggestfactorthateachtermcanbedividedby,withoutresultinginafractionordecimal.TheGCFisfoundandusedintheoverallsimplificationprocessfor:

Reducingfractions,and/orFactoringaseriesofterms,

Morespecifically,theGCFismainlyfoundandusedfortworeasons:

1. Tocancelcommonfactorsinafractiontoreducethatfraction.Inthiscase,youwouldfindthegreatestfactorthatiscommoninthenumeratoranddenominatorandproceedtocancelthemout(to1).

2. ToextracttheGCFoutofaseriesofterms,which,onceyoufindit,

youfactoritoutofeachterm,andtheGCFgoesoutside(usuallytotheleftof)asetofparentheses.

Page 45: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheLeastCommonDenominator(LCD)TheLeastCommonDenominator(LCD)isalsoknownorusedinsomecontextsastheLeastCommonMultiple(LCM).Actually,allLCDsareLCMs,butLCDisjustspecifictodenominators.BooksusuallyintroducetheconceptandprocedureforfindingtheLCMinpreparationforlearningLCDs.Inthisbook,IwillrefersolelytotheLCD.TheLCDiscommonlyfoundandusedforthreemainreasons:

1. Toconvertfractionsinto“likefractions”foraddingandsubtractingfractions(including:rationalexpressions),bothofwhicharediscussedlaterinthebook.

2. Toeliminatealldenominators(andtherebyallfractions)inanequationbymultiplyingeachfractionbytheLCD.Inequationswithfractions,thissometimesmustbedoneinordertosolve.

3. ToreduceComplexRationalExpressions.WhendoingproblemsinvolvinganLCD,Irecommendyouwrite“LCD=(thenshowthefactorshere)“onyourpaperandfillinthefactorsasyougatherthem.Thisgivesyouaplaceofreferencetokeeptrackofyourfactorswhileyoulookbackatthefractionsintheproblem.SometimesyoushouldusefactortreestohelpyoufindtheLCD,especiallyiftheLCDisn’tobvioustoyou.Actually,usingfactortreesisagoodhabit.IoftenfindthatstudentswanttoavoiddoingfactortreesbecausetheythinktheLCDismoreobviousthanitoftenis,butthisisamajormistake.YouhaveahigherchanceoffindingthecorrectLCDbydoingfactortrees.FormorehowtofindtheLCDandfactortrees,pleaserefertoyourtextbook,asIdonotgivetheproceduresinthisbook.Butalso,see:TheProcedureforPrimeFactoring.

Page 46: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

GCFvs.LCDStudentscommonlyconfusethemeaningsandapplicationsoftheGCFandLCD,probablybecausetheybothinvolvefactorsandbothareusedforsimilarreasons.Bothareusedforsimplificationpurposesandbothcanbeappliedinsomewaytofractions.Inthissection,Iwillgothroughafewbriefhintstohelpyoudifferentiatebetweenthetwo.First,youmustunderstandtheirgeneraluses,asyoucanreadintheprevioussection.Next,let’sbreakdownthewordsandpayattentiontosomecommon,associatedkeywords.ThebestkeywordstoassociatewithGCFsare:“out,”“smaller,”“found”and“division.”

GCFsarealwaysfactoredoutofatermoranumberofterms,tomakethosetermssmaller.Whenusedwithfractions,GCFsarefactoredoutofthenumeratoranddenominatortomakefractionssmaller.GCFsarefactoredoutbydividingtermsbytheGCF.AGCFcanonlybefound;itisnotmade.Itisafactorthatisalreadythere,oralreadywithinthetermsofinterest.IfthereisnoGCFpresent,thenthefractionisalreadycompletelyreduced,orthetermsarealreadycompletelysimplified.

WhereasanLCDmayalreadybethere(ifthelargestdenominatorisalreadytheLCD),butitcanalsobemade…

ThebestkeywordstoassociatewithLCDsare:“bigger,”andsometimes“multiply,”and“made.”Thestartingpointislookingatthelargestdenominator.TheLCDusedmaybethelargestoftheoriginaldenominators(youwouldhavetoevaluatetomakethatrealization).Butifitisnot,then:

TheLCDwillultimatelybebiggerthanalltheoriginaldenominators.TheLCDwillmadebymultiplyingtheappropriatefactors.Thefractionsinvolved,whicharetobeconverted(ifnecessary),willhavetheirnumeratorsanddenominatorsmultipliedtomakefractionswithbiggernumbersthanbefore.

Thesekeywordscanseemabitmixedwheninreferencetosimplifyingcomplexrationalexpressions.Inthiscase,theLCDofallmini-fractionsiseitheralready

Page 47: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

there,ormade(bymultiplication),thenmultipliedbyallmini-fractionsinvolved.Thisultimatelyreducesthecomplexrationalexpression,butalongtheway,someorallofthenumeratorsofthemini-fractionsbecomebigger.Lastly,itisimportanthowyouusetheword“find.”IntheGCFcontext,“findit”,means“lookforit.”IntheLCDsense,youlooktoseeifthelargestdenominatorisalreadytheLCD,otherwise,youhavetofind(meaningmake)it.

Page 48: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

FRACTIONSItisimportantyouknowhowlongdivisiontranslatestofractionform,sincefractionsareaformofdivision,andyouprobablylearnedlongdivisionfirst.Also,youwillrevisitlongdivisionlaterwhendoing(long)divisionofpolynomials(notcoveredinthisbook).Itisalsoimportanttogettheproperterminologydown,whichisoftenoverlooked.Anexampleofalongdivisionsetupisbelow,withthewordsintheproperplaces.

Thewayyouwouldsaythisis:“Thedividenddividedbythedivisorequalsthequotient.”Sometimespeopleusetheword“in”whendescribingdivision.Inthatcase,itwouldbe“Howmanytimesdoesthedivisorgointothedividend?”Answer:Thedivisorgoesintothedividend(the)quotientnumberoftimes.

Page 49: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Considertheexample:

whichisthesameas:Inthiscase,youmightask:“Howmanytimesdoestwogointosix?”Inthiscase,youaresaying:“Howmanytimesdoesthedivisortwogointothedividendsix?”Answer:Twogoesintosix3times.Whichisthesameas:“Sixdividedbytwoequals3.”Noticehowthedivisoranddividendtranslateintoafractionandlongdivision,andviceversa:

Thedividendisthenumerator.Thedivisoristhedenominator.Andthedenominatorgoesintothenumerator.

Page 50: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ProcedureforAdding&SubtractingFractions1)FindtheLCD.2)Convertallfractionstolike-fractions(unlessafractionisalreadyincorrectform)bymultiplyingthenumeratoranddenominatorofeachfractionbythemissingfactorwhichwillmakethecurrentdenominatortheLCD.3)Totherightoftheequalsign,writetheLCDinthedenominatorandperformtheoperations(additionandsubtraction)ofthenewlyconvertednumeratorsfromtheleftinthenewnumerator,overtheLCD,ontherightoftheequalsign.4)Simplifythefractioncompletely.

Simplifythenumerator,ifpossible,bycombininglike-terms,thenfactorifpossible,andthenreducethefraction,ifpossible.

Page 51: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

MultiplyingFractionsStartbyattemptingtocross-cancelcommonfactors.Then,separately,multiplyallthenumeratorstogether,andmultiplythedenominatorstogether.Thenevaluatewhatyouhave.Itisoftentaughtthatfractions,oncecombined,shouldbeexpressedinlowestterms(alsocalledreducedorsimplifiedform).Ifyouproperlycross-cancelledbeforemultiplying,youranswerwillcomeoutinlowestterms.Butsometimesstudentseitherforgettodothisstep,orjustmissasetofcommonfactorstocancelout.Ifyouforget,that’sok,youranswerwon’tcomeoutwrong,butthenumberswillbebiggerandyouwillhavetocontinuetofactor.Evaluateyouranswerandlookfora(greatest)commonfactortocanceloutattheend.Torecap,youcaneither:

Lookforcommonfactorsinthenumeratoranddenominatorfirst,priortomultiplying,andcancelthemout(thisiscalledcrosscancelling)–whichresultsinareduced,moremanageablefraction,oryoucan

Dothemultiplicationfirst,thenfactorthenumeratoranddenominator,andcanceloutcommonfactorslast.

Thetruthis,youcandoiteitherway,andsometimesyoujustendupdoingamixofbothtoachievethecorrect,reducedformofthefraction,whichisfineandnormal.Butideally,itisbettertocrosscancelfirst.Formoreonthis,see:Factoringand:WhatisaFactor?Also,formoreoncrosscancelling,see:CrossMultiplicationvs.CrossCancelling.

Page 52: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

DividingFractionsDividingfractionsismuchdifferentthanmultiplyingfractions.Actually,onlythefirstmajorstepisdifferent.Thenitbecomesmultiplyingfractions.Inshort,youmultiplythefirstfractiontimesthereciprocalsofthefractionsbeingdivided.Buthereisamorespecificstep-by-stepprocedure,followedbysomecomments.

1. Simplifynumeratorsanddenominatorsseparately,andeachfractionseparately.

2. Keepthefirst(left-most)fractionthesame(meaning:donotinvertit…actually,youshouldre-writeitasisonthenextlinedown).

3. Invert(flipupside-down)allfractionsthataretobedivided(theywillhaveadivisionsigntotheleftofthematfirst).Oncefractionsareinverted(theyarenowcalledreciprocals)…

4. Changewhatweredivisionsignstomultiplicationsigns(adot,orputeachfractioninparentheses).Manystudentsoverlookthissimplestep.

5. Nowmultiplyallfractions,usingtheprocedureformultiplyingfractions.

Note1:Justtobeclear,whendividingastringoffractions,keepthefirstoneontheleftthesameandflipeachremainingfractionupsidedown,beforemultiplying.Whenafractionisflippedupsidedown,itiscalledthereciprocal.Itisalsoreferredtoasthe“inversefraction”orsimplythe“inverse.”)Note2:Donotattempttocrosscancelfactorsbeforeflippingthefractionsandmultiplying.Savecrosscancellinguntilafterthefractionsareflippedandthedivisionsignsarechangedtomultiplicationsigns.Note3:Ifyouattempttodividenumeratorsacrossthetopanddividedenominatorsacrossthebottom(inthewayyouwoulddowhenmultiplyingfractions),youwillnotice…itworks!However…youarenotencouragedtodoitthatwayforonesimplereason:itcangetverycomplicatedalongtheway,givingyoustrangefractionstomanage,andmanyplacestomakeamistake.Forthisreason,youarehighlyencouragedtocloselyfollowtheprocedureofflipping,thenmultiplying.It’seasier,andifnothingelse,itismuchfaster.

Page 53: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

OPERATIONSOFBASESWITHEXPONENTS

Page 54: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

MultiplyingBasesWithExponentsWhenmultiplyingnumbersorvariableswithacommonbase,keepthebasethesameandaddtheexponentstogether.Remember…whenmultiplyingfactors(withacommonbase)withexponents,youdonotmultiplytheirexponents;thisisafrequentlymademistake.

Page 55: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

DividingBasesWithExponentsWhendividingnumbersorvariableswithacommonbase,keepthebasethesameandsubtracttheexponentofthedenominatorfromtheexponentinthenumerator.Remembertokeepthesignsoftheexponents.Youmaysubtractanegativeexponent,yieldingapositiveexponent.Youmayalsogetanegativenumberastheexponent,whichisfine,butinthefinal,simplifiedformofyouranswer,youshouldn’tleaveanexponentnegative.Ifanexponentisnegative,movethefactor(thebase)withthatexponenttotheoppositepartofthefractionandchangethesignoftheexponenttopositive.Remember,anyandeveryfactorhasanunwrittenexponentof“1”.Alsorememberthatwhenexponentsaddorsubtracttoequalzero,anybasetothepowerzeroequals1.(Reviewthisin:TheUnwritten1,and:PropertyCrisesofZeros,OnesandNegatives).

Page 56: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ExponentsofExponents(a.k.a.PowersofPowers)Whenyoutakeapowertoapower,multiplytheexponents.Rememberthatiftherearemultiplefactors,youmustdistributetheouterexponenttotheexponentofeachfactorintheparentheses,includingthecoefficient.Todistributetheouterexponenttoeachexponentoffactorsintheparenthesesmeansyoumultiplythoseexponents.Remember,avariablewithnoexponentshownreallyistothepowerof1,andmustnotbeforgottentobemultipliedbytheouterexponent.Thisisafrequentlymademistake.Also,whendistributinganexponent,donotforgettoapplythatpowertothecoefficientifthereisone.Thisisanothercommonmistake,oftenforgottenbystudents.Thismaybebecausestudentslookfortheconspicuousexponentswrittenwiththeobviousvariables,butwhencoefficientsdon’thaveexponentsassociatedwiththem,theyarejustshownwithaninconspicuousunwrittenpowerof1.

Page 57: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

SOLVINGSIMPLEALGEBRAICEQUATIONS

Page 58: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

SolvingaSimpleAlgebraicEquationwithOneVariable(FirstDegree)Thegoalistocompletelyisolatethevariableandtohaveitequalanumber,whichistheanswer.Althoughthismayseemeasy(anditwillbecomeeasierasyoupractice),itcanalsobecomplicated(ifnotjusttedious),andstudentswhoarelearningthisforthefirsttimeoftenunderestimatetheimportanceofdoingthisinanorderly,systematicway.Ifyoudon’tlearntodothisproperly,youwillquicklygetleftbehindinclass.Thisisdoneintwogeneralsteps:

1. Isolatingthe“termwiththevariable,”Usingadditionandsubtraction,andthen

2. IsolatingthevariableUsingdivisionormultiplication.

Page 59: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Thefollowingisachronologicallistofdetailedinstructionstohelpyou.1.Ifthereareanydenominators,findtheleastcommondenominatorandmultiplyalltermsonbothsidesbytheLCDtoeliminatealldenominators.2.Simplify:Identifyandcombinelike-terms,ifany.Note:#s1&2areinterchangeable.Youcaneliminatedenominatorsfirstandcombinelike-termsnext.Itisusuallyeasierto“getrid”offractionsfirst,soyoudon’thavetogothroughAdding&SubtractingFractions.3.Isolatethe“termwiththevariable.”Useadditionorsubtractionto“move*”theconstants(non-variablenumbers)totherightoftheequalsignand…

Useadditionorsubtractionto“move*”theterm(s)containingvariablestotheleftoftheequalsign.

*Iuse“move”inacontextwhichindicatestheuseoftheadditionprincipleofequalityinwhichyouaddtheoppositeofthetermyouwanttomove(becauseaddingoppositesequalzero,cancelingoutaterm),andwhatyouadd/subtracttoonesideoftheequalsign,youmustdototheothersidetomaintaintheequality.

4.Simplifybycombininglike-terms.Thereshouldbeoneterm(thetermwiththevariable)ononesideandanumberontheotherside.5.Isolatethevariable:Multiplybothsidesbythereciprocalofthecoefficientinfrontofthevariable.Ifthecoefficientinfrontofthevariableisnegative,youshouldmultiplybothsidesbythenegativereciprocalinordertoeliminatethenegativesignandmakeyourisolatedvariablepositive.Youshouldnowbeleftwithavariableequalinganumber.

Page 60: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Arrangement:DescendingOrder

Itisalwaysbesttoputalltermsindescendingorder–fromhighestpowertolowestpower,fromlefttoright.Thisorganizationfacilitateseasiersimplification.Putalltermsindescendingorder,eventermswithinparenthesesandgroups.

Onereason(descending)ordermattersisforfactoring.Itiseasiesttofactorpolynomials(liketrinomialsintobinomials)whenyouseethetermsindescendingorder.Itwillalsohelpyouidentifyandcanceloutcommonfactors(whentheyarepolynomials)whenthefactorsinsidetheparenthesesareindescendingorder.

Anotherreasontermsneedtobeindescendingorderisforlongdivisionofpolynomials.Becauseofthesystematicprocessoflongdivision,thedivisoranddividendmustbothbeindescendingorder.

Page 61: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Expressionsvs.EquationsItisveryimportanttoknowthesubtledifferencebetweenanexpressionandanequation.Simplyput,expressionsarenotequations.Expressionsarecombinationsoftermsandoperationsymbolswithnoequalsigns.Sinceexpressionsdonothaveequalsigns,theycannotbesolved,theycanonlybesimplified.Equationsaresolved.Booksoftenfocusonexpressionstostressandpracticesimplification.Thisisnecessary(althoughsometimesmisleading…I’llexplainwhyshortly),becauseequationscontainexpressions.Equationsaremathematicalsentencesthatcontainanexpressionorexpressions,andequalssigns,andcanbesolved.Thestepstosolvinganequationinvolvesimplificationoftheexpressionswithintheequation.AsIwassayingabove,booksfocusagreatdealonexpressions,whichisfine,butthisiswhyitcanbemisleading.Thebooksgobyabottom-upapproachandnarrowfocusonsimplifying(factoring)expressionsonly,beforeincorporatingthoseapplicationstowardssolvingequations.Whathappensis:studentsgetinthemindsetofsimplifyingorfactoringanexpression(only),andstopping,that(laterduringsolving)aftersimplifying,theyforgettosolvetherest,usuallynotmorethantwosimplestepsfromtheendpoint.Thisisespeciallyevidentwhenstudentsaresupposedtosolvequadraticequations.Acommonmistakeisthatstudentswillsuccessfullyfactorthetrinomialinanequationbutthenforgettosolveforthevariables.Sokeepthisgoalinmind:Factoringanexpressionisonlypartofsolvinganequation.Onceyousuccessfullyfactoranexpression,getinthehabitofcontinuingontosolvetheequation.Thosestepsarediscussedinthenextsection.Author’sNote:Ifitwereuptome(andsomeday,Ihopeitis…Ihopetowriteanentirealgebratextbook),thelessonsonlearningfactoringandsolvingwouldbeconsolidatedintoonelesson,tobetterconnectthereasonsforlearningfactoringtosolvingequationsandgraphing.Inthemeantime,Ihopethisbookhelpsyourealizethattheseconceptsarecloselyconnectedandnotjustseparateentities.Belowaresimpleexamplesofanexpressionandanequation.Noticethesmalldetailswhichsetthemapart.Anexpression:3x2+x-10

Page 62: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Anequation:3x2+x–10=0,orAlsoanequation:y=3x2+x-10

Page 63: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

LINEAREQUATIONSAlinearequationisanequationofthefirstdegree;itproducesastraightline.Linesaregenerallyknowntohave:

aslope(m),oney-intercept(b),onex-intercept(thereisnosymbol,butthex-interceptisxwheny=0),andthe(slope-intercept)form:y=mx+b.Itcouldalsobeinstandardform.

However,therearecircumstancesinwhichtheywillnothaveallofthesecriteria.Iwillsummarizetheseandthethreetypesofstraightlinesnext.

Page 64: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ADiagonalLine:Adiagonallinewillhaveay-intercept,anx-intercept,andaslopeofanythingotherthanzero(orundefined).Itwillbeintheformofy=mx+b(whenitisinslope-interceptform).

Page 65: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

AHorizontalLine:Ahorizontallinewillbeintheform:“y=anumber.”Itwillhaveay-intercept,andmorespecifically,theequationwillbe:y=they-intercept.Forinstance,ifthey-interceptis3,theequationofthelinewillbe“y=3”.Studentsalsomistakenlythinktheequationforahorizontallinewillbeintheform“x=”(Ithink)becausetheyassociatethe“x-axis,”with“horizontal.”Buttheoppositeisthecase,asexplainedabove.Itisworthnotingherethattheequationforthex-axisis“y=0”becauseitintersectsthey-axisat“y=0”.Also,ahorizontallinewillhaveaslopeofzeroandwillnothaveanx-intercept.Studentsoftenmistakenlysayhorizontallineshave“noslope”(becausetheslopeiszero),butthisisincorrect.“Noslope”doesnotmean“zero”.Formoreonthis,see:TheSlopeEquation,andWheny1=y2.

Page 66: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

AVerticalLine:Averticallineisintheformof“x=anumber.”Averticallinewillhaveneitheray-interceptnoraslope,butitwillhaveanx-intercept.Morespecifically,theequationwillappearintheform:x=thex-intercept.Inotherwords,ifthelineintersectsthex-axisat-5,thentheequationforthelinewillbe“x=-5”.Studentssometimesmistakenlythinktheequationofaverticallinewillbeintheform“y=”(Ithink)becausetheyassociatethey-axiswithbeingvertical.Itisworthnotingherethattheequationofthey-axisis“x=0”becauseitintersectsthex-axisat“x=0”.Anothercommonmistakeistouse“zero”and“no-slope”interchangeably,buttheyaresignificantlydifferent.Averticallineliterallyhasnoslope(notevenzero).Itcanalsobesaidthattheslopeofaverticallineis“undefined.”Formoreonthis,see:Whenx1=x2,and:WhatDoes"Undefined"Mean?Theconceptofhorizontalandverticallines(andtheirequations)issomethingthatstudentsoftenhavetroublewithatfirst,perhapsbecausethebooksseemtogivethemasmallsectiondisplacedfromthemoreemphasizeddiagonallines(whichisjustinevitable).Nevertheless,agoodwaytogainastrongerunderstandingofhorizontalandverticallinesistographthem(thatwayyoucanseethem,andweallknowwhathorizontalorverticallooklike),andtohaveagoodunderstandingofcalculatingslope,asshownin:TheSlopeEquation.

Page 67: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

WhatDoes“Undefined”Mean?

Thereareavarietyofcircumstanceswhere“undefined”isusedtodescribetheoutcomeofanequation.“Undefined”cansometimesbeusedinasimilarcontextas“NoSolution,”suchaswhencomputinganoperationthatcan’tbedone,likedividingbyzero.Sometimes“Undefined”isusedfortimesthatacomputationcan’tbedone,butisn’treferringtotheanswerofaproblem.Thiscouldbethecasewhenlookingattheslopeofaverticalline.Theslopeisn’tthe“solution,”so“NoSolution”isn’tappropriate…youwouldsaytheslopeisundefined,orhas“noslope.”

Themostimportantthingaboutunderstanding“Undefined”isnotusingitsynonymouslywith“Zero.”Also,whenyoudoacomputationonacalculatorwhichwouldresultas“Undefined,”yourcalculatorwillshow“Error.”

Page 68: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

HowtoGraphaLinearEquationYoucangraphanyequation…sodon’tbeafraidtodoitatanytime!Makingagraph,whetheryouareaskedtoornot,isagreatwaytogiveclaritytoyourproblemoranswer,andisespeciallyagreatwaytohelpyouunderstandaproblemorequationfromamorevisualandconceptualperspective.Graphingalinearequationistheeasiestofallthetypesofpossibleequations.Tomakealine,youneedtwoorthreeormorepoints.Twopointsaretheminimumnumberofpointsneededtomakealine,buthavingathirdpointisbetter.Havingathirdpointisagoodcheckmechanismbecauseifthethreepointsdonotfallintothesameline(andinstead,makeatriangle),youknowatleastoneofthepointsiswrong,andyoumustgobackandcorrectit.Ifthisisthecase,Irecommendstartingyourtableofpointsover,sinceyouwon’ttrulybeabletotellwhichpoint(ifnotmultiplepoints)iswrong.Also,themorepointsyouhave,themoreaccurateyourlinewillbe.

Page 69: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Whendealingwithlinearequations,rememberthis:Whenindoubt,makeagraph.Tomakeagraph,makeatableof3ormorepoints.Usethefollowingprocedure.First,drawthetable,thenfillin“0”forthefirstx,“0”forthesecondy,and“1”forthethirdx,asshownbelow.x y0 01 Thentakeeachnumber,substituteitintotheoriginalequationandsolvefortheothervariable.Thiswillgiveyouthreeimportantpoints:(x,y)(0,)� they-intercept,alsoknownasb,orasapoint(0,b)(,0)� thex-intercept(1,)� anothereasypointtofind,neartheoriginSometimes,thesepointsoverlap,suchaswhenthex-interceptandy-interceptarebothat(0,0);orwhenthey-interceptis(1,0).That’sfine.Justmakeanotherpointonthetable.Mynextchoicewouldbetoputin“1”fory,thensolveforx.Youcanreallychooseanystartingnumberforeitherxory,thensubstituteitinandsolvetofinditscounterpartvariable.Hereisanotherrelatedpieceofadvice:Ifyourslopeisawholenumber,writeit

over1.Forinstance,ifyourslopeisfoundtobem=3,writeitas x,becausethiswillremindyouthatthereisariseandarunwhenyoudrawthegraph.Ifyouhavetwoequations(andtheirlines)tocompare,besuretomaketwoseparatetablessoyoucandifferentiatewhichpointsbelongwithwhichline.Thiscouldbeusefulforsolvingasystemoftwolinearequations.

Page 70: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheSlopeEquationOnemajorcomponentoflinesandgraphinglinearequationsistheslope.Thefollowingshowsalltheinterpretationsofslope:

Thesymbol � isthecapitalGreekletter“D”whichstandsfor“thechangein,”commonlyusedinmathandscienceequations.

Page 71: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

The4ImportantEquationsforLinesTheseequationsshouldbememorized,namesincluded.1.Slope-InterceptForm:y=mx+b

2.StandardForm:ax+by=c,wherea,b&care#s,includingpossiblyzero.

Note:the“b”hereisnotthesame“b”(they-intercept)asintheslope-interceptform.Althoughthesameletterisusedineach,theyareusedincompletelydifferentcontexts.Theletters“a”and“b”aretypicallyusedtorepresentcoefficientsinfrontofvariables.AlsoNote:AstandardformlinearequationisslightlydifferentthanaStandardFormQuadraticEquation.

3)Slope: fromthepoints:(x1,y1)&(x2,y2)4)Point-SlopeFormula:y–y1=m(x-x1)ImportantcommentaboutthePoint-SlopeFormula:Keepyasyandxasx!Donotattempttosubstitutevaluesinforthosehere!Youneedthemtoremain(asletters)totheendoftheprocess.Thepurposeofthisformulaistosubstituteonlyvaluesinforx1&y1(fromapoint)andthevalueofm,andthenrearrangeitintoy=mx+b,wheremandbwillbenumbers.Lookatthename…it’sthePOINT-SLOPEformula…don’toverlookthename!Youneedone(x,y)pointandtheslopetosubstituteintoit,whichcanberearrangedintoy=mx+b.Sometimes,youwillbegiven2ormorepointsandnoslope(m)andwillbeaskedtofindtheequationofaline(asy=mx+b).Inthiscase,youmustfirstcalculatembyusingthetwogivenpoints(or,ifmorethantwoaregiven,youmustselectanyrandomsetoftwopoints)toputintotheslopeformula,andcalculatem.Next,chooseoneofthegivenpointsandputthecorrespondingvaluesinfory1andx1andm(thatyoujustdetermined)intothepoint-slopeformula.Then,usethepropermethods(rulesofequality)torearrangethepoint-slopeformulaintotheslope-interceptformula,y=mx+b.

Page 72: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations
Page 73: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Whenx1=x2:theslopeisalwaysundefined(andsaidtohave“noslope”),thelineisvertical,andtheequationforthelinewilllooklike“x=#”.

Considerthisexampleoftheequationofalinegoingthroughthefollowingpoints:(4,3)and(4,7).Noticethex-valuesarethesame,both4,sointheequation:

theslope,m,isundefinedbecauseofthezerointhedenominator.Theequationofthelinehereis“x=4”

Page 74: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Wheny1=y2:theslopeisalwayszero,thelineishorizontal,andtheequationofthelinewilllooklike“y=#”

Considerthefollowingexampleofanequationofalinegoingthroughthetwopoints(2,5)and(3,5).Noticethey-valuesarethesame,both5,andinthe

equationforslope: sincethenumeratoriszero,theslope,m,ofthelineiszero,andthelineishorizontal.Theequationofthislinewouldbe“y=5”

Page 75: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Parallel&PerpendicularLinesonaGraphLinesareparallelwhentheirslopesareidentical.Inordertoseethis,youeitherneedto:

Rearrangebothequationsintoslope-interceptformandlookatm,orSimplycalculatemforeachequationandcomparethem.Youcanalsogetagoodideabygraphingandlooking.Ifthelinescross,itwillbefairlyobvious.

Itisnotrecommendedtoevaluatetheslope(m)whenequationsareinstandardform(oranyformotherthanslope-interceptform).Formoreonthis,see:NoSolution-Inconsistent.Linesareperpendicularwhentheirslopesareexactlybothopposite(and)

reciprocalsofeachother.Forexample,ifoneslopeis4,theothermustbe .Formoreonthis,see:OneSolution-Consistent.

Page 76: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

SOLVINGASYSTEMOF(TWO)LINEAREQUATIONSBeforecontinuing,therearesomeimportantthingstobeawareof.Asystemofequationsmeans:linesonthesamegraphthatmayintersect.Whatdoesitmeantosolveasystemoftwolinearequations?Tosolvemeanstofindthepointofintersection,whichisliterallyintheform(x,y)…soyou’reessentiallyfindinganxandcorrespondingy.The(x,y)-pointisthesolution(whenthereisasolution,whichtherewon’talwaysbe).Formoreonthis,see:Interpretingthe"Solutions",including:NoSolution,inthenextfewpages.Youalwaysneedasmanyequationsasyouhaveunknownvariablestosolvefor.Here,thereare2equationsand2unknownvariables.(Ifyouhave3unknownvariables,youwouldneed3equationswiththosevariables,etc.).

Page 77: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

WhatDoes“SolvingInTermsOf”Mean?Whenrearrangingequations,youwilloftenhearitexplainedas“Solveforonevariableintermsoftheothervariable.”Morespecifically,youmighthearitas“Solveforyintermsofx.”Itisimportantthatyouunderstandthecontextofthewords“intermsof.”Inthebeginningofalgebrawhenyoulearntosolvesimplealgebraicequations,youareusedtosolvingoneequationwithonevariable,andfindingthenumericvalueofthatvariable;thatistheendpoint.Fromthatpoint,studentsoftengetaccustomedto:solving,andgettinganumberforananswer,andbeingdone.Butsometimes,especiallyforamulti-stepproblem(asasystemoftwolinearequationsis),yousolvefor(isolate)avariable,butyoudon’tgetanumber-answer(atleastrightaway).Butthisisok.Somestudentswhoexpecttosolveandgetanumber(instantly)thinktheymadeamistakewhentheydon’tgetanumber.Thisisnotunusual.Thisiswhereonevariableissolvedintermsofanothervariable,meaningneithervariablegoesaway,andyoudon’tsolvetogetanumber…butyouarestillrearrangingtheequationtoisolateavariableofinterest,andwhatevervariable(s)stillremainsisshownontheothersidewiththeotherterms.Tosolveforsomethingintermsofavariablecanbetranslatedandbrokendownlikethis:“Solvefor”=isolate“Something”=whateveryou’reisolating.Itcouldbeavariable.Itcouldalsobeanumberoranentireterm.Whateveritis,getittooneside,andwhateverremainsgoesontheotherside.“Intermsof”=thevariable(s)orterm(s)whichgoontheoppositesideoftheentitybeingsolvedfor.Note:Thistypeofequationrearrangementisnotonlyusedforsolvingsystemsofequations.Youwilloftenalsoseeasmallchapterinyourtextbooksdedicatedjusttomulti-variableequationrearrangement.Theequationsusedareoftenassociatedwithgeometry,trigonometry,statistics,economics,physicsandchemistry.Exercisesinsolvingmulti-variableequationsintermsofothervariablesprepareyouforactualapplicationofthoseequationsintheirrelatedfields.

Page 78: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheThreeWaystoSolveTherearethreegeneralwaystosolveasystemoftwolinearequations(twolinesinatwodimensionalspace,alsoknownasaplane):1.Graph&Check2.TheSubstitutionMethod3.TheAddition/EliminationMethodAllthreemethodswillyieldthesameoutcome.Iwilldiscussthebesttimetouseeachmethod,especiallywhenitisbettertousetheSubstitutionMethodvs.theAddition/EliminationMethod.Howmanysolutionsshouldyouexpect?Therewilleitherbe:

onesolution(madeupofonexandoney),nosolution,orinfinitesolutions

Thesearetheonlypossibleoutcomes.Forinstance,therecan’tbetwosolutions.Thisexplanationiscontinuedin:InterpretingtheSolutions,inwhichthesituationsandassociatedvocabularyforthesesolutionsareexplainedinmoredetail.Butthenextthreesectionsgiveacloserlookateachofthethreesolvingmethods.

Page 79: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Graph&CheckSometimesthismethodisbrokenupseparatelyintoCheckorGraph,andsometimestheymust(orcan)bedonetogether.OftentheCheck-onlymethodisintroducedfirst.Inthiscase,anorderedpair(anx,ypoint)willbegiventoyou.Tocheck,youmustsubstitutethex-valueinforxandthey-valueinforyintobothequations,thensimplify.Yourgoalistodetermineifthepointisorisnotasolution.Inorderforthepointtobeasolution,eachequationwillreducetoanumberthatequalsitself,suchas3=3.Butifonlyone(orneither)simplifiestoanumberthatequalsitself,thentheproposedpointisnotasolution.Youwillknowwhenthepointisnotasolutionbecauseanequationwillsimplifytoanumberthatappearstoequaladifferentnumber,whichrevealsitselftobeablatantinequality,andthereforenotasolution.Inanotherrelatedinstance,thepointitselfisn’tgiventoyou,butapre-drawngraphis.Inthiscase,youareexpectedtoreadthepointofintersection,andthencheckthatpointasexplainedinthepreviousparagraph.Oftentimes,apre-drawngraphwillbemadetohaveanobviouspoint,andbyobviousImean“integers,”notsomeobscuredecimalnumbers.Oryoumayhavetodoeverystep:createthegraph,interpretthepointofintersectionandcheckit,aspreviouslydescribed.Youcouldbegiventwosetsofpoints(twoorthreesetsofpointsforeachofthetwolines),whichyouwillhavetoplotandgraph.Youmightalsojustbegiventwoequationsandbeinstructedto“findthesolution,”inwhichcaseyoumust:

Determinethreepointsforeachgraph(soatotalof6points),Plotthepointsandsketchthetwolines,Makeajudgmentastothepointofintersection,thenCheckthepointbysubstitutingthevaluesintoeachofthetwoequations,simplifying,andinterpretingtheoutcome.

Afewreminders:

Usetheprocedurefor:HowtoGraphaLinearEquation.Uponmakingatableofpointstoplot,takenoticeofanyx-ypointsthatarethesameinbothtables.Ifyoufindamatchingpair,thatisyoursolution.Youshouldprobablystillgraph,thenchecktoconfirm.Neatnessisessentialwhengraphing.Trytousegraphpaper.Ifyoudon’thaveany,considerusingastraightedge.Butmoreimportantly,tryyourbesttodraweachunitonyourxandyaxeswithequal

Page 80: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

lengths.Thiswillmakeyourpointofintersectionmoreaccurate,andwillgiveyouabetterabilitytofindthecorrectpoint,whichshouldthenallowittosuccessfullycheck.Also,evenwhenyouarenotrequiredtoGraph&Check,youstillcanifyouwanttodoublecheckyourresultsfromtheSubstitutionMethodortheAddition/EliminationMethod.

Page 81: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheSubstitutionMethodThesubstitutionmethodisstartedinoneoftwoways.Onewayisbytakingoneequationandsolvingitforonevariable.Whendoingthis,aimforthevariablethatwillbemosteasilyisolated.Agoodwaytoidentifythebestvariabletoisolateisbyfindingatermwitheitherasmallcoefficient,oratermwithacoefficientthattheothertermsintheequationwillbeeasilydivisibleby.Forinstance,ifoneofthetermsis“2y”andtheothertwotermsareeven(perhapstheyare6xand-8),thensolvingforyisagoodchoicebecausetheothertermsare(easilyandnoticeably)divisibleby2.Sometimesatermalreadyhasnocoefficient(meaningithasanunwrittencoefficientof1).Inthiscase,it’sagoodideatoemploytheSubstitutionMethodbecausepartoftheworkisdoneforyou(thatpartbeingtomakeitscoefficient1).Allyouhavetodothenisisolatethatvariable.Therearemanysystemsofequationswherethisisthecase.Oftentimes,thewritersofthemathproblemssetyouuptonoticethisvariable.Sometimes,thevariableisevenalreadyisolated,soallyouhavetodoisrealizethat,thenproceedtosubstitutewhatitequalsinforthatvariableintheotherequation.Onceyouhavesolvedforoneofthevariablesintermsoftheothervariable,youmusttakethatequalityandsubstituteitintothevariableforwhichyoujustisolated,intheotherequation.Forinstance,ifyoujustsolvedforyinoneequation,thenyoumusttakewhatyequalsandsubstitutethatinforyintheotherequation.Whenyoudothis,youshouldtakenoticeofthreethings:

1. Allthevariablesintheequationyoujustsubstitutedintowillbethesame.Itisonlywhentheyarethesamethatallowsyoutosolveforthenumericvalueofthatvariable.

2. Onceyoudothesubstitution,youwillbesolvingforthenumericvalueoftheothervariable.Forinstance,ifyouoriginallysolveforyintermsofxandthensubstituteinforyintheotherequation,youwillthensolveforthenumericvalueofx.Also,

3. Becarefulnottomakethecommonmistakeofsubstitutingintotheequationyoujustsolvedforinthefirststep.Ifyoudo,thenonceyousimplify,youwillendupwithanumberthatequalsitself,andthismayleaveyouconfusedandwonderingwheretogofromthere.Soremembertosubstituteintotheotherequation.

Page 82: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Youarenowonestepawayfromcompletingthisproblem,butstudentssometimesgetconfusedatthisfinalstep.

Page 83: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Thelaststepistotakethenumericvalueofthevariableyoujustsolvedforandsubstitutethatbackinforthatvariableintoeitheroftheoriginalequations,thensolvefortheothervariable.Forinstance,ifyoujustfoundthevalueofxtobe-5,substitute-5backinforxinoneoftheoriginalequations,thensolveforthevalueofy.Ihavetwocommentsaboutthis:

Studentsareoftenconfusedby:WhichoftheoriginalequationsshouldIsubstitutemyvaluebackinto?Andtheansweris:either.Sometimesthechoiceseemstoconfusestudents,sohere’showyoucanchoose.Youcaneither

justrandomlypickone,or

Choosetheequationwhichappearstosimplifyeasier.Theonethatwillbeeasiertosimplifymaybetheonewithsmallercoefficientsortheonethatdoesnotcontainfractions.Ifbothlooklikesimilardifficulty,justchooseonerandomly.Theanswerwillcomeoutthesame.

Page 84: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Sometimesstudentsforgetthefinalstep,perhapsbecause,uptothispoint,youareusedtoaone-numberorone-variableanswer.Don’tforgetthisstep.Remember,thesolutionisapoint(anxanday).Themostcommonmistakemadebystudentsusingthismethodisgettingconfusedaboutwhattosubstitute.Soinsummary,yousolveforonevariableintermsoftheother…leavingyouwithonevariableisolatedononesideoftheequalsign,andtheothertwotermsontheotherside.Youthensubstituteinforthevariableyoujustsolvedforintotheotherequation.The“stuff”yousubstituteintotheotherequationwillreplacethevariablewiththetwotermsfromtheothersideofthefirstequation.Youmustthendistributeandsimplifyinordertosolveforyourfirstvalue.

Page 85: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheAddition/EliminationMethodSomebookscallthis“TheAdditionMethod”andsomebookscallthis“TheEliminationMethod.”Icallitahybridofboth,becauseyoustartbyaddingthetwoequations(afteranynecessaryconversions),whicheliminatesonevariable,makingitanew,one-variableequationthatcanbesolved(fortheothervariable).Remember,toperformthismethod,termsofthesamevariableineachequationmustbeoppositessotheycancelouttozerowhen(theequationsare)addedtogether.Butmyfocusistotellyouwhenitisadvantageoustousethismethod.Herearesomecluestolookfor:

Younoticetwotermsofthesamevariableineachequationwhicharealreadyopposites[meaningsameterm(variableandcoefficient)butoppositesigns].Thesearealreadysetuptocanceleachotherouttozerooncetheequationsareadded.Allyouhavetodoisaddtheequations,thenproceedtothenextstep.

Page 86: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Younoticethatonetermisonemultipleawayfrommakingittheoppositeofatermofthesamevariableintheotherequation.Forinstance,ifoneterminoneequationis3x,andtheotherequationhasa-9x,then3xcanbecome+9xbymultiplyingitby3(anddon’tforgettomultiplythatfactorthroughbytheothertermsinthatequation).Oryouhavetheterm-5xinoneequationand-5xintheother.Youmustmultiplyoneoftheequationsthroughby-1,tomakea-5xbecome+5x.Or,wheneverneitherequationisgivenwithavariablewith(anunwritten)coefficientof1…mainly,theoppositeofwhatisexplainedforTheSubstitutionMethod.Inotherwords,allvariableshavecoefficients(otherthan1).

Page 87: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

CommonMistakes:Averycommonmistakestudentsmakeisaddingthetwoequationswithoutcheckingandconvertingoneequation(tomanipulateonevariableintotheoppositeofatermfromtheotherequation).Ifyoudonotproperlysettheequationsuptohaveoppositeterms,thenaddingtheequationswilljustgiveyouathirdequation,stillhavingtwovariables.Studentsoftengetstuckhere,andrightfullyso,becausethisisadead-end;there’snothingyoucandowithit.Anothercommonmistakestudentsmakeisforgettingtoaddtheconstantswhentheequationsareadded.Theconstantsarethenumberswithnovariablesattached.Don’tforgettoaddthem,astheyarejustasmuchapartoftheproblemasthetermswithvariables.

Page 88: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ExamplesforChoosingtheMethodInthissectiontherearetwo“systemsoflinearequations”given:SystemAandSystemB.Eachequationisalreadysimplifiedandputintostandardformforthistypeofproblem.Iwantyoutoexamineeachset,andusingthecluesexplainedintheprevioustwosections,determinewhichmethod(SubstitutionorAddition/Elimination)wouldbebesttouseineachcase.Theanswersandexplanationswillbegivenonthefollowingpage.The“solutions”tothesystemwillalsobegivenincaseyouwanttodotheproblemforpractice.SystemA:Equation1:

Equation2:SystemB:Equation3:Equation4:

Page 89: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

SystemAwouldbestbesolvedusingtheSubstitutionMethodbecausethe“y”inEquation2alreadyhasan(unwritten)coefficientof1.Thenextstepwouldbeto

isolatetheybyadding tobothsides,givingyou: .ThensubstitutetheinforyinEquation1.ThesolutiontoSystemAis(-2,-1).SystemBwouldbestbesolvedusingtheAddition/EliminationMethod.Therearetwowaystoapproachthis.First,takenoticeofthe“14x”andthe“-7x”.Ifthe“-7x”ismultipliedby“2,”itwillbecome“-14x”whichistheoppositeof“14x”.YouwouldneedtomultiplyeachterminEquation4by2toproperlyconvert“-7x”into“-14x”.Then,whenyouaddthetwoequations,the“x”termswillcancelouttozero,allowingyoutothensimplifyandsolvefory(andthenx).ThesolutiontoSystemBis(2,-14).

Page 90: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Or,youcouldsolveSystemBanotherway,bymultiplyingEquation3by“2”andmultiplyingEquation4by“3”.Thiswouldmake“3y”wouldbecome“6y,”“-2y”wouldbecome“-6y,”andThey-termscancelouttozerobecause6y–6y=0.AsImentionedbefore,somestudentstakeamistakenapproachtothisfirstbyaddingthetwoequationstogetherwithoutmultiplyingthroughthenecessaryterm(s)tomanipulatetermsofonevariabletocancel.Ifmistakenlyadded,youwouldthenget(whatIwillcall)Equation5:y+14x=8…Noticehowbothvariablesstillremainintheequation?Thisleavesyouatadeadend,becauseyoucan’tsuccessfullyusethisequationtosolveforeithervariable.

Page 91: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Interpretingthe“Solutions”OneSolution-ConsistentWhenthetwolinescross,thisiscalledaconsistentsystem.Inthiscase,thereisonesolutiontobefound,whichisthepointofintersection.Thelinescanbeacombinationofdiagonal,horizontaland/orverticallines.Keepinmind,allsetsofperpendicularlineshaveonesolutionandmakeaconsistentsystem.NoSolution-Inconsistent,ParallelThetwolinesdon’tcross…becausetheyareparallel;parallellinesbydefinitionnevertouch.Thisisaninconsistentsystem.Thereare3waysyoucantellthatlinesareparallel:1.Whenusingoneofthethreemethodsforsolvingasystemoftwolinearequations,whenyousimplifyandgettotheendoftheproblem,youwillgetone#thatdoesnotequaltheother#.Itwilllooksomethinglike:7=-5or0=4,whichclearlyisn’ttrue.

2.Theslopes(m)ofthetwolinesareidentical.Inorderforyoutoseethis,youmustconverttheequationsintoslope-interceptform(y=mx+b),andthensimplylookattheslopes.Theequationsoflinesmayormaynotoriginallybeinslope-interceptform(y=mx+b).Iftheyarenot,convertthemtoslope-interceptformbysolvingfor(isolating)y.

Also,besureeachequationisinsimplifiedform.IfthereisaGreatestCommonFactorinanequation,youmustfactoritout.Ifyoudon’t,theslopesmayappeardifferent,eventhough,byproportion,theyareactuallythesame.

3.Graphandlook.Youcanfindoutiflinesareparallelwithoutgraphing,asdescribedinthelastparagraph.Butthismethod(graphing&looking)shouldactasabackuptothetwomethodsabove,toconfirmyouranswer.Itmayalsobeagreathelpifyouareamorevisuallearner.Forareminderongraphingfromanequation,see:HowtoGraphaLinearEquation.Oncedrawn,lookatthelinestoseeiftheyappeartocross.

Page 92: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

InfiniteSolutions-DependentTheentirelinesoverlap…becausetheyareessentiallythesameline.Thegraphactuallylookslikeoneline.Thisiscalledadependentsystem.Thereare3waystotellthis:1.WhenyouusetheSubstitutionMethodforsolvingasystemoftwolinearequations,theequationyousubstitutedintowillsimplifytosomethinglikethis:4=4,or

-8=-8,or0=0.Itwon’tevenletyougettothepointwhereavariableequalsanumber,revealingthatthesystemisdependent.Note:Whenthishappens,studentstendtothinktheymadeamistakebecausethisoutcomeseemssoawkward,butusuallytheyhaven’tmadeamistake…it’ssupposedtoturnoutthiswaytoindicatethatit’sadependentsystem.

2.Whenreducedtosimplesttermsandconvertedtosameform,theequationsareidentical.Ifyouaregoingtocompareequations,theymustbothbeinthesameformaseachother(eitherslope-interceptformorstandardform).Note:Oftentimes,theseequationsmaylooksimilarbeforetheyarecompletelysimplified.Iftheyareinthesameform,youmaynoticethecoefficientsaredifferent,yetproportional.Thiscanbeasignthatdividingoneorbothequationsthroughbyacertainfactorwillthenrevealtheequationstobeidentical.ThisiswhyitissoimportanttotrytosimplifyanyequationbylookingtofactoroutaGCFandarrangingintostandardforminthebeginningofeveryproblem.Doingthisherewouldinstantlyrevealthatthesystemisdependent.3.Graph&Check–Graphbothlinesandlookatthegraph.Itshouldbeprettyobviousthatthelinesoverlap.Actually,itwilljustlooklikeoneline.

Page 93: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TRINOMIALS&QUADRATICSThewords“trinomials”and“quadratics”areoftenusedinterchangeablybecausetheyoverlap,bothincharacteristics,looksandapplication(particularlyduringfactoringandsolving).Despitetheirsimilarities,theyshouldnotbeseenascompletelysynonymousbydefinition.Becauseofthewaymanybooksandlessonsarearranged,sometimestheseareseenandusedtoodisconnectedlyorseparately.Thisisunderstandableaswell(whendonecorrectly),howeverthismayalsomisleadstudentstomisstheimportantconnectionandoverlapbetweenthem.Thissectionistohelpyouclearlyrelateanddifferentiatethesimilaritiesanddifferencesbetweenthem,bydefinitionanduse.

Page 94: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Atrinomialisanexpressioncontainingthreedifferentterms,oftenwithatleastonesquaredvariable.Isay“often”becausewhenyouareintroducedtofactoring(usingtheTrial&ErrororReverse-FOILmethod,forinstance),youarefactoringtrinomialsintobinomials.Bydefinition,trinomialscanbecomprisedofanythreetermstoanypower,buttrinomialsareveryoftendirectlyassociatedwithfactoringintotwobinomialsasthesegue-waytosolvingquadraticequations.Atrinomialsometimesoverlapsasaquadraticexpressionandmaybepartofaquadraticequation.Althoughanexpressionmaybebothatrinomialandaquadraticexpression,theyarenotsynonymousbydefinition.Atrinomialisaquadraticexpressionwhenthehighestpower(degree)ofanytermis2.Whentheydooverlap,theycanbesimplified(factored)theexactsameway.Also,notallquadraticexpressionsaretrinomials,asyouwillreadnext.

Page 95: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Aquadraticequationis:-Anequationcontainingasquaredvariable(likex2),yieldingamaximumoftwosolutions[butcouldcontainonesolution(thatoccurstwice),ornosolution].-Itmustcontainasquaredvariableandthusisconsidereda2nddegreeequation.-Althoughaquadraticequationcancontainatermofx(totheunwrittenpowerof1),itcannevercontainatermofapowerhigherthan2.-Also,aquadraticequation,whengraphed,alwaysmakesaparabola(aU-shapedcurve).Aquadraticequationappearsinthestandardform:ax2+bx+c=0

Thereareafewthingsyoushouldunderstandabouttheequationwrittenabove.Itmayalsobewrittenas:y=ax2+bx+c=0,inwhichy=0,asabove,or:f(x)=ax2+bx+c=0,becausequadratics(whichmakeparabolas)areconsideredtobe“functions.”Specifically,theyarefunctionsofx.(Idonotdelveinto“functions”inthisbook,butifyou’rewondering,anequationisconsideredtobea“function”ifitsgraphcrossesthey-axisonce.)Itiswrittenindescendingorderandstandardforminthiscase.Foraquadraticequation,“standardform”meansalltermsareononesideoftheequalsign,andsetequaltozero(ontheotherside).Descendingordermeansthetermsarearrangedfromthehighesttothelowestpower,fromlefttoright.Allquadraticsarenotalwaysoriginallypresentedindescendingorderorstandardform.Ifandwhentheyarenot,youshouldrearrangeeachoneintostandardformanddescendingorderbeforesimplifyingandsolving.Thelettersa,bandcarerepresentativeofnumbers,notvariables(moreonthatdownthepage).Also,“a”cannotbezero.If“a”iszero,itisnolongeraquadraticequation;itisthenalinearequation.

Page 96: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Aquadraticequationcontainsatrinomialexpressionwhena,bandcareallnon-zeronumbers.However,sometimes,eitherthecoefficientb,orconstantc,orboth,arezero(remember,“a”cannotbezero).Thisisworthhighlightingbecausethisiswherestudentsoftenrunintotrouble.Ibelievetheyrunintotroubleatfirstbecause,whenborciszero,theequationsjustlookdifferently,andusuallythesolvingmethodisdifferent.Forthatreason,thereasegmentdedicatedtothosespecificcases.Iwillshowwhattheylooklike,explaintheirgraphicalsignificance,howtosolvethem,andtheirexpectedsolutions.Thisiscontinuedin:QuadraticsWithZero.Butfirstyoushouldunderstandthesolutionstoquadraticequations.

Page 97: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

WhatAre“Solutions”toQuadraticEquations?

Itisgoodyouknowwhatsolutionstoquadraticequationsare,togiveyouabetter,overallperspective.(Thevariableofaquadraticequationisusuallyx,butcanbeotherletters).Whenthevariableisx,thesolutionsare“x-intercepts,”whicharesimplythepointsonagraphwheretheparabolacrosses(orthesinglepointwhichtouches)thex-axis;thex-interceptsaredefinedthesame,nomatterwhattypeofequationorgraphtheycomefrom.Andx-interceptsarepoints(orderedpairs)atwhichy=0,whichiswhyyousetyourquadraticequationequaltozeroatfirst(inotherwords,makingsureitisinstandardform).Thisisalsowhy,ifyousolvebyfactoring,youseteachfactorequaltozero;or,ifyousolvebythequadraticformula,thisiswhytheformulaissetequaltozero.Youwilllearnaboutthismoreinthenextsection.

Allquadraticequationsproduceaparabolawhengraphed.Thesolutionsarethex-interceptsofthegraph.Asyouwillseeinthenextfewsections,thereareanumberofwaystosolvequadraticequations.Ifyousolvebyfactoring,youwillgetoneortwosolutions;thosesolutionswillbeeitherintegersorfractions.Ifyousolvebythequadraticformula,youranswersmaycomeouttobeintegers,fractionsorradicals(whichcouldbeconvertedtodecimalsforgraphing).Also,youmayfindthataquadraticequationhaseitherone,two,or“noreal”solutions.Hereisaquicksummaryofeachscenario:

Onesolutionmeansthattheparabolaonlytouchesthex-axisonce;itdoesnotcrossthex-axis.Youmaythinkofitas“sittingon”thex-axis.Anothermoretechnicalwaytosayitis,“Thex-axisistangenttothevertexoftheparabola.”

Thiswilloccurwhenthetrinomialfactorsintoabinomialsquared.Itisalsogoodtoknowthatabinomialsquaredcomesfroma“perfectsquaretrinomial.”

Twosolutionsmeanstheparabolacrossesthex-axistwice.Finally,youmayfind“norealsolutions”.Thismeansthattheparaboladoesnotcrossortouchthex-axis,butdon’tbefooled.Justbecauseitdoesn’tcrossortouchthex-axisdoesn’tmeanitdoesn’texist…itstillexists,andcanstillbegraphed.Thisconclusioncanonlybemadethroughuseofthequadraticformula.Ifaquadraticequationisprime(whichonlymeansitcan’tbefactored),thisisstillnotgroundsforsaying“nosolution”…itmayjustmeanthesolutionsareradicals.Butitmayalsomeanthereare“noreal”solutions.Thereasonthisisspecificallyansweredas“noreal”solution,insteadofnosolution,isbecausethisisoftentheresultofthesquarerootofa

Page 98: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

negativenumber.Formoreonthat,see:TheSquareRootofNegativeOne,and:Primevs.NoSolution.

Theseconceptsandacloserlookatthesolvingmethodsbehindthemarediscussedinmoredetailinthenextfewsections.

Page 99: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

SolvingQuadraticEquationsTrinomialsandquadraticequationscanbesolvedinthreegeneralways:1.Factor&Solve1b.TaketheSquareRootofBothSides2.UsetheQuadraticFormula3.Graph&CheckWhenusingfactoringtosolve,thereareactuallythreedifferentfactoringmethodsyoucanuse,soyoumightsaytherearefiveorsixtotalpossiblewaystosolvequadraticequations,(although,asyouwillsee,thefactoringmethod(s)won’talwayswork).Youalsosee“TakingtheSquareRootofBothSides”inthelistas“1b.”Thisisanalternativemethodtocertaincasesinwhichfactoringcanbeusedaswell.Thereisatypeofequationwhichcanbesolvedintwoways,eitherby“Factor&Solve”orby“TakingtheSquareRootofBothSides”.Thisisexplainedin:Whenbothb&care0:ax2=0.Ire-wrotethelistofwaystosolvequadraticequationsbelow,withthemorespecific,sub-methodsincluded,soyougetaconciselistofmethodsandchoicesyoucanuse.1.Factor&Solve:

Trial&Error/ReverseFOILMethodTheac/GroupingMethodTheCompletetheSquareMethod

1b.TaketheSquareRootofBothSides2.UsetheQuadraticFormula3.Graph&CheckInthefollowingsections,Iwillgooverthewhenasopposedtothehow(seeyourtextbookforthe“how”).Ihavegoodreasonsforthis.Thetextbooksusuallydoagoodjobofshowingyouhowtoimplementthemethods,andthestepsarenotreallythatcomplicated;alotofpracticeisthekeytobecominggoodatfactoringandsolvingquadraticequations.However,thebooksdon’tusuallyansweraquestionmanystudentshave,whichis,“whenisthebesttimetouseeachmethod?”I’mgoingtoanswerthatquestion,aswellasgivemoreofatop-downperspectiveonsolvingquadraticequations.

Page 100: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Whendealingwithquadratics,youshouldalsogetaccustomedtostartingthem(orpreparingthem)thesameway,nomatterwhichmethodyouusetosolvethem.Youshouldalways:

LookforaGCFtofactorout(thisisabigonestudentsoftenforgettodo),andArrangeintodescendingorderandstandardform.

Page 101: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Factor&SolveUsually,youshouldtrytofactorandsolveaquadraticequation(beforeusingthequadraticformula)becauseit’sfasterandinvolvesfewersteps(ifit’sabletobefactored).Factoringandsolvingcanleadyoutotheanswer(s),howeverifyoucan’tfactor,thisleavesyouranswerinconclusive.Ifaquadraticisprime(can’tbefactored),itdoesn’tnecessarilymeanthereisnosolution,butyoumustthenusethequadraticformulatocometothatconclusion(toeitherfindtheanswersorfindthatthereisnorealsolution).Butmanyquadraticequationscanbefactored.Therearethreegeneralwaystofactor,butmoreimportantly,therearebettertimestouseeachmethodandcluestodictatewhenthosetimesare.AlthoughIdonotteachyouhowtodoeachmethod(asIstated,yourtextbooksdoagoodjobatthat),Iwillhighlightthecluesandtellyouthebesttimetouseeachmethod.Beforefactoring,youmustgothroughaseriesofstepstosetupandprepareyourequation,nomatterwhichmethodoffactoringyouwilluse.Theseareveryimportant,andstudentsoftenforgetoneorallofthesebecauseyoudon’talwayshavetodothem:

Simplifyasmuchasyoucanbycombininglike-terms,ifnecessary.ArrangealltermsintoDescendingOrderaccordingas:ax2+bx+c=0.PutintoStandardFormbymovingalltermstooneside(theleft)andsettingthemequaltozero.LookforaGreatestCommonFactor.Sometimesyoucanfactorandsolvesuccessfullyifyouforgettodothis,butitwilloftenleaveallnumberslarger,andtheproblemmoretedious.IftheGCFisanumber,youcanfactoritout,thenremoveit(becauseifyoudividebothsidesbyit,thezerodividedbyitontheothersideeliminatesit,andthezeroremainszero).

However,iftheGCFisavariableorapowerof“x”,itwon’tbeeliminated,butitwillequalzeroasoneofyoursolutions.Factoringoutavariablemayallowyoutoproperlyfactorusingoneofthefactoringmethods(includingtofactoragain)thatyouotherwisewouldn’tbeabletodo.Actually,whentheGCFcontainsavariableorpowerofx,theproblemmightnothavebeenaquadratictobeginwith.Factoringthatoutmayleaveyouwithaquadraticthatyoucanthenfactorbyquadraticmethods.

Page 102: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Makesurethecoefficientoftheleadingterm(the“a”connectedtox2)ispositive.Youcan’tfactorifit’snegative(itcanbenegative,though,whenusingthequadraticformula).Ifitisnegative,treat-1asaGCFofeachterm.Byfactoringitout,youwillsimplychangethesignofeachterm,andthezeroontheothersideisn’taffected.(Optional)Youmaychoosetoeliminateallfractionsfirst,iftherearefractions.YouareusuallytaughtthatitisagoodruleofthumbtobeginanytypeofproblembyremovingfractionsbymultiplyingbytheLCD.Youdon’thavetothough,andsometimesyoucanevenfactorthemintobinomials,butyouwillaccountfortheminthefinalsolvingstepsifyoudon’tremovethemfirst.

Page 103: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Trial&Error/ReverseFOILMethod

Variousbookshavedifferentwaysofnamingfactoringmethods.IuseboththesenamesherebecauseIthinktheyaccuratelydescribetheprocessthey’reusedfor.Todothismethod,youmustsimplify(combinelike-terms),arrangealltermsintostandardform(movealltermsontooneside),andputintodescendingorder.Youthenpayattentiontothefactorsofthefirstandlasttermsofthetrinomial,writeoutthetwobinomials(or,onceyougetgoodenoughatit,keeptheminyourhead)thenFOILthesefactorstoseeifyouarrivebackattheoriginaltrinomial.Ifitworks,you’vefoundyourfactors;thenseteachbinomialequaltozeroandsolve.Keeptryingfactorsuntilyoufindtheonesthatwork(that’swhat’strialanderroraboutit).Also,Icallit“Reverse-FOIL”becauseyouarestartingwiththeproduct(theoriginaltrinomial),thencomingupwithfactorstotry,thenFOILingthemtocheck.ButasIstated,myintentionisnottofocusonthehow,butthewhen.Sowhenisthebesttimetousthismethod?

Itiscommontofirstapproachatrinomial/quadraticexpressionwiththismethodbecause,ifitcanbedone(easily),itcanbethequickestmethodwithfeweststeps.AnequationwithanexpressionofthistypehasthebestlikelihoodtobesolvedbystartingwiththeTrial&ErrorMethodwhen“a”and“c”arerelativelysmall.Iusetheword“small”loosely,andeveryone’sinterpretationof“smallnumbers”maybealittledifferent.Myuseof“smallnumber”couldbetakentwoways.Itcouldmeananumberwithfewfactors,oritcouldbetakenmoreliterally,meaningbetween1andabout15.Eitherway,thesmallerthenumber,thefewerfactorsitwilltendtohave.

Ideally,primenumbersornumberswithfewfactorswillyieldthefewestpossiblecombinationsoffactors.Thefewerfactorcombinationsthereare,thefewerthechoicestherearetotry(multiplyandtest).There’snotreallymuchelsetosayaboutthismethod.Asthe“a”and“c”numbersapproachlargervalues,therecouldbesomanypossiblecombinationsoffactorstotrialthatitcanbecomeverytimeconsuming.Whenthesizeandpossibilitiesoffactorsseemsoverwhelming,thisisagoodtimetodothe“ac/GroupingMethod.”

Page 104: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Theac/GroupingMethod

Youwilloftenfirstbeexposedtothe“GroupingMethod”whenyouarelearningfactoring(beforelearningtosolvequadraticequationsandequationswithtrinomials).TheGroupingMethodissimplyamethodoffactoringthatisintroducedtoteachyouhowtofactorfourterms[ifthereareenoughsimilarities(commonfactors)amongpairsofterms].Booksdon’toftencallthe“acMethod”the“ac/GroupingMethod;”theyusuallycallitoneortheother.Thisac/GroupingMethodiscomprisedoftwomainparts:

Firstusingtheaandctofindthecorrectfactors(bymultiplyingaandc,thenlookingatallthetwo-factorcombinationsofthatproduct,called“ac”),thenWritingoutthefourassociatedtermsandusingthegroupingmethodtofactor(intotwobinomials),

thensolving.Whenisthebesttimetousethismethod?Itisworthnotingthatthereare

oftentwogroupsofstudents:thosewhoprefertheTrial&Error/ReverseFOILMethod,andthosewhopreferthisac/GroupingMethod.ThereasonI’mtellingyouthisisbecauseyoucanalwaysskiptheTrial&ErrorMethodandstartbyusingthismethodeverytime(inotherwords,youdon’thavetotrytheTrial&ErrorMethodfirst,thengoontothismethodnextifTrial&Errordoesn’tworkout)ifyoulikethismethodbetter.Somestudentspreferthismethodbecauseitcanbequickeronaverage,becauseitremovesalotofguesswork(trialanderror)andthetimespentonalltheerrorfactorcombinations.

Regardless,agoodtimetousethismethodiswhentheaandcfactorsarelargeand/orhavemanyfactors.Togiveyouanideaofwhatmightbe“large”or“havingmanyfactors,”ifa=18andc=-24,therecouldbemanyfactorcombinationsfromthem.The“18”hasthreepairsoffactors{(1∙18),(2∙9),(3∙6)},andthe“-24”haseightpairsoffactors{(-1∙24),(1∙-24),(-2∙12),(2∙-12),(-3∙8),(3∙-8),(-4∙6),(4∙-6)}.Thenegativesigndoublesthenumberoffactorcombinations,becauseeitherfactorcouldbenegative.

Startbymultiplyingaandc;thisgivesyoutheproduct“ac,”(itwillbeanactualnumber).Youarethentolookateverypossibletwo-integer-factorcombinationoftheproductac.Youmayconsidersettingthisupinthefollowingway:maketwocolumns:onewiththeheading“factors,”andtheother“b.”Thepointistofindthenumbersthatwhenmultipliedgiveyoutheproductof“a”times“c”,andwhenaddedgiveyouthemiddletermoftheoriginaltrinomial,“b.”Whenthe“a”and“c”numbersofatrinomialarelargeorhavemanyfactor

Page 105: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

possibilities,thismethodwillhelpyouquicklyfindthecombinationneededtocompletethe“factoringbygrouping”method.Again,don’tforgettosolveyourbinomialsonceyoufactorintothem.

Page 106: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

CompletetheSquareCompletingtheSquareisdefinitelyinacategoryofitsown.Youmaynotevenconsideritfactoringbythesamedefinitionastheotherfactoringmethods,sinceitismore-solikeamanipulationtechnique,involvingfactoringasastep.Thismethodismainlyusedwhenconventionalfactoringdoesn’twork,becausethec-numbermaynotfactorintointegers,butitcanstillbemanipulated.It’simportanttorememberthattobegin,theleadingcoefficientmustalwaysbepositive1,sobeforeproceeding,ifthecoefficientisanythingotherthan1,divideeachtermbythe“a”coefficient,andthiswillmakethecoefficientoftheleadingterm“1”(andtheothertermswillchangeproportionally).Also,asyoumakeyournew“c-number,”don’tforgettoaddittotheotherside,tomaintaintheequality.Studentsoftenforgettodothetwothingsmentionedinthisparagraph.Thiscreatesa“perfectsquaretrinomial”(ononeside).Aperfectsquaretrinomialisaspecialcase,inwhichthecoefficientoftheleadingtermwillbeanunwritten“1,”(whichisaperfectsquare),thenewc-numberyoumadewillbea

perfectsquarenumber[thisnewc-numbermayalsobereferredtoas ,whichistheformulaforhowtomakeit],andthecoefficientbwillbeexactlytwotimesthesquarerootofthenewc-number.Accordingtothisspecialcase,“Aperfectsquaretrinomialfactorstoabinomialsquared.”Butthisslightlydeviatesfromaregularproblemwhereyou’regivenaperfectsquaretrinomialtosolve.Aperfectsquaretrinomialwillfactorintoabinomialsquared,andwhensetequaltozeroandsolvedwillgiveyouoneanswer.Thisisbecauseaperfectsquaretrinomialmakesaparabolawhichtouches(butdoesn’tcross)thex-axis,thusithasonex-intercept(solution).However,whenyoucompletethesquare,your(whatbecomesa)binomialsquaredequalsanumberontheotherside,andonceitissolved,willresultintwoanswers(notone).

Page 107: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheQuadraticFormulaTheQuadraticFormulais:

inwhich“a,”“b”and“c”refertothenumbersfromthestandardformequation:ax2+bx+c=0.Thethingaboutthisformula/methodisthatitalwaysworks.Itwillworkwhenaquadraticequationcanorcan’tbefactored.Evenifthereisnosolution,theendpointofthismethodwillrevealthat.Abouthalfthetime,yoursolution(s)fromusingthequadraticequationwon’tbeintegersorevenrationalnumbers.Inthosecases,thebestwaytoexpressyouranswerswillbeinradicalform(asopposedtodecimalform).Ifyoueverwonderwhysimplifyingradicalsisdrilledintoyourminds,it’ssoyoucanuseandnavigatethroughtheQuadraticFormulafrombeginningtoend.Butgettingtotheveryend…theverylaststepiswherestudentscommonlymakeamistake.Simplyput,theyoftenforgettofinishit.Note:“Standardform”isslightlydifferentforquadraticequationsthanlinearequations.

Page 108: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ThePartEveryoneForgets(TheLastStepoftheQuadraticEquation)Sometimes,atthispoint,youransweriscompletelysimplified…butsometimesit’snot.Youshouldneverassumeitiscompletelysimplifieduntilyouattemptthislaststep.Consideryou’vegonethroughtheQuadraticFormulaandgetto

thislaststep:LookforaGCFinthenumerator(andfactoritout),andfactorthedenominator.Inthisexample,theGCFinthenumeratoris3,whichshouldbefactoredout.Inthedenominator,6factorsinto3and2.Nowitcanbeseenthatthenumerator

anddenominatorhaveacommonfactorof3:Cancelthecommonfactorof3outofthenumeratoranddenominator,thenre-writethesimplifiedanswer.Ifthereisaradicalinyouranswerandyoumustgraphit(remember,ananswerisanx-interceptpoint),convertyourradicaltoadecimalandreduceeverythingtoonenumber.Also,takeextracarenottodothelaststepimproperly,asmanyoftendo,asexplainedin:TheWrongWayToSimplifyaRationalExpression

Page 109: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Graph&CheckGraph&Checkismuchdifferentforquadraticequationsthanitisforlinearequations.Forexample,Graph&Checkforlinearequationsisusedtofindasolutionofasystemoftwolinearequations(thepointwheretwolinescross).Thecircumstances(solutions)aredifferentforquadraticequationsbecausequadraticsmakeparabolas.Thereforethewaytofindpointstobegraphedisdifferent,becauseyoucan’tjustfindandgraphanythreerandompointsforaquadraticwithaguaranteethattheywillberepresentativeofthecomplete(parabolic)shape,asyouwouldforalinearequation.Also,thecontextoftheword“solutions”isdifferentforlinear(systems)andquadraticequations.Solutionstoquadraticequationsarex-intercepts.[Justtobeclear,youcan(anddo)findthex-interceptofalinearequation(youjustdon’tcallitthe“solution”),andyoucouldalsoplottwoparabolasonthesamegraphandfindtheirpointsofpossibleintersection…butagain,thosepointsaren’ttheprimarycontextualuseof“solutions,”andit’ssomethingyouaren’tcommonlyaskedtodo].

Page 110: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Herearetheminimalpointsyouneedtographaquadraticequation:ThevertexThex-intercept(s),AKAthe“solutions”They-interceptAnyadditionalpoints

Let’slookatthesepointsingreaterdepth.Regardingthey-intercept,everyquadratic(parabola)hasone.Ifyouhavetheequationwrittenindescendingorderandstandardform,it’sthenumberwhichis“c”fromax2+bx+c=0.Everyparabolawillcrossthey-axis(once),regardlessofifitcrossesthex-axis.Thevertexmustalwaysbefound,asthisisthe(eithermaximumorminimum)pointwherethegraphshiftsfromthepositivetonegativedirection(orviceversa).Thisisitsinflectionpoint.

Page 111: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Asforthex-intercepts,youmayfind:twox-intercepts,iftheparabolacrossesthex-axis,onex-intercept,ifthe(vertexofthe)parabolatouchesbutdoesn’tcrossthex-axis(asisthecaseforperfectsquaretrinomials),ornox-intercepts,iftheparabolaneithertouchesnorcrossesthex-axis.Forthis,youwillget“nosolution”,buttheparabolamaystillexist.

Thisiswhere“anyadditionalpoints”comesin.Ifyoufoundthevertex,they-intercept,andthex-intercepts,youcansuccessfullysketchadecentrepresentationoftheparabola,bygraphingthepointsanddrawingthelinethroughthepointsinasmooth,curvedway(notinarigidwayasifyouwereplaying“connectthedots”).Findingmorepointswilljusthelpyoumakeamoreaccurateandcompletecurve.

Page 112: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

QuadraticswithZeroThissectionisdedicatedtoshowingyouthatthefollowingcasesarestillconsideredquadratics(andthereforealsoseconddegreeequations.Actually,quadraticsinwhichborcarezeroarecalled“incompletequadratics”).Thecoefficient“a”mustbeanumberotherthanzero,otherwise,theequationwouldnolongerbeaquadratic.Also,keepinmindthatwhenb=0,the“bx”termequalszeroandwillnotbewritten.Likewise,whenc=0,itwon’tbewritten.However,azerowillappear(only)ifitisaloneononesideofthe=sign.Eventhoughoneortwotermswithinaquadraticcanbezero,youmayhavetosolvethemdifferentlythanifalltermsarenon-zeros.Here,welookatthosecases.

Page 113: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Whencis0:ax2+bx=0Whenc=0,ax2+bx+0=0whichwillbeshownas:ax2+bx=0Afewexamplesare:A)4x2+2x=0,B)3x2+x=0,C)-x2+5x=0,orD)7x2–3x=0.Ineithercase,youwillalwaysexpecttwosolutions:x=0,andx=another#.Note:Incaseswhere“cis0,”then“x=0”isalwaysoneofthesolutions.Fromagraphicalperspective,anytimecis0inaquadraticequation,theresultingparabolawillalwayscrossthroughtheorigin(0,0),aswellasanotherpointalongthex-axis.Asinanyquadraticequation,“c”representsthey-intercept,whichinthiscaseis0.Inthiscase,theorigin(0,0)isboththey-interceptandoneofthex-intercepts.Thesearethestepstosolving:

FactorouttheGCF…whichwillinclude“x”andpossiblyanumberaswell.Settheoutsidefactor(s)equaltozero,andinthiscase,this“x”automaticallyequalszero.Setwhatisinsidetheparenthesesequalto0andsolveforx.

Page 114: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Usingthefirstexample:4x2+2x=0,factoroutxand2(theGCFis2x)frombothterms:2x(2x+1)=0,settheoutsidefactorsequaltozero:2x=0,dividebothsidesby2,andthusx=0.Setwhat’sinsidetheparenthesesequaltozeroandsolveforx:(2x+1) � 2x+1=0.Subtract1frombothsides:2x+1–1=0–1Giving:2x=-1.

Dividebothsidesbythecoefficient2,andx=

Thesolutionsarex=0andx= .

Page 115: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

WhenBothb&care0:ax2=0Whenbothbandc=0,ax2+0x+0=0,whichwillbeshownas:ax2=0.Someexamplesare:2x2=0,x2=0,or-3x2=0.Inallcases,theonlysolutionisx=0(becauseifyoudividebothsidesbythecoefficientinfrontofx2,thentakethesquarerootofbothsides,youwillget“0”).Graphically,thiswillproduceaparabolawhosevertexistheorigin(0,0),withtheline“x=0”astheverticallineofsymmetry.Thereisonlyonesolutionbecause(thevertexof)theparabolaofthistypetouchesbutdoesnotcrossthex-axis.Here,theorigin(0,0)isboththey-interceptand(theonly)x-intercept.

Page 116: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Whenbis0:ax2+c=0Whenonlyb=0,ax2+0x+c=0whichwillbeshownandseenas:ax2+c=0Someexamplesare:E)2x2–2=0,F)9x2–4=0,G)x2–36=0,H)4x2+25=0,orI)3x2–5=0.Ofthegivenexamples,allexcept“4x2+25=0”areconsideredtobe:“Thedifferenceoftwosquares.”ExampleHisdiscussedafewpageslater.

Page 117: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

“TheDifferenceofTwoSquares”Wewilllookateachexample,specifically,butbeforethat,it’simportantyouseethetwowaysinwhichproblemslikethesecanbesolved,soyoucannoticethepatternintheexamplestofollow.Eitherapproachisstartedinthesameway.First,lookforaGCF.IfthereisaGCF,factoritout,thenproceedtodividebothsidesbyit.Sincezeroisontheright,any(non-zero)numberyoudividebyitwillequalzero.Atthispoint,therearetwowaysyoucanproceedtosolve.Onewayisbymovingtheconstanttotheothersideoftheequalsign,thentakingthesquarerootofbothsides.Theotherisbyfactoringintobinomials.Wewilllookateachmethodinmoredetail.Eitherchoiceiscompletelyvalid.It’sreallyuptoyoutodecidewhichmethodyouprefer.Toreiterate,thetwowaysare:A1.Factorintoconjugatepairbinomials,orB1.Takethesquarerootofbothsides.

Page 118: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Thereisatimethat“takingthesquarerootofbothsides”willbepreferable,asIwillshowinthefollowingexamples.ExampleE:2x2–2=0ThisisaclassicexampleoffactoringouttheGCFfirst,whichhereis2.2(x2–1)=0Dividebothsidesby2,whichgivesyou(x2–1)=0Atthispoint,youcangoforwardwitheithermethod.I’mgoingtodemonstrateboth,toprovethateachisvalidandyieldsthesameoutcome.Butfirst,I’mgoingtoshow“factoringintoconjugatepairbinomials.”As“x2–1”isthedifferenceoftwosquares,itcaneasilybefactoredinto(x–1)(x+1)=0Seteachfactorinparenthesesequaltozero,andsolveforx.x–1=0x+1=0x-1+1=0+1x+1–1=0-1x=1x=-1sox=+/-1Thereisaveryimportantlessoninthisexample,whichisthat“thedifferenceoftwosquarescanbefactoredintoconjugatepairbinomials.”Itshouldalsobeexpectedthat“thedifferenceoftwosquares”willalwaysyieldtwooppositesolutions(howeverthereisonetechnicalexceptiontothis,explainedin:Clarification:WhentheSolutionis0).

Page 119: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ConjugatePairBinomialsIt’sgoodtobefamiliarwithconjugatepairbinomials,visually,bydefinition,byname,andbycommonuse.Conjugatepairbinomialsaretheresultoffactoring“thedifferenceoftwosquares.”Theyareknownasconjugatepairbinomialsbecause…

theyareconjugateinthattheyarejoinedandconnectedinsomeway,theycomeinpairs(asconjugatesdo),andtheyarebinomials(eachsetofparenthesescontainstwoterms).

Theyappearastwoparentheseswiththesamefirstandsecondterms,butoppositesignsinbetweenthem.Whenconjugatepairsaremultiplied,theresultis“thedifferenceoftwosquares.”Theadvantageofidentifyingandfactoringthedifferenceoftwosquaresintoconjugatepairbinomialsisthatitisquickandinvolvesfewsteps.Alsotheuseofconjugatepairbinomialsareanessentialpartof“rationalizingthedenominator”whenthedenominatorcontainsabinomialwithatleastoneradical.Thistopicisonethatisusuallycoveredneartheendofthesemester,oftendisplacedfromthelessonswhichintroducefactoringquadraticequationsand“specialcases.”Duringthistimedisplacement,studentssometimesforgettoseetheconnectionofthisconcept.Additionally,uponlearningit,studentsoftendonotrealizetherelevanceforwhichitwillbeneededlater.Moreontheprocedureformultiplyingconjugatepairbinomialsandgraph-relatedinformationiscoveredintheSpecialCasesubsection:TheDifferenceofTwoSquares.Theotherwaytosolveforx,startingfrom“x2–1”isbytakingthesquarerootofbothsides…

Page 120: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TakingtheSquareRootofBothSidesWestartbackwith“x2–1”fromexampleEtoseethatitcanalsobesolvedbytakingthesquarerootofbothsides.Itissetequaltozero.x2–1=0Inthiscase,weproceedbymovingtheconstant(here,-1)totheotherside:x2–1+1=0+1,makingitx2=1.Takethesquarerootofbothsides:

Rememberthattakingthesquarerootofanumbergivesthepositiveandnegativerootnumber(becauseifyousquareapositiveornegativenumber,youalwaysgetapositiveresult),soitcanbesaidthatxequalsplusorminus1,writtenasx=+/-1.

Page 121: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Thenexttwoexamplesdemonstrate“factoringthedifferenceoftwosquaresintoconjugatepairbinomials.”ExampleF:9x2–4=0Factored:(3x–2)(3x+2)=0Noticethat3xisthesquarerootof9x2and2isthesquarerootof4.Seteachsetofparenthesesequaltozeroandsolveforx.3x–2=03x+2=03x–2+2=0+23x+2–2=0–23x=23x=-2dividebothsidesby3dividebothsidesby3

x=

Page 122: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ExampleG:x2–36=0Factored:(x–6)(x+6)=0x–6=0x+6=0x–6+6=0+6x+6–6=0–6x=6and-6

Page 123: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ExampleI:3x2–5=0Thisisaninterestingexample,oneofwhichyouaresuretoencounter.It’simportanttorememberthatyoucantakethesquarerootofany(positive)numberorterm,butonlywhenyoutakethesquarerootofaperfectsquarewillyourresultbeintegers(non-radicalornon-decimalnumbers).Inthethreeexamplesbeforethisone,thetermswereperfectsquaresandthereforecouldbefactored(intobinomials),howeverinthisexample,the3andthe5arenotperfectsquares(however,thex2stillis)…sotheycan’tbefactoredusingintegers.Therefore,whenoneorbothofthetermsinvolvedarenotperfectsquares,itisoftenpreferredtoapproachsolvingbymovingtheconstanttotheothersideoftheequationandtakingthesquarerootofbothsides,asseeninthefollowingsteps.3x2–5+5=0+53x2=5

Dividebothsidesby3,giving:

x2= ,takethesquarerootofbothsides:

and

x=+/-

Page 124: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheSumofTwoSquaresInanyquadraticequationinwhichb=0,anytimethec-numberisadded,thepolynomialintheequationisconsideredprime,andhasnorealsolution.(Pleaseseethetwonotesbelow).Youshouldrecognizeequationssuchastheseas:“thesumoftwosquares.”andyoushouldremember:“Thesumoftwosquaresisprime.”Whenfacedwithaproblemsuchasthis,theacceptableanswerresponsesare:“prime,”and“norealnumbersolutions.”*PleaseNote:Ifyoulookatthestandardformofaquadraticequation:ax2+bx+c=0,orinthiscase:ax2+c=0,youprobablynoticethatcisadded,whichmayleadyoutothinkthateveryequationsuchasthisisprime,butthisisnotenoughinformationtomakethisjudgement.Tobeclear,theformax2+c=0iscorrect,butwhethertheequationisprimealldependsonthesignoftheactualnumberthatisrepresentedbyc.Inotherwords,ifthenumberplugged-inforcisnegative,youhavethedifferenceoftwosquares,whichisnotprime.Or,ifthenumberforcispositiveyouhavethesumoftwosquares,whichisprime.Thereistechnicallyoneexceptiontothis,explainedin:Clarification:WhentheSolutionis0.**AlsoPleaseNote:Thefirstsentenceofthissectionstates,“…theequationisconsideredprime,andhasnosolution.”Thisstatementmustbeproperlyunderstood.Althoughthestatementmayseemtoinsinuatethat“prime”issynonymouswith“nosolution,”bydefinition,thisisnottrue.Sincethe“sumoftwosquares”issocommon,youcanpredictitsoutcomeof“prime”and“nosolution”automatically,butthefactthattheyhaveboththeseoutcomesismerelycoincidental.(Thisexplanationiscontinuedin:Primevs.NoSolution).Withthatinmind,rememberthat“thesumoftwosquares”canstillbegraphedandwillproduceaparabola.

Page 125: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Nowlet’slookattwomoreexamples,JandK.Noticeeachexampleissimilartoanexamplefrombefore,buttheybothhaveanegativesignintheleadingcoefficient.Whatwe’regoingtodoissimplifyeachexamplefirst,andthendecideifwhatremainsisprimeorfactorable.Tosimplify,wemustdoanumberofthings:

IdentifyandfactoroutaGCF(ifthereisone)DividebothsidesthebytheGCF(ifthereisone)

MovetheconstanttotheothersideoftheequalsignEnsurethecoefficientinfrontofx2ispositive1

Thismayhavebeentakencareofinapreviousstep,otherwise…Youcandoitnowbydividingbothsidesbythecoefficientinfrontofx2

Page 126: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

LookatExampleJ:-4x2+25=0Let’ssimplifybygoingthroughtheprocedurejustpreviouslymentioned:

IsthereaGCF?No.…SothereisnoGCFtodividebothsidesby.Movetheconstant,25,totheothersidebysubtractingitfrombothsides:

-4x2+25-25=0–25

-4x2=–25

Ensurethecoefficientinfrontofx2ispositive1.Inthiscase,wewilldividebothsidesby-4,whichcancelsoutbothnegativesigns,giving:

x2=

Takethesquarerootofbothsides…whichwecando,becausethesignof ispositive.

Thesolutionsare:x=+/- .

Page 127: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Next,let’slookatExampleK:-3x2–5=0Andfollowthestepstosimplify,aswedidinthelastexample.

IsthereaGCF?Inthiscase,yes.Itis“-1”;factorthatout:-(3x2+5)=0

DividebothsidesbytheGCF“-1”,whichmakesit:3x2+5=0

Ifwepausehere,weseethatwehavethesumoftwosquares,whichisenoughinformationforustostopsolving,andanswerwith:“prime;noreal-numbersolutions”Note:Ifyou’rewonderingif3and5aresquarenumbers,youcouldsay“sort-of”becausetheyarethesquaresofthesquarerootof3andthesquarerootof5,respectively;however3and5arenotperfectsquares.Anypositivenumberisasquareofanothernumber,butaperfectsquareistheresultofsquaringaninteger.Let’sproceedwiththeremainingtwostepsanywaytoseewhathappensifwecontinuetosimplifyandsolve.

Movetheconstant5totheothersidebysubtracting5frombothsides,giving

3x2=-5

Dividebothsidesby3toensurethecoefficientinfrontofx2is3,giving

x2=-5

Atthispoint,whenyougototakethesquarerootofbothsides,youshouldrealizethatyoucan’ttakethesquarerootofanegativenumberandgetareal-numbersolution.Thisfurtherprovesthat“-3x2–5”hasno(real)solution.

Page 128: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

SpecialWordsforSpecialCases

Thetextbooksaregenerallygoodathighlightingthespecialcase(quadratics)intheirownsection,andteachinghowtosolvethem.Andstudentsaregenerallygoodatfactoringandsolvingthemwhentheyareintheirownisolatedareasandwhentheyknowwhattypethey’redealingwith.Butoncethespecialcasesaremixedintogeneraltypesofproblems,studentssometimesforgetthesignalsinidentifyingthem.

Identifyingthemisthefirstcrucialstep.Thissectioncontainsafewsentencesandkeywordsthatwillhelpyouidentifythetypeofspecialcase,andtellyouwhatoutcometoexpectintermsoffactoring,graphing,andtheshortcutformultiplying.Ifyoumemorizethesewords,itwillhelpyoufigureoutthefactorsandanswersmorequickly.Somepartsmayseemredundantfromsomeearlierpartsofthebook,butthat’sokay,therepetitionisgoodforyou.Icovertwomainspecialcasesinthecomingpages.Pleasenotethatthereisanothercommonspecialcaseinvolving“thesumanddifferenceoftwocubes,”whichIdon’tcoverinthisbook(becausemyprimaryfocusislinearandquadraticequations,andsquaresandsquareroots).

Page 129: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

PerfectSquareTrinomialRememberthat:“Aperfectsquaretrinomialfactorsintoabinomialsquared.”Likewise,“Abinomialsquared,whenmultipliedout,givesaperfectsquaretrinomial.”Youwillnoticeinaperfectsquaretrinomialthat:

thefirstterm(ax2)andthelastterm(c)areperfectsquares,thecoefficientbwillbetheproductof

(thesquarerootofthefirstterm,ax2),(thesquarerootofthelastterm,c),and2;

thesigninfrontofcwillalwaysbepositive.Itisalwayspositivebecausethelastnumberinthebinomialissquared.

Itwillresemble:(Perfectsquarenumber)x2+ x+perfectsquarenumberSuchas:4x2-12x+9=(2x–3)2withtheperfectsquaretrinomialontheleft,equaltoitsfactoredbinomialsquaredontheright;andanotherexample:x2+8x+16=(x+4)2Therearetwowaystomultiplyabinomialsquared.OnewayisbyexpandingitintotwobinomialsandmultiplyingbytheFOILmethod.Thiswayisfine,butyouarehighlyencouragedtousetheshortcut.Thisistheshortcutformultiplyingabinomialsquared,inwords.Iwillrefertothetermsofthebinomialassuch:(firstterm+lastterm).

1. Squarethefirstterm.2. Leavespace(forwhatwillbeinstruction#4).3. Squarethelastterm.4. Multiplythefirsttermtimesthelastterm,thendoubleit,andwriteit

Page 130: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

inthespaceyouleftininstruction#2.*Acommonmistakemadeispeopletreatthismethodliketheshortcutformultiplyingconjugatepairbinomials,andtheyforgettodostep4,sotheyarethenmissingthemiddle(bx)term.

Doyouseetheconnectionofhowtheprocedureforthisspecialcaseisappliedwhencompletingthesquare?Whengraphed,aperfectsquaretrinomialisaparabolawhichtouches(butdoesnotcross)thex-axis.Thevertexisaty=0andthesolutiontox,and(saidtobe)tangenttothex-axis.

Page 131: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheDifferenceofTwoSquaresRememberthat:“Thedifferenceoftwosquaresfactorsintoconjugatepairbinomials.”Likewise,“Conjugatepairbinomials,whenmultiplied,givethedifferenceoftwosquares.”Thedifferenceoftwosquaresisaspecificcaseofwhenbis0;ax2+c=0,and“c”isanegativenumber.When“c”isapositivenumber,youhave“thesumoftwosquares.”Remember:“Thesumoftwosquaresisprime.”Therearetwowaystomultiplyconjugatepairbinomials.YoucanmultiplythemusingtheFOILmethod,butyouareencouragedtousethespecialcaseshortcutmethod.Gettingusedtotheshortcutwillbeusefulwhenyoulearntorationalizedenominatorswithradicalsandbinomials(notcoveredinthisbook).Plus,theshortcutisfaster.Thisistheshortcutmethodinwords:

1. Squarethefirstterm,2. Writeaminussign,3. Squarethelastterm.

Therewillbenomiddle(bx)termbecauseifyouFOILtheconjugatepairbinomials,theproductoftheOutertermsplustheproductoftheInnertermscanceleachotherouttozero.Thisiswhatmakesthedifferenceoftwosquaresaspecialcase.Whengraphed,thismakesaparabolathat:

Hastwox-interceptsbecauseitcrossesthex-axisintwoplaces,hasavertexatx=0,[atpoint(x,c)],andthelineofsymmetryisthey-axis(theline:x=0).

Thereisonetechnicalexceptiontothestatementthat“thedifferenceoftwosquaresyieldstwosolutions,”whichisexplainedin:Clarification:WhentheSolutionis0.

Page 132: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations
Page 133: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Primevs.NoSolutionAsinthesection:TheSumofTwoSquares,whenthequadraticexpression[inanequationinwhichb(only)iszero]isprime,theresultis“no(real)solution.”Bydefinition,“prime”shouldnotbethoughtassynonymouswith“nosolution.”Thefollowinginstancescanoccur:

thepolynomialcanbefactoredanddoesyield(real)solutions;thepolynomialcan’tbefactoredandyieldsno(real)solutions;andthepolynomialcan’tbefactoredbutdoesyield(real)solutions;however,apolynomialwhichcanbefactoredwillalwaysyieldoneormore(real)solutions.

Keeptheirdefinitionsinmind.“Prime”means“can’tbefurtherfactored(intofactorsotherthanitselfand1).”And“No(Real)Solution”withregardstoapolynomialmeansthattheresultinggraphhasnox-intercepts(doesnotcrossortouchthex-axis).Agoodexampleiswhenyouhaveaquadraticequationcontainingatrinomialexpression,inotherwords,therearenon-zeronumbersinfora,bandc.However,asdiscussedearlierin:SolvingQuadraticEquations,thetrinomialmaynotbeabletobefactoredusinganycombinationofintegerfactorsintheTrial&Error/ReverseFOILMethod,ortheac/GroupingMethod;inthiscase,itwouldbeconsidered“prime.”YouarethentousetheQuadraticFormula.YoumaynotyetknowiftheQuadraticFormulawillyield“real”solutionsornot(butthat’swhyyoupluginthea,bandcvaluesandsolve).IftheQuadraticFormuladoesyieldrealsolutions,thesolutionswillcontainradicalsofnot-perfectsquares(whichcouldbeconvertedtodecimals).Thereisalsoachancethatnorealsolutionswillresultfromthatoriginalprimepolynomialduetoanegativenumberinthesimplifiedradical.

Page 134: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Clarification:WhentheSolutionis0Before,Istatedthatthedifferenceoftwosquareswillyieldtwosolutions,butthereisoneexceptiontothis.Anyquadraticequationinwhichbandcarezero,asseenin“WhenBothb&care0,”canalsotechnicallyqualifyasthedifferenceoftwosquares,suchas“4x2–0=0”,orthesumoftwosquares,asin“9x2+0=0”,becausezeroisa(perfect)squarenumber.Incaseslikethis,

thereisnottwosolutions,norisitprimewithnosolutions…Ithasonlyonesolution,thatbeing“x=0”.

Thatalsomakesthisanexceptiontothestatement:“Thesumoftwosquaresisprimeandyieldsnorealnumbersolutions.”

Page 135: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

RATIONALEXPRESSIONSByitstechnicaldefinition,arationalexpressionisafractionthatcontainspolynomials.Butsince,tobeapolynomial,itmustcontainatleastonevariable(otherwise,ifitjustcontainedconstantsornumbers,itwouldbeconsideredaregularfraction),mydefinitionis:Arationalexpressionisafractioncontaining(oneormore)variables.Noticetherootword“ratio.”Sometimes,youwillbeaskedtosimplifyarationalexpressionandsometimesyouwillhavetosolveanequationcontainingrationalexpressions.Whendealingwithrationalexpressions,youmustknowhowtoproperlysimplifythem.

Page 136: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ProcedureforSimplifyingRationalExpressionsItisimportantandhelpfulthatyoucanclearlyseeeachnumeratoranddenominatorasseparatepiecesbecausetheywillneedtobesimplifiedindividually,first,beforecontinuing.0.Forthisreason,Irecommendputtingparenthesesaroundnumeratorsanddenominators.(ThisreinforcesthefirstruleofOrderofOperations,beingthatnumeratorsanddenominatorsareinfact“groups”butarerarelywrittenwithparentheses.Puttingparenthesesaroundthemmakesthemlookmorelikegroups,andwillremindyoutotreatthemassuch).1.Factoreachnumeratoranddenominatorseparately,completelyfactorthepolynomials.2.Lookforfactorsthatarealikeinthenumeratoranddenominator,thencancelthemoutto1(correctly,byavoiding:TheWrongWaytoSimplifyaRationalExpression).

Page 137: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ProcedureforAdding&SubtractingRationalExpressionsThisfollowstheprocedureforadding&subtractingfractions,onlynow,variablesareinvolved.Youadd&subtractrationalexpressionsthesamewayasfractionsbyfindingandusingtheLCD.Remember,thegoalforadding&subtractingrationalexpressionsistoproperlycombinethemsothatonerationalexpressionremains.Followthisprocedure(thefirststeps,0a–0c,aremorepreparatorysteps):0a.Putparenthesesaroundallnumerators&denominators.0b.Lookforanyminussignsinfrontofafraction.Ifthereisaminussigninfrontofafraction,youmustdistributeitthroughitsassociatednumerator.Todothis,replacetheminuswithaplusandchangeeverysigninitsassociatednumerator.Thisisoftenanoverlookedstepwhichresultsin+/-signerrorslateron.*Note:Abigerrorstudentsmakehereisapplyingthenegativesigntoonlythefirstterminthenumerator,insteadofapplying(distributing)ittoeveryfactorinthenumerator.0c.Putalltermsinnumerators&denominatorsindescendingorder.1.Factorallthenumerators&denominatorsseparately.2.LookatallfactorsofthedenominatorsanddeterminetheLCD.

WritetheLCDofftothesidesoyoucanrefertoit,andwritetheLCDinthedenominatortotherightofthe=sign(asofnow,thenumeratorisblank;youwillfillinthenumeratorinstep5).LeavetheLCDasunmultipliedfactors(whichwillmakesimplifyingeasierinthelatersteps).

3.Lookateachdenominator(ofeachfraction)anddeterminewhatfactorsaremissing(Icallthesethe“missing-factors”)ifany,tocompletetheLCDineach.4.Multiplythenumerator&denominatorofeachfractionbyitsmissing-factor(s)5.Multiply&distributefactorsinthenumeratorandwritetheproductsinthenumeratorabovetheLCDwrittenontherightsideofthe=sign.Don’tforgettotransferthepropersigns.6.Simplifythetermsinthenewnumerator.6a.Combinelike-terms.6b.LookforaGCF,andwhetherthereisoneornot,trytofactorcompletely.7.Simplify:Canceloutanycommonfactorsinthenumerator&denominator.

Makesureyouavoidthewrongwaytosimplifyarationalexpression.

Page 138: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations
Page 139: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

SimplifyingaComplexRationalExpressionSimplifyingacomplexrationalexpressionissomethingyouwillsurelyberequiredtodoonafinalexam.Acomplexfractionsimplymeansfractionswithinafraction.Sincerationalexpressionsarefractionscontainingvariables,acomplexrationalexpressionmeansrationalexpressionswithinrationalexpressions…orsimply:fractions-containing-variableswithinfractions-containing-variables.

Page 140: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Therearetwowaystosimplifycomplexrationalexpressions:1.The“All-LCDMethod.”Multiplyallmini-fractionsbytheLCDofallmini-fractions.Or2.Simplifytheoverallnumerator&overalldenominatorfirst(byapplyingtherulesforaddition&subtractionoffractions),separately,intoonefractioneach,thendividethetop-fractionbythebottom-fraction(see:DividingFractions).Eithermethod,ifusedcorrectly,willyieldthesameresult.

Page 141: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Whenshouldyouuseeachmethod?Method1,the“All-LCD-Method”avoidsneedingtoadd&subtractfractionsandyouonlyneedtofindoneLCD.Thisistypicallyeasierandmorepreferred.Whenindoubt,defaulttousingthismethod.Althoughthismethodismorestraightforward,itisalsotediousandmaymakeyourpapermessy.Forthatreason,mistakesareoftenmadeintheprocessfornotbeingabletoreadyourownwriting,writingtoosmall,ornotleavingenoughroom.Whendoingtheseproblemsbythismethod,besuretoleaveplentyofroomonthepaperandwriteclearly.Method2,“SimplifyingtheOverallNumeratorandOverallDenominatorSeparately”istypicallyusedwhentheaddition&subtractionoffractionsintheoverallnumeratorandoveralldenominatorwillbeaquickandeasyprocedure.Thismethodisalsousuallyselectedwhenthevariablesintheoverallnumeratoraredistinctlydifferentthanthoseintheoveralldenominator.ThereasonforthisisbecausefindingandusingtheAll-LCD-Methodmayintroducevariablesintooppositepartsofthefractionthatwillrequireextraandtedioussteps(suchasfactoring)togettotheend.Ultimately,thechoiceofmethodismoredependentonthestudent’spreference,asbothmethodsaretediouswithanumberofintermediatesteps,butwillstillyieldthesameoutcome.Becauseofhowtedioustheyare,youmaychoosetostickwiththeoneyougravitatetowardsandworkongettinggoodatit.Thetwoprocedureswillbegivennext,atfirstinaverydetailedform,andtheninacondensedform,soyoucanreferbacktoeitherversion.Thesemayhelpyoudecideonyourpreference.

Page 142: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

All-LCDMethod(detailedversion):0a.Iftherearewholenumbersorpolynomialsthatarenotfractions,it’sagoodideatoputthemover1,tomakethemfractions.0b.Irecommendputtingallpolynomialnumerators&denominatorsinparentheses.Booksoftenleavethemwithoutparentheses,butusingthemmakesiteasiertoviewandusethepolynomialsorfactorstocontinue.1.Completelyfactorallnumeratorsanddenominators,ifpossible.2.FindtheLCDofallthemini-fractionsinvolved.3.MultiplytheLCDbythenumeratorsofallmini-fractions.(SeeNote4).4.Simplifyallmini-fractionsbyapplyingtherulesofmultiplication&divisionofbaseswithexponents.Inthisstep,alldenominatorsofmini-fractionsshouldcancelout.ThefactorsoftheLCDareintendedtodirectlycancelout(with)everyentiredenominatorofallmini-fractions.However,thismaystillleavetheremaining,un-cancelledfactorsfromtheLCD,ifany,inthenumeratorsofthemini-fractions,andthisisexpected.Therationalexpressionisnowsimple,notcomplex,asthereisnowonlyonenumeratorandonedenominator.

4a.Simplifythe(new)numerator.Multiply,distributeandcombinelike-terms,wherepossible.

4b.Simplifythe(new)denominator.Multiply,distributeandcombinelike-terms,wherepossible.4c.Arrangealltermsintodescendingorder.5.Completelyfactorthenumeratoranddenominator,separately.ThatmeansfactoringoutaGCFfirst,ifthereisone,and/orfactoringthepolynomial,ifpossible,(intosmallerpolynomials).6.Canceloutanycommonfactorsinthenumerator&denominator.*Note1:Sometimesfactorswillcanceloutinthelaststepandsometimesnonewill.Bereadyforeitherscenario.

Page 143: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

**Note2:Atthispoint,itisuptoyourprofessorifhe/shewantsyoutomultiplythefactorsinthenumerator&denominator(individually)foryourfinalreportedanswer.Ipersonallypreferthemtobeleftinfactoredform.***Note3:Don’tcommitthefrequentlymademistake:TheWrongWaytoSimplifyaRationalExpression.

Page 144: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

SimplifyOverallNumerator&OverallDenominatorSeparatelyMethod(detailedversion)0a.Iftherearewholenumbersorpolynomialsthatarenotfractions,setthemover1,tomakethemfractions.0b.Irecommendputtingallpolynomialnumerators&denominatorsinparentheses.Thismakesiteasiertoview&usethesepolynomialsorfactorstocontinue.1.Completelyfactorallnumeratorsanddenominators,ifpossible.2.Next,youwillbesimplifyingtheoverallnumerator&overalldenominatorseparately,usingtheirownLCDs.2a.FindtheLCDofthefractionsintheoverall-numerator2b.FindtheLCDofthefractionsintheoverall-denominator.3.Intheoverallnumeratoranddenominator,separately,usetheprocedureforadding&subtractingrationalexpressions.Atthispoint,youstillhaveacomplexrationalexpression,butnowwithonlyone(unsimplified)mini-fractionineachtheoverall-numeratorandoverall-denominator.4a.Leavealldenominatorsofmini-fractionsasunmultipliedfactors.4b.Simplifyallnumeratorsofmini-fractionsbycombininglike-terms.4c.Factorthenumeratorsofthetwomini-fractions,separately.Bythispoint,thereshouldstillbeonefractioneachintheoverall-numeratorandtheoverall-denominator,butnow,eachmini-fractionissimplified.Youarenowreadyto…5.Dividethetopmini-fractionbythebottommini-fractionusingtherulefordividingfractions.Younowhavea(simple)rationalexpression(onenumeratorandonedenominator).Theymayormaynotalreadybesimplified.6.Simplify:Canceloutcommonfactorsfromthenumerator&denominator.

Page 145: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations
Page 146: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

All-LCDMethod(shortversion)0.Putwholefactorsover1andputalloverallnumerators&denominatorsinparentheses.1.Factorallnumerators&denominators.2.FindtheLCDofallmini-fractions.3.Multiplyallmini-fractionsbytheLCD.4.Simplify:canceloutalldenominatorsofmini-fractionswithassociatedcommonfactors.*Therationalexpressionisnowsimple.4a.Multiply,distribute,combinelike-termsinnumerator.4b.Multiply,distribute,combinelike-termsindenominator.4c.Putalltermsindescendingorder.5.Completelyfactorthenumeratoranddenominator,separately.6.Canceloutanycommonfactorsfromnumerator&denominator.

Page 147: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

SimplifyOverallNumerator&OverallDenominatorSeparatelyMethod(shortversion)0.Putwholefactorsover1andputalloverallnumerators&denominatorsinparentheses.1.Factorallnumerators&denominators.2a.FindtheLCDofthefractionsintheoverall-numerator.2b.FindtheLCDofthefractionsintheoverall-denominator.3a.Convertandaddfractionsinoverall-numerator.3b.Convertandaddfractionsinoverall-denominator.4a.Leavealldenominatorsofmini-fractionsasunmultipliedfactors.4b.Simplifyallnumeratorsofmini-fractions.4c.Factorbothnumeratorsofthetworemainingmini-fractions.5.Dividethetopfractionbythebottomfraction.6.Simplifytheoneremainingfraction.

Page 148: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Note4:UsingtheLCDissimilar,yetdistinctlydifferentintheAll-LCD-Methodthanforaddition/subtractionofrationalexpressionsintheoverall-numerator&overall-denominatormethod.Inaddition/subtractionofrationalexpressions,themissingfactorsoftheLCDaremultipliedtimesthenumeratoranddenominatorofeachfractiontoconvertthefractionsintolike-fractions,whereasforsimplificationofcomplexrationalexpressions,thewholeLCDismultipliedtimesthenumeratoronlyofeachmini-fraction.

Page 149: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

AnnotatedExample1UsingtheAll-LCDMethodWriteouttheproblemleavingplentyofroomonbothsidesandbelow:

0. Put4over1,andputallpolynomialsinparentheses:

1. Thenumeratorsarealreadysimplifiedandcannotbefactored.Alldenominatorsexcept“x2–4”cannotbefactored.Noticethat“x2–4”isthedifferenceoftwosquares.Factoritintoconjugatepairbinomials:

2. FindtheLCDofallminifractionsandwriteittotheside.LCD=x(x–2)(x+2)

3. MultiplyallminifractionsbytheLCD:

Crossoutthecommonfactors:

Page 150: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Andremovethecrossed-outcommonfactors.Noticethatalldenominatorsofthemini-fractionswillbeeliminated(also,removethedenominator“1”)andtheexpressionwillchangefromcomplextosimple.Itwill

looklike:

Page 151: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

4. Simplifyboththenumeratoranddenominator,separately,bymultiplying,distributing,thencombininglike-terms

4a.Thesestepsshowthemultiplication:

4b.Thisstepshowscombininglike-termsandarrangingintodescendingorder:

5. Completelyfactorthenumeratoranddenominator,separately.Inthenumerator,theGCFis-3x.Thedenominatorisatrinomial,sotrytofactoritintotwobinomials.

Thedenominatorcannotbefurtherfactored.

Note:thenumeratorcouldhaveautomaticallybeenfactoredtothisfromstep4aeitherbyusing“(x2–4)”asaGCF,orbycombininglike-terms,butthiswillnotalwaysbeanoption.6. Lookforanycommonfactorsinthenumeratoranddenominator.In

thiscase,therearenone,sothelaststepisthemostsimplifiedform.

Page 152: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

AnnotatedExample2UsingtheOverallNumerator&DenominatorMethodWriteouttheproblemandleaveplentyofroomonthesidesofeachterm:

0. Put4over1.Inthiscase,therearenopolynomialstoputparenthesis

aroundinanymini-fraction:

1. Sincetherearenopolynomialsinthenumerators,theycan’tbe

factored.Thedenominatorsinthetopfractionscan’tbefactored,howeverthedenominatorsofthebottomfractionscanbefactored(intoexponentialforminanticipationoffindingtheLCD):

2. FindtheLCDs:

1. FindtheLCDofthetopfractions.Itis“x”.2. FindtheLCDofthebottomfractions.Itis“8”.

3. Convertfractionsintolike-fractions,thenadd:

1. Intheoverall-numerator,then2. Intheoverall-denominator.

4. 1. Leavedenominatorfactorsunmultiplied.

Page 153: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations
Page 154: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

2. Simplifyallnumeratorsofminifactors.Inthiscase,theyarealreadysimplified.

3. Factorthenumeratorsofbothmini-fractions.Thenumeratorofthebottomfractioncan’tbefactored.

5. Dividethetopfractionbythebottomfractionbyinvertingand

multiplying:

Therearenocommonfactorstocancelout,sothesimplifiedformis:

Page 155: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheWrongWaytoSimplifyaRationalExpressionThissectionhighlightsaseriousmistakethatstudentsmakeallthetime.Itinvolvesthelaststepofsimplifyingarationalexpression.Oddlyenough,studentsoftenperformthemoredifficultpartoftheproblemcorrectlybeforegettingtothisstep,whichiswhyIbelievestudentscommitthismistakemoreoutoflazinessthanignorance.Regardlessofwhy,itmustbeprevented,especiallybecausethisisoftenthelaststepinaproblem(andifyouhaveaninstructorthatdoesn’tgivepartialcredit,thisstepcouldmakeorbreakaproblem).Hereareexamplesofthewrongandrightwaytosimplifyarationalexpression.Thestep(s)I’mhighlightinginthissectionarethesameseeninsteps5&6ofTheAll-LCDMethodforSimplifyingRationalExpressions.Whatyouneedtorealizeis:youcan’tfactoroutaterminthenumeratorwithaterminthedenominatorwhen(andbecause)termsareseparatedby“+”and“-“signs.Youcanonlycancelfactorsinthenumeratorwithfactorsinthedenominator…andfactorsaremultiplied,notaddedorsubtracted,together.Thewrongthingtodoistoinstantlycanceloutafactorinthenumeratorwithatermorfactorinthedenominator,withoutfirstfactoringthenumerator(eitherfactoringtheGCFoutorfactoringitintosmallerpolynomials),andtakingintoconsiderationthesignificanceoftheplusorminussignontopbetweenthetopterms.Let’sstartwiththisexample,whichcontainsabinomialinthenumeratoranda

monomialinthedenominator:

Page 156: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Thefollowingisthewrongway:inwhichoneattemptstofactor3xoutofthe12x2(to4x)andthe3x(to1).

Alternatively,thefollowingisalsothewrongway:inwhichoneattemptstofactor3outof-6(to-2)andoutof3x(to1,leavingx).Noticehow,ineachwrongwayexample,thetermsincorrectlycancelledouthaveplusorminussignsinfrontorbehindthem.Thisisthekeysign(nopunintended)thatshouldtellyounottocanceloutterms.

Page 157: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheCorrectWay:YouneedtolookforaGCFinthenumerator,whichinthiscaseis6,andthenfactoritout.Atthispoint,thecommonfactorof3canbecancelledoutofthe

numerator(6)anddenominator(3x),asshown:Theexpressionaboveontherightcanbeconsideredthemostsimplifiedform.Comparethisanswertothewronganswersfrombefore.AsImentionedinthenotesattheendoftheAll-LCDMethodforSimplifyingRationalExpressions,thefinalanswercanbeshownlikethis,orbydistributing(multiplying)thefactorof2throughthe(2x2–1)inthenumerator.Sincesimplificationofteninvolvescompletefactorizationandnotthereverse(multiplying),Ibelievethisformisthemostsimplified.Ifyouchoosetomultiplythrough(perhapsatthesuggestionofyourinstructors–youshouldalwaysreporttheanswertheway

theypreferit,sincethey’regradingyou),itwillappearlikethis:or,ifyoubreakitapartintoseparatefractions:

whichwillthensimplifyto:

Again,findoutfromyourinstructorshowtheywantyoutoreportyouranswer.

Page 158: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Let’slookatanotherexample,onewithatrinomialinthenumeratoranda

binomialinthedenominator:

Page 159: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheWrongWay:Therearemanywrongwaystoapproachasuchproblem.Onewrongwaymightbetoattempttocanceloutxfrom3x2(to3x)inthenumeratorandfrom2x(to2)inthedenominator.Anotherwrongthingtodowouldbetofactor3outof-15x(to–5x)inthenumeratorandoutof-6(to-2)inthedenominator.Ifthoseerroneouscancellationswereperformed,itwouldwronglygive:

…whichwouldconcludetobeundefined.

Page 160: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheCorrectWay:Goingbacktotheoriginalexample,factortheGCF(whichis3)outofthenumerator.Then,factortheGCF(whichis2)outofthedenominator,which

wouldmake:Next,gobacktothenumeratorandseeifthetrinomialinsideparenthesescanbefactored,whichitcanbe,intothetwobinomials,seenbelow.Itisrevealedthatthecommonfactorinthenumeratoranddenominatortobecancelledoutis(x–

3),shownbelow:After(x–3)iscancelledout,thefinalsimplifiedformis:

Comparethistothewronganswershownabove.

Page 161: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ExtraneousSolutionsItisimportantyouknowwhatextraneoussolutionsare,whentolookforthem,andhowtodealwiththem,becausetheyaretrickyanddeceptivethings.Extraneoussolutions(alsocommonlyknownasextraneousroots)appeartobesolutionstoaproblemyoujustsolved,butactuallyaren’t.Theytendtocomefromthefollowingtwoplaces:

A(variableinthe)denominator,andA(variableinsidea)radical.

Basedonthelocationofvariablesinanequation,thesecanbethoughtofassolution-exceptions,forthefollowingreasons:

Anyfractionwhosedenominatoriszeroisundefined.Also,anytimearadicand(ofanyevenroot)isnegative,theresultisnotreal(stillcountsasundefined).

Youcanfindextraneoussolutionsinoneoftwoways.

Oneisbycheckingallanswersafteryou’vesolvedfortheunknowns.Anotherisbyfindingit(orthem)first,beforesolvingtheequation.

Irecommendthisway,asexplainedinthenextsection;it’seasier,andthisway,ifyouforgettodothecheckstepattheendofaproblem,asmanypeopledo,itwon’tmatter.ThemethodforfindingextraneousrootsinradicalsisshownintheRadicals,Roots&Powerssection.

Page 162: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ProcedureforSolvingEquationswithRationalExpressions&ExtraneousSolutionsA.Findextraneoussolutions(solution-exceptions)first[findallpossiblevaluesofxthatwouldmakethedenominator(anydenominatorintheproblem)=0].Whenyougettotheendoftheproblem,compareyoursolutionstotheexceptions,andeliminatetheextraneoussolutionsfromyouranswers.Todothis:A0.Writeoutthedenominatorsonly(separately,ifmorethanonefraction).A1.Factoreachdenominator.A2.Setalldenominatorfactors=0andsolveforx(orwhateverthevariableis).A3.Putaslashthoughthe=sign,toremindyourselfthatxdoesnotequalthenumber(s)justdetermined.SavetheseofftothesidetorefertothemattheendofPartB.B.SolvingtheProblem:B0.Writeoutthewholeproblem.WritethedenominatorsasthefactorsyoudeterminedthroughfactoringfromstepA1.B1.DeterminetheLCD.B2.MultiplytheLCDtimeseach(numeratoronlyofeach)fractionandnon-fraction-term(onbothsidesoftheequation).Thiswilleliminatealldenominators(andthusallfractions).B3.Simplify(combinelike-terms)andsolveusingtheProcedureforSolvingaSimpleAlgebraicEquationwithOneVariable).B4.CompareyouranswerstothosefoundinstepA3andcrossoutanyextraneoussolutions.

Page 163: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

CrossMultiplicationCrossMultiplicationistheactofmultiplyingthenumeratorofonefractiontimesthedenominatorofthefractionontheothersideoftheequalsign,andviceversa.Crossmultiplicationiscommonlyusedwhendoingproblemsinvolvingproportions,specificallywhenthereisonefraction(only)oneachsideoftheequalsign.Whenshouldyouuseit?Youshoulduseitwhentryingtosolveforavariableinthedenominatorandwhenthereisonlyonefractiononeachsideoftheequalsign.Youcanonlycrossmultiplyifthereisonlyonefractiononeachsideoftheequalsignoryousimplycan’tdoit.However…

Ifyouhavemorethanonefractiononeithersideoftheequalsign,youcaneither:

Moveoneofthefractionstotheotherside(youcandothisifyouhavetwofractionsonthesamesideequaltozeroontheotherside),or:FindtheLCDofallfractions&multiplyallfractionsbytheLCD.Thiswilltheneliminatealldenominatorsandyouwillnolongerhavetodocross—multiplication.

Don’tbefooled.Forcrossmultiplicationtooccur,theremustbeonefractiononeachsideoftheequalsign,however,thenumerators&denominatorsthemselvescanbepolynomials(iftheyare,multiplyaccordingly).Also,youcaneasilyconvertawholenumberorpolynomialintoafractionbyputtingitover“1”.Amistakestudentscommonlymakeistryingtocrossmultiplyfractionsthatareonthesamesideoftheequalsign.Crossmultiplicationcanonlybeperformedacrossequalsigns.Seeintheexamplebelowhow:

iscross-multipliedtobecome(2)(x)=(5)(3)

Page 164: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

whichbecomes2x=15andcanbesolvedbydividingbothsidesbythecoefficient2:

,andthus or7.5Cross-multiplicationisnotthesameasmultiplyingfractions(onthesamesideoftheequalsign).Whenfractionsareonthesameside,multiplythenumeratorsbynumeratorsandthedenominatorsbydenominators(see:MultiplyingFractions).Also,Cross-Multiplicationisdifferentthan“Cross-Cancelling.”

Page 165: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Cross-Multiplicationvs.CrossCancellingItisimportanttousethesemethodsattheappropriatetimesandtousetheterminologycorrectly,astheyarecompletelydifferent.Cross-multiplicationisdonewhenyouhaveonefractionsetequalanotherfraction,oneofwhichcontainsanunknownvariable.Thisisoftenseenwhendoingworkwithproportionsandsometimespercentproblems.Crossmultiplicationisandcanonlybeperformedacrossan“=”signbymultiplyingthenumeratoroftheleftfractionbythedenominatoroftherightfraction,andsettingthatproductequaltotheproductofmultiplyingthedenominatoronthelefttimesthenumeratorontheright.Thisisexplainedinmoredetailintheprevioussection.Crosscancelingisasimplificationtechnique.Itistheprocessofsimplifyingandreducingfractionsbycancelingoutcommonfactorsinthenumeratorofonefractionwiththedenominatorofitselforanotherfractionitismultipliedby.

Page 166: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Seeintheexamplebelowhow

whenfactored,whichreducesto

because

oneofthetop2scross-cancelswiththe2inthebottomoftheotherfraction,andthe5inthetopcross-cancelswiththe5inthebottomoftheotherfraction,

whichthenequals afteryoumultiplythefractions.

Page 167: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

RADICALS,ROOTS&POWERSNote:Beforebeginning,Imuststress(again)thatradicalsmayresemblelongdivision,buttheyarecompletelydifferent.Studentssometimesmixthemupandtrytoapplylongdivisiontoradicals,butdealingwithradicalsisnotdivision.Payspecialattentiontotreatradicalsastheirownuniquefunction.Whydoyouneedtounderstandradicals?OneofthemainneedsandusesisforsolvingquadraticequationsusingtheQuadraticFormula.TheyarealsocommonlyappliedinproblemsusingthePythagoreanTheorem(whichisnotcoveredinthisbook).Whyisusingradicalseasy?Becausetheyarenothingmorethansimplerearrangementsoffactors.Youjusthavetoknowwhatyou’relookingfor.Iwilltellyouwhattolookforinthecomingpages.Whenitcomestodealingwithradicals,themainobjectiveistosimplifythem.Tosimplifythem,youmustbeabletotogglebetweendifferentversionsofthem,andrearrangethem.Todothat,youmusthaveagoodhandleonperfectsquaresandfactoring.

Page 168: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

PerfectSquares&AssociatedSquareRootsYoucantakethesquarerootofany(positive)numberorterm,buttheresultmaynotbeaninteger.Perfectsquaresarenumberswhosesquarerootsareintegers(non-decimalnumbers).Asetofverycommonperfectsquaresarelistedafterthefollowingexplanation.Thelistofradicalsabouttobelistedfollowtherelationshipseenbelow:

.

Inwords:Whentherootofaradicalisthesameasthepowerofthebaseoftheradicand,theradicalsimplifiestothatbase(which,here,is“x”).Also,ifaradicalisraisedtothesamenumberastheroot,italsosimplifiestoequalthebase(again,here,is“x”).Theimportantthingtorealizeisthatbothsimplifytothesamebase,“x,”inthiscase.Thisequalityalsoexemplifiesanotherproperty,whichisthattheexponentcanbemovedfromtheradicandtooutsidetheradical,andviceversa.Thisisanecessarymanipulationtechnique.Observethisexampleusing7asthesamerootandpower:

Inwords:Theseventhrootofbasextothepowerofsevenequalsx;and:Theseventhrootofxinparentheses,raisedtothepowerofseven(outsidetheparentheses)alsoequalsx.Noticeinbothversions,therootisthesameastheexponent,andbothversionsequal“x”.Youwillnoticethistrendinthelistofperfectsquaresandsquareroots,inthenextpages.

Page 169: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Thisalsofollowsinthenextexamplewheretherootandpowerareboth2.Youmaynoticethereisno“2”writtenastheroot,butdon’tletthatdeceiveyou.Forsquareroots,theroot2isusuallynotwritten,butit’salsonotwrongifyouwriteitin.

Inwords:Thesquarerootofaradicandwhosebaseissquaredequalsthatbase.Equivalently:Thesquareofthesquarerootofsomeradicandequalsthatradicand.Notice:whetherthesquareisinsidetheradicaloroutsidetheradical,theresultisthesame.Beforeworkingwith(simplifying)radicals,itisimportanttoknowsomeofthecommonperfectsquares.Inthenextlist,theleftcolumnshowsthesquares,andtotherightshowstheassociatedsquareroots.Havingthesememorizedwillhelpyousimplifyradicalsmorequicklyandeasily.Thesearelistedasaneasyreference,butalsosoyoucanseethepatternsasdiscussedabove.

Page 170: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ListofPerfectSquares&AssociatedSquareRoots02=0; =012=1; =+/-122=4; =+/-232=9; =+/-342=16; =+/-452=25; =+/-562=36; =+/-672=49; =+/-782=64; =+/-892=81; =+/-9102=100; =+/-10112=121; =+/-11.Yougettheidea…122=144132=169142=196152=225

Page 171: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

162=256172=289182=324192=361202=400

Page 172: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

CommonPerfectCubes&AssociatedCubeRootsThefollowingisalistofcommonperfectcubesandtheirassociatedcuberoots.Theyarehereforyoutoreference,butyoushouldalsomemorizethemandnoticethepatternsofmovingtheexponentinandoutoftheradicalasdiscussedafewpagesago.03=0; =013=1; =1-13=-1; =-123=8; =233=27; =343=64; =453=125; =563=21673=34383=51293=729103=1000

Page 173: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

OtherPowers&Relationshipsof2,3,4&5Thisisanextrasectiontoshowothercommonpowersandexponentialrelationshipsforbase2throughbase5,atpowersof4and5.Noticeherehowthesenumberscanbefactoredandrearrangedusingtherulesofmultiplyingbaseswithexponentsandtakingpowersofpowers.24=(22)(22)= =(4)(4)=1634=(32)(32)= =(9)(9)=8144=(42)(42)= =(16)(16)=25654=(52)(52)= =(25)(25)=62525=(22)(23)= = =3235=(32)(33)= = =24345=(42)(43)= = =102455=(52)(53)= = =3125Theselistsarehereforyourreference.Keepthesepowerandrootrelationshipsinmindforthenextsection,astheyplayahelpfulroleinmanipulatingandsimplifyingradicals.

Page 174: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Manipulating&SimplifyingRadicalsThereasonit’simportanttobeabletorecalltheperfectsquares,perfectcubes,andotherperfectpowersisbecausetheyareessentialinsimplifyingradicals,whichiswhyIlistedmanyofthemintheprevioussection.Onemajorreasonforsimplifyingradicalsistofindwhichradicalsarelike-terms,sotheymaybecombinedasyouwouldcombinelike-termswithvariables(andthereareotherreasons,too).Itisimportanttoknowthatsimplifyingradicalsisdifferentthansimplifyingothertermsorexpressionsthatdon’thaveradicals,soyoucan’texpecttousethesamestrategy.Themaindifferenceisthatwhensimplifyingnon-radicaltermsorexpressions,youusuallyresorttofactoringintoprimefactorsand/orfindingaGCFtofactorout.Simplifyingradicalsactuallymeansfactoringandreorganizingfactorsoftheradicand,buttheradicandisnotnecessarilyprimefactored.

Page 175: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Tosimplifyradicals,youmustfactortheradicandintotwotypesoffactors:perfect-power—factorsandnon-perfect-powerfactors.

Andthereisaverylogicalreasonforthis.Theradicaloftheperfect-poweristobetaken,andthen(itsroot)willbemovedoutsidetheradical(andtreatedlikeacoefficientthatismultipliedbytheremainingradical).Thenon-perfect-powerfactorwillsimplyremainundertheradicalbecausethatisitsmostsimplifiedform.ObservethismethodinthenextsectionCommonRadicalFingerprints.Lookattheexampleforthesquarerootof12.Noticethatitsfactor“4”isaperfectsquarefactor,and“3”isnot,soyouseparatethemintofactors(4)(3).Now,since4isaperfectsquare,takethesquarerootofit.Sincethesquarerootof4is2,the2getsmovedtotheoutsideoftheradicalasacoefficient,andthesquarerootof3remainsintheradical,leavingyouwith(asyouwouldsay)“two(times)thesquarerootofthree.”Thereasonradicalsaresimplifiedthiswayissotheycanbemanipulatedintolike-termsthatcanbecombined(asin“combinelike-terms”).Forradicals,“like-terms”aretermsinwhichboththerootandradicandareexactlythesame.Whenthesecriteriaaremet,like-radicalsarecombinedviatheircoefficientsthesamewayaslike-termswithvariables.AsinthelastsectioninwhichIshowalistofcommonrootsandpowers,thereareothersthatarestillcommon,but“notperfect”…“notperfect”inthesensethattheradicalcannotbereducedtoaninteger.Thesearesocommon,thatIcallthem“fingerprints,”becauseafterencounteringthemenough,youmaymemorizethem,savingyouthestepofhavingtomanuallyfactorandsimplifythemeverytime.

Page 176: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Thefollowinglistaccomplishesthreepurposes.1. Itsimplyshowscommon“non-perfect”radicals,and2. itshowstheintermediatestepswheretheradicandsarefactoredinto

“perfect-powers”(inthiscase,they’reperfectsquares),and“non-perfectpowers”(whichinthiscasearenon-perfectsquares).

3. Italsodemonstratesthe“ProductRuleofRadicals.”Ialsodecidedtoincludeafewcommonradicalswhicharealreadyintheirmostreducedform,justtoputthemintoperspective.

Page 177: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ListofCommonRadicalFingerprints

Page 178: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Itisimportanttonotethatwhendoingsquareroots(oranyevenroots)onacalculator,mostcalculatorswillonlyreportthepositiveroot,soitisuptoyoutoalsowritethenegative.

Page 179: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ExtraneousRootsinRadicalEquationsThetopicofextraneousroots(a.k.a.extraneoussolutions)hasbeenexplainedpreviously,aswellashowtoidentifythemwhentheyareinadenominator.Buttheycanalsobeinanequationwithradicals.Whentheyare,youmustcheckyouranswerbysubstitutingbackintotheoriginalequationandsimplifying.Thisismentionedinanupcomingsection:CheckingYourAnswers.

Page 180: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

FMMs(FREQUENTLYMADEMISTAKES)Thissectionofthebookisonelikenoother.Ibetyouwillnotfindonelikethisinatraditionaltextbook(atleastIhaven’tyet).Thissectionisstrictlydedicatedtohighlightingthemostcommonand“frequentlymademistakes”bystudents.Byhoninginonthesecommonmistakes,Ihopeyouwillbeabletoquicklyrecognizeandavoidthem.Thissectionisalsodifferentthantheothersectionsinthisbookinthewayitissetup.Ifit’satopicthathasn’tbeencoveredinthebookyet,Iwillgiveititsownnewsection.Ifit’samistakeI’vealreadyexplainedinaprevioussection,Iwilllistitwithabriefintroductionandprovidethehyperlinktodirectyoubacktothatrespectivesectionofthebook.

Page 181: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

TheTwoMeaningsof“CancellingOut”“Cancellingout”canmeantwodifferentthings:

1. Cancellingouttozero,or2. Cancellingouttoone.

Studentsandinstructorsoftenjustsay“cancellingout,”whichisabitambiguousandcancauseconfusing.Youmustbeabletoproperlydifferentiatewhichcontextisbeingusedandwheneachishappening.Termsarecancelledtozerowhenoppositetermsareadded(meaningaddingandsubtractingthesameterm.Thisisoftenseenwhenyouareaddingorsubtractingthesametermtoeachsideoftheequationinordertomoveatermtotheoppositeside.Itisalsoseenduring“combinelike-terms,”whentermshappentobeoppositesofeachother.

Page 182: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Termscanceloutto1when:Anumberortermisdividedbyitself,orAfractionismultipliedbyitsreciprocal.

Thisisoftenseenduring:Reducingfractions;Multiplyingfractions;Thefinalstepofsolvingasimplealgebraicequationofonevariable,whereyoudividebothsidesbythecoefficientinfrontofthevariableyou’resolvingfor;andFactoringaGCFoutofaseriesofterms.

Studentsusuallydon’thaveproblemsrememberingthataddingoppositescancelsthemtozero.Butsometimesthemistakeiswhenstudentsthinkcancelingalwaysresultstozero.Youmustnotforgetthatwhenatermisdividedbyitself,itequals“1,”asshowninPropertyCrisesofZeros,OnesandNegatives.Thistypicallyinvolvesfractions(eitherduringreducingindividualfractionsormultiplicationordivisionoffractions).ButthemostcommontimeitisforgotteniswhenyoufindaGCFinaseriesoftermsandthenfactorthatGCFout(bydividingeachtermbyit),leavingtheGCFoutfront,multipliedbytheparenthesescontainingtheremainingfactorsofeachterm.

Page 183: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Forexample,inthefollowingexpression:18x3–6x2+3xtheGCFis3x.Tosimplifythis,youwouldfactor3xoutofeachterm.Theintermediatestep(whichyouwouldn’talwaysshow)showseachterm

dividedby3x:Studentsoftenincorrectlyanswerthisas:

.Whenaskedaboutit,theywillrespondthat“threexoverthreexcancelsout,”whichistrue,butitcancelsto“1,”notzero,sothe1mustbeshown,asinthecorrectanswershownhere:Whileonthesubjectof“cancellingout,”thisplaysaroleinmultiplicationanddivisionoffractionsbymeansof“crosscancelling.”Anothercommonmistakeorareaofconfusioniswhenstudentsmixupcrosscancellingwithcrossmultiplication.Thisisexplainedin:CrossMultiplyingvs.CrossCancelling.Followthislinktoseetheproperwaytocrossmultiply.

Page 184: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

CheckingYourAnswers

Thelaststepofanyproblem-solvingprocedureistocheckyouranswer.Specifically,thatmeanstakingthevalueoftheunknownyoudetermined,substitutingitbackintotheoriginalequation,simplifying,andreviewingtheoutcome.If,aftersimplifying,theleftsideequalstherightside,thisaffirmsthatyouransweriscorrect.However,ifitdoesn’t,therearethreepossiblereasonswhy.

1. Youmadeanerrordoingtheproblem.2. You’veidentifiedanextraneoussolution.3. Youmadeanerrorinyourmathinthecheckstep.

Oneclearrealityisthatstudentseitherforget,orjusthatedoingthecheck

step.IfIhadtoguess,it’sbecauseitcostsextratimeandworkspacetodo,andstudentsjustwanttobedonewithaproblem,especiallyproblemsthatarelongtobeginwith.Buttoattaincompleteanswers,you’reexpectedtocheckyouranswers,andtherearetimeswhencheckingwillhelpyoudiscoveranerrororanomaly.Thiscouldsaveyouvaluablepointsonatest.

First,itwillsimplydrawyourattentiontoanerroryoumadeduringproblemsolving.Ifyoucan’tfindyourmistakebyreviewingyourwork,considerstartingitoverwithoutlookingatthelastwayyoudidit.Consequently,youcanalsomakeanerrorduringthecheckstepswhichmayleadyoutothinkyoumadeanerrorintheoriginalsteps,butdidn’t.Eitherway,youranswersshouldcheckout.

There’salsoanothermajorreasonananswermightnotcheckout,andthatisduetoanextraneoussolution.Extraneoussolutionsoftenoccurwhenavariableisinthedenominatorinanequation(orinsidearadical).

Page 185: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

MiscellaneousMistakes

Whenmultiplyingfactorsofacommonbasewithexponents,sometimesstudentsmistakenlymultiplytheexponents.Whenfactorsofacommonbasearemultiplied,theirexponentsareadded.

Sometimesstudentsarerequiredtodistributeanexponentthroughatermofmultiple(variable)baseswithexponents.Thisistakingthepowerofeachbasetothepowerbeingdistributed.Thereisoftenacoefficientattachedtothevariables,andwhenthereis,studentsoftenforgettoapplythepower(fromoutsidetheparentheses)tothecoefficient.Thereasonmightbebecausestudentsareusedtotakingthepowerofthepowerofeachvariablebase,andtheyjustforgetaboutthecoefficient.Whendistributinganexponentthroughagroupofbaseswithacoefficient,don’tforgettoapplytheexponenttothecoefficient.

Whengivenanequationwithatrinomial,oraquadraticequation,sometimesstudentswillsuccessfullyfactorit,butthenforgettodothelaststep,whichistosolve.

Studentscommonlymakethemistakeofusing“zero”and“noslope”or“undefined”interchangeably,buttheyhavecompletelydifferentmeanings.

ClickthelinkforcommonmistakesstudentsmakeduringtheSubstitutionMethod.

ClickthelinkforcommonmistakesstudentsmakeduringtheAddition/EliminationMethodforsolvingasystemoftwolinearequations.

Studentsoftenmakeamistakewhenanegativesignisinfrontofafractionbynotproperlydistributingthenegativesignthrough,changingthesignofeachtermintheseries.

Equationsandexpressionsareintendedtobesimplifiedcompletely.Oftentimes,studentsdomostoftheproblemcorrectly,butmakeoneoftwovitalmistakesthatcouldmakeorbreakananswer(especiallywheninstructorsdon’tgivepartialcredit).Sometimesstudentsgetnearthe

Page 186: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

end,butsimplyforgettosimplifytheanswer.Or,sometimesstudentsattempttosimplify,butdoitwrong.Learntoavoid:TheWrongWaytoSimplifyaRationalExpression.

WhenstudentsusetheQuadraticFormula,theyoftenforgettosimplifythelaststep.Thisisexplainedin:ThePartEveryoneForgets:TheLastStepoftheQuadraticEquation

Whenapplyingthe“specialcase”shortcutmethodtomultiplyingoutabinomialsquared,studentsoftenmakethecommonmistakeofusingtheshortcutmethodformultiplyingconjugatepairbinomials.Thismistakeresultsinthemissing“bx”term.

Whenanegativesignisinfrontofarationalexpression(afractionwithapolynomialinthenumerator)studentsveryoftenforgettodistributethatnegativesignthroughalltermsinthenumerator.Thisthenincorrectlyassociatesthenegativetoonlythefirstterminthenumerator,leavingthetermstofollowwithoppositesignsthanwhattheyshouldbe.

RadicalsAreNotLongDivision.There’snotreallymuchtosayaboutthisotherthanthatthesymbolsandsetupofradicalsandlongdivisionaresimilarlooking,buttheyarecompletelydifferentoperations.AnytimeI’veeverencounteredastudentattemptingtoapplylongdivisiontoaradicalmayhavebeentheirdesperateattempttodosomethingwhentheyhadnoideahowtoapproachradicals(mostlikelyduetolackofpreparation).Longdivisionisaprocesstofindouthowmanytimesthedivisorgoesintothedividend,andtheansweristhequotient.Butradicalsareusedtoanswer:Whatnumber,whichwhentakentothepowershownastheroot,equalstheradicand?Theradicandwon’talwaysbeaperfectpowernumber,andinthatcase,assumingyoudon’tuseacalculator,youwillbreakitdownandsimplifyitusingtheruleofmultiplicationofroots,asbrieflyshowninCommonRadicalFingerprints.

Page 187: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

ScientificNotationonYourCalculator

Scientificnotationisastandardizedwayofreportingnumbersthatareeitherverybigorverysmall,withmanyzerosand/ordecimalplaces.Itisawaytoexpressnumbersintoamanageableformat,andisoftenusedinscienceandstatistics.Scientificnotationisthealternatewayofwritinganumberfromitsexpandedform.AlthoughIdonotcoverscientificnotationinthisbook,Iwanttoaddressthemistakestudentsfrequentlymakewhenputtingscientificnotationintoacalculator.Themistakeissomevariationofnotknowinghowtoproperlyputitintothecalculator.

Sincetherearegenerallytwotypesofcalculators(scientificandgraphing)withthescientificnotationfunction,eachtypeandbrandvariesinwhatbuttonstheyhavetoaccomplishthisfunction,soit’sagoodideatobepreparedforeachpossibility.Thereisalsoacompletelywrongwaytoinputscientificnotation,whichresultsinthenumberbeingoffbyanorderofmagnitude(afactorof10,orinotherwords,offbyonezero).Typically,onallcalculators,youstartoffthesame,bytypinginthebasenumber.Next,youmusthittheexponentbutton,butnotthesameexponentbuttonyouwouldusefornormalexponents.Thebuttonyouwantmaylooklikeanyofthefollowing:[EE][exp][EXP][x10](meaning“timestentothe…”)[10x](meaning“meaningbasetentothepowerof”)[antiLOG](oftena2ndfunctionto[LOG])[e](nottobeconfusedwith[ex],whichstandsfor“thenumberetothex,”alsoknownas“inverseLN,”whichis“inversenaturallog”).Ifoneofthefunctionsshownaboveisa2ndfunction,meaningthesymbolisshowninanothercolor,aboveaprimarybutton,youmusthitorholdabuttonsuchas:“2nd,”“Shift,”or“Alt,”oftenlocatedatthetopleftcornerofthecalculator,thenhitthebuttonasitisshown(fromthechoiceslistedabove).Youmighthavetolookaroundforit;itdoesn’talwaysjumpoutatyouatfirst.

Page 188: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Toreiterate,youwouldfirsttypeyourbasenumber,thenscientificnotationbutton(shownabove),thentheexponent(ofthe10).

Page 189: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

Hereistheplacestudentsoftenmakeamistake…bymanuallytypingout:[thebase#][x][10][EXP][theexponent]...Inwords,thatwouldsay,“basenumbertimesten,timestentothepowerofsomenumber.”Inotherwords,thiscausesaredundantmultipleof10,whichwillresultinyournumberbeingoffbyafactoroften.Topreventthis,youmustuseeitheroneortheother(eitherthe[EXP,thentheexponent],or[x10^theexponent]).Considertheexampleofconverting9,400,000toscientificnotation,whichwouldbe9.4x106.YouwouldtypeEither:[9.4][x][10][^][6]Inwords:Ninepointfourtimestentothesixth,usingtheexponentfeature,notthescientificnotationfeature.Or:[9.4][EXP][6]Thisisthepreferredwaytoinputnumbersinscientificnotation.Inwords,thisreadsthesameasabove(“Ninepointfourtimestentothesixth”),butthebuttonsareclearlydifferent.Inthisversion,thescientificnotationbuttonisused,notmanuallytypingtheten,thecarrot,andtheexponentsix.Irecommendgettingusetothe[EXP]button.

Page 190: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

WhatDoes“Error”onaCalculatorMean?Oftentimes,studentswillputanoperationintothecalculatorandgettheresponse:“Error.”Somemisinterpretwhatthatmeans.Sometimesstudentsinterpretthatas“thestudentmadeanerror,”butthismanynotbethecase.Whentheoutputonthecalculatoris“Error,”itcouldmeanoneofthefollowingthings:

1. “Error”isthecorrectandexpectedresponse.Whatwemightcall“Undefined”or“NoSolution”toanarithmeticoperation,thecalculatorwillreportas“Error.”Forsuchexamplesinvolvingdivisionandradicals,see:PropertyCrisesofZeros,OnesandNegatives).

2. Sometimes,however,“Error”meansyoumadeamistakein-putting

yourintendedoperation.Inthatcase,youshouldcheckwhatyoutypedandlookforanerrorinthatrespect.Forinstance,youmayhaveaccidentallytypedtwodecimalsinanumber.Ifyoucheck,anddon’tfindaninputmistake,thenthereisagoodchance“error”isthecorrectresponseforareason.

Page 191: Algebra in Words: A Guide of Hints, Strategies and Simple Explanations

CLOSINGMymissionistohelpaveragepeoplebreakthroughmathbarriers,whateverthesourceofthebarriersmaybe.Youlearnbasedonhowyouaretaught.Ilearnhowtoteachbasedonthetrials,errorsandpatternsofwhatandhowstudentslearn.Itisaconstantlearningcurvetryingtoperfecthowtopredicthowstudentsprocessthelessons;thelearningisatwo-waystreet.Iamextremelyinterestedinyourfeedback.Pleasetellmewhatworked,whatyouliked,whatyoudidn’tlike,whatwasconfusing,andwhatyou’dliketosee(moreof).Ifthisbookhelpedyou,Iaskthatyoupleasesupportmymissionbytellingyourfriendsandfamilyaboutitandleavingareview.Iwishyouthebestofluckinallyoudo.Pleasesendyourfeedbacktomypersonalemailaddress:[email protected],feelfreetofollow@GregBullockand@AlgebraInWordsonTwitter.