36
UNENE Math Refresher Course Algebra 1

Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

UNENE Math Refresher Course

Algebra

1

Page 2: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Exponential Functions © Wei-Chau Xie

Exponential Functions

y = ax is an exponential function.

Properties

1. a0 = 1, a 6=0

2. am · an = am+n

3.1

an= a−n,

am

an= am−n, a 6=0

4. (am)n = am ·n

5. (a b)n = an · bn

6.(a

b

)n= an

bn

2

Page 3: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Exponential Functions © Wei-Chau Xie

For the special case y = ex, e = 2.718281828 . . .

exe−x

e−x→0, when x→∞

x0

5

10

15

20

−1−2−3 2 31

3

Page 4: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Logarithmic Functions © Wei-Chau Xie

Logarithmic Functions

If x = a y, a>0, a 6= 1 =⇒ y = loga x, where a is called the base.

Properties

1. a = a1 =⇒ loga a = 1

2. 1 = a0 =⇒ loga 1 = 0

3. loga bx = x loga b

4. loga x + loga y = loga (x y)

5. loga x − loga y = loga

( x

y

)

6. aloga x = x

7. loga x = logb x

logb a

4

Page 5: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Logarithmic Functions © Wei-Chau Xie

In mathematics and engineering, the most frequently used bases: a = 10 and e.

a = 10 : log10 x = lg x

a = e : loge x = ln x

−5

−4

−3

−2

−1

0

1

2

3

1 2 4 6 8 10

x

lnx

5

Page 6: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Exponential and Logarithmic Functions © Wei-Chau Xie

Example

Simplify y =ln x2 − ln

1x

ln 3√

x.

y = ln x2 − ln x−1

ln x13

= 2 ln x − (− ln x)

13 ln x

= 3 ln x13 ln x

= 9

6

Page 7: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Exponential and Logarithmic Functions © Wei-Chau Xie

Example

Solve for x in equation 20 = 500

(

1 − 4

4 + e−0.002x

)

.

Divide the equation by 500:1

25= 1 − 4

4 + e−0.002x

Simplify:4

4 + e−0.002x= 24

25=⇒ 4 + e−0.002x = 25

6

e−0.002x = 1

6

Take ln of both sides: ln e−0.002x = ln1

6=⇒ − 0.002 x = − ln 6

∴ x = 1

0.002ln 6 = 895.8797

7

Page 8: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Exponential and Logarithmic Functions © Wei-Chau Xie

Example

• Given that y = y0 e−axb, x>0, solve for x.

• If y = 0.1, y0 = 10.2, a = 0.5, b = 2.1, evaluate x.

Taking ln of both sides of the equation

ln y = ln y0 + ln e−axb

= ln y0 − axb

∴ xb = ln y0 − ln y

a=⇒ x =

( ln y0 − ln y

a

) 1b

For y = 0.1, y0 = 10.2, a = 0.5, b = 2.1

x =( ln 10.2 − ln 0.1

0.5

) 12.1 = 9.2499

12.1 = 2.88

8

Page 9: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Graphs © Wei-Chau Xie

Graphs of Functions

The following figure shows a plot of functions y = 2x, 5x, 10x, ex2.

It is obvious that we cannot see any detail of 2x for all values of x and not much

details of 5x, 10x, ex2for x<2.

9

Page 10: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Graphs © Wei-Chau Xie

500

0 1 2 3 4

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

x

y

2x

5x

10xex2

10

Page 11: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Semi-Log Graphs © Wei-Chau Xie

Semi-Log Graphs

The same functions plotted using a semi-logarithmic scale. Details are revealed

for all values of x.

For semi-log plots, the numbers along the horizontal x-axis are (linearly)

evenly spaced, while along the vertical y-axis, powers of 10 are evenly spaced.

For exponential function y = ax, a>0, taking logarithm of both sides gives

log10 y = x · log10 a

The function appears as a straight line when plotted on semi-log paper.

11

Page 12: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Semi-Log Graphs © Wei-Chau Xie

x

y

10

2x

5x

10xex2

10

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 43.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

3

4

5

6789

100

20

30

40

50

60708090

1000

200

300

400

500

600700800900

10000

2000

3000

4000

5000

6000700080009000

12

Page 13: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Log-Log Graphs © Wei-Chau Xie

Log-Log Graphs

The following figure shows a plot of functions y = x2, x3, x4, ex2, e−x2

plotted

using the logarithmic scales (both axes using log scales), in which powers of 10

are evenly spaced.

For function y = xa, x>0, taking logarithm of both sides gives

log10 y = a · log10 x

The function appears as a straight line when plotted on log-log paper.

13

Page 14: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Log-Log Graphs © Wei-Chau Xie

x

x2

x3

x4

y

10

1000

200

300

400

500600700800900

100

20

30

40

5060708090

10

2

3

4

56789

1

0.2

0.3

0.4

0.50.60.70.80.9

0.1

0.02

0.03

0.04

0.050.060.070.080.09

0.01

0.002

0.003

0.004

0.0050.0060.0070.0080.009

0.001

0.0001

0.1

0.0002

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9

0.0003

0.0004

0.00050.00060.00070.00080.0009

10000

2000

3000

4000

50006000700080009000

ex2

e−x2

14

Page 15: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Vectors © Wei-Chau Xie

Vectors

Let i, j, k be the unit vectors in the x-, y-, z-directions, respectively.

y

x

z

a

b

c

O

j

k

i

v

A vector v is v = a i + b j + c k

☞ Avector is printed in boldface v, orwritten as ⇀av in handwriting.

The norm (length) of a vector is v = |v| =√

a2 + b2 + c2

The unit vector in direction v is v = v

|v|15

Page 16: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Vector Addition © Wei-Chau Xie

Vector Addition

Let v1 = a1 i + b1 j + c1 k, v2 = a2 i + b2 j + c2 k.

v = v1 + v2 = v2 + v1

= (a1 i + b1 j + c1 k) + (a2 i + b2 j + c2 k)

= (a1+a2) i + (b1+b2) j + (c1+c2) k

Graphically, the sum v = v1+v2+v3 is obtained by placing them head to tail

and drawing the vector v from the free tail to the free head.

v = v1+ v2+ v3

v1 v1

v2

v3

v3

v2

The tail of v2 is placed

at the head of v1

The tail of v3 is placed

at the head of v2

16

Page 17: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Dot Product of Vectors © Wei-Chau Xie

Dot Product of Vectors

Let v1 = a1 i + b1 j + c1 k, v2 = a2 i + b2 j + c2 k.

v1·v2 = (a1 i + b1 j + c1 k)·(a2 i + b2 j + c2 k)

= a1 a2 + b1 b2 + c1 c2 A scalar

=∣∣v1

∣∣∣∣v2

∣∣ cos θ

v1

v2

θ

The projection of vector v in a given direction, specified by the unit vector

u, is given by

v·u = v cos θ

v

θ uˆv . u = v cos θ

17

Page 18: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Algebra — Cross Product of Vectors © Wei-Chau Xie

Cross Product of Vectors

Let v1 = a1 i + b1 j + c1 k, v2 = a2 i + b2 j + c2 k.

v1 × v2 =

∣∣∣∣∣∣∣∣

i j k

a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣∣∣

i j

a1 b1

a2 b2

= (b1 c2−b2 c1) i + (c1 a2−c2 a1) j + (a1 b2−a2 b1) k Avector

Direction obtained using the right-hand rule: flatten the right hand, four

fingers go along v1, then curl the fingers (palm) towards v2; the direction of

the thumb is the direction of v1×v2.

θ v1

v = v1×v2

v2

Magnitude∣∣v1 × v2

∣∣ =

∣∣v1

∣∣∣∣v2

∣∣ sin θ

18

Page 19: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Solutions of Systems of Linear Equations © Wei-Chau Xie

Gaussian Elimination

Solve the following system of linear algebraic equations

3x1 + 4x2 = 10 (1)

2x1 − 5x2 = −1 (2)

To solve for x1, i.e., to eliminate x2,

Eqn. (1) × 5 : 15x1 + 20x2 = 50

Eqn. (2) × 4 : 8x1 − 20x2 = −4 (+23x1 = 46 =⇒ x1 = 2

Similarly, to solve for x2, i.e., to eliminate x1,

Eqn. (1) × 2 : 6x1 + 8x2 = 20

Eqn. (2) × 3 : 6x1 − 15x2 = −3 (−23x2 = 23 =⇒ x2 = 1

Alternatively, having obtained x1, x2 can be found from either Eqn. (1) or (2).

From Eqn. (1): x2 = 10 − 3x1

4= 10 − 3×2

4= 1

19

Page 20: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Systems of Linear Equations © Wei-Chau Xie

Consider a system of n linear algebraic equations

a11 x1 + a12 x2 + · · · + a1n xn = b1

a21 x1 + a22 x2 + · · · + a2n xn = b2

· · · · · ·an1 x1 + an2 x2 + · · · + ann xn = bn

where x1, x2, . . . , xn are the n unknowns.

The system can be written in the matrix form

a11 a12 · · · a1n

a21 a22 · · · a2n... ... ... ...

an1 an2 · · · ann

x1

x2...

xn

=

b1

b2...

bn

=⇒ A x = b

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

A x b

where A is the coefficient matrix, x is the column vector of unknowns, and b is

the column vector of right-hand side constants.

20

Page 21: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Matrix © Wei-Chau Xie

Operations of Matrices

Addition of Matrices

Let A = [ aij ]m×n

, B = [ bij ]m×n

. A and B must be the same size.

C = A + B =⇒ cij = aij+bij

A + B = B + A, (A + B) + C = A + (B + C)

[

a11 a12 a13

a21 a22 a23

]

+[

b11 b12 b13

b21 b22 b23

]

=[

a11+b11 a12+b12 a13+b13

a21+b21 a22+b22 a23+b23

]

Multiplication by a Scalar

Let A = [ aij ]m×n

. C = αA =⇒ cij = αaij, α is a scalar.

α

[

a11 a12 a13

a21 a22 a23

]

=[

αa11 αa12 αa13

αa21 αa22 αa23

]

21

Page 22: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Matrix © Wei-Chau Xie

Multiplication of Matrices

Let A = [ aik ]m×n

, B = [ bkj ]n×l

C = AB =⇒ cij = ai1b1j + ai2b2j + · · · + ainbnj =n

k=1

aikbkj

... ... · · · ...

ai1 ai2 · · · ain... ... · · · ...

· · · b1j · · ·· · · b2j · · ·· · · ... · · ·· · · bnj · · ·

=

...

· · · cij · · ·...

ith row jth column ijth element

AB is usually not the same as BA.

a11 a12

a21 a22

a31 a32

[

b11 b12

b21 b22

]

=

a11b11+a12b21 a11b12+a12b22

a21b11+a22b21 a21b12+a22b22

a31b11+a32b21 a31b12+a32b22

22

Page 23: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Matrix © Wei-Chau Xie

Transpose of Matrices

Let A = [ aij ]m×n

=⇒ Transpose of A : AT = [ aji ]n×m

a11 a12

a21 a22

a31 a32

T

3×2

=[

a11 a21 a31

a12 a22 a32

]

2×3

Properties

(AT)T = A

(A + B)T = AT + BT

(AB)T = BTAT

(αA)T = αAT, α is a scalar

23

Page 24: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Determinant © Wei-Chau Xie

Determinant

The determinant of a square matrix A is denoted as

∣∣A

∣∣ = det(A) =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n... ... ... ...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣

= det

a11 a12 · · · a1n

a21 a22 · · · a2n... ... ... ...

an1 an2 · · · ann

Evaluation of Determinants

a11 a12

a21

|A| =a22

= +a11a22 − a21a12 2×2 determinant

a11 a12 a13

a21|A| = a22 a23

a31 a32

a11 a12

a21 a22

a31 a32a33

To evaluate the 3×3 determinant,

copy first two columns at right.

= +a11a22a33 + a12a23a31 + a13a21a32 − a31a22a13 − a32a23a11 − a33a21a12

24

Page 25: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Solutions of Systems of Linear Equations © Wei-Chau Xie

Cramer’s Rule

For the following system of n linear algebraic equations

a11 x1 + a12 x2 + · · · + a1n xn = b1

a21 x1 + a22 x2 + · · · + a2n xn = b2

· · · · · ·an1 x1 + an2 x2 + · · · + ann xn = bn

the solutions are given by

xi = 1i

1i = 1, 2, . . . , n, 1 6= 0

where 1 is the determinant of coefficient matrix, 1i is the determinant of the

coefficient matrix with the ith column replaced by the right-hand side vector, i.e.,

1 =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n... ... · · · ...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣

, 1i =

∣∣∣∣∣∣∣∣∣∣

a11 · · · a1, i−1 b1 a1, i+1 · · · a1n

a21 · · · a2, i−1 b2 a2, i+1 · · · a2n... · · · ... · · · ... · · · ...

an1 · · · an, i−1 bn an, i+1 · · · ann

∣∣∣∣∣∣∣∣∣∣

︸︷︷︸

ith column25

Page 26: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Cramer’s Rule © Wei-Chau Xie

Example

Solve the following system of linear algebraic equations

3x1 + 4x2 = 10

2x1 − 5x2 = −1

1 =∣∣∣∣∣

3 4

2 −5

∣∣∣∣∣= 3 · (−5) − 2 · 4 = −23

11 =∣∣∣∣∣

10 4

−1 −5

∣∣∣∣∣= 10 · (−5) − (−1) · 4 = −46

12 =∣∣∣∣∣

3 10

2 −1

∣∣∣∣∣= 3 · (−1) − 2 · 10 = −23

Apply Cramer’s Rule

x1 = 11

1= −46

−23= 2, x2 = 12

1= −23

−23= 1

26

Page 27: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Cramer’s Rule © Wei-Chau Xie

Example

Solve the following system of linear algebraic equations

4 y − 3z = 3

−x + 7 y − 5z = 4

−x + 8 y − 6z = 5

Determinant of the coefficient matrix

1 =

∣∣∣∣∣∣∣

0 4 −3

−1 7 −5

−1 8 −6

∣∣∣∣∣∣∣

0 4

−1 7

−1 8

= 0·7·(−6) + 4·(−5)·(−1) + (−3)·(−1)·8− (−1)·7·(−3) − 8·(−5)·0 − (−6)·(−1)·4

= 0 + 20 + 24 − 21 − 0 − 24 = −1

27

Page 28: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Cramer’s Rule © Wei-Chau Xie

11 =

∣∣∣∣∣∣∣

3 4 −3

4 7 −5

5 8 −6

∣∣∣∣∣∣∣

3 4

4 7

5 8

Replace the first column by RHSvector.

= 3·7·(−6) + 4·(−5)·5 + (−3)·4·8 − 5·7·(−3) − 8·(−5)·3 − (−6)·4·4

= −126 − 100 − 96 + 105 + 120 + 96 = −1

12 =

∣∣∣∣∣∣∣

0 3 −3

−1 4 −5

−1 5 −6

∣∣∣∣∣∣∣

0 3

−1 4

−1 5

Replace the second column by RHSvector.

= 0·4·(−6) + 3·(−5)·(−1) + (−3)·(−1)·5− (−1)·4·(−3) − 5·(−5)·0 − (−6)·(−1)·3

= 0 + 15 + 15 − 12 − 0 − 18 = 0

28

Page 29: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Cramer’s Rule © Wei-Chau Xie

13 =

∣∣∣∣∣∣∣

0 4 3

−1 7 4

−1 8 5

∣∣∣∣∣∣∣

0 4

−1 7

−1 8

Replace the third column by RHSvector.

= 0·7·5 + 4·4·(−1) + 3·(−1)·8 − (−1)·7·3 − 8·4·0 − 5·(−1)·4

= 0 − 16 − 24 + 21 − 0 + 20 = 1

Apply Cramer’s Rule

x = 11

1= −1

−1= 1, y = 12

1= 0

−1= 0, z = 13

1= 1

−1= −1

29

Page 30: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Systems of Homogeneous Linear Equations © Wei-Chau Xie

Systems of Homogeneous Linear Equations

When the right-hand side constants b1 = b2 = · · · = bn = 0, the system of linear

algebraic equations is homogeneous

a11 x1 + a12 x2 + · · · + a1n xn = 0

a21 x1 + a22 x2 + · · · + a2n xn = 0

· · · · · ·an1 x1 + an2 x2 + · · · + ann xn = 0

The system of homogeneous linear equations has zero solution, i.e.

x1 = x2 = · · · = xn = 0

If the determinant of the coefficient matrix 1 6= 0, then the system of

homogeneous linear equations does not have non-zero solutions.

For the system of homogeneous linear equations to have non-zero solutions,

the determinant of the coefficient matrix 1 = 0.

30

Page 31: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Eigenvalues and Eigenvectors © Wei-Chau Xie

Eigenvalues and Eigenvectors

Consider the following system of homogeneous linear equations

A x = λ x or (A − λI) x = 0 (*)

where I is the n×n unit matrix, i.e.,

I =

1 0 0 · · · 0

0 1 0 · · · 0... ... ... · · · ...

0 0 0 · · · 1

For the system of homogeneous linear equations (*) to have non-zero

solutions, the determinant of the coefficient matrix must be zero, i.e.,

∣∣A − λ I

∣∣ = 0

which is called the characteristic equation.

The solutions (roots) λ of the characteristic equation are called eigenvalues.

The corresponding solutions of system (*) are called eigenvectors.

31

Page 32: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Eigenvalues © Wei-Chau Xie

Example

Find the value of λ such that the equations

(3 − λ) x1 − 3 x2 + x3 = 0

2 x1 − (2 + λ) x2 + 2 x3 = 0

−x1 + 2 x2 − λ x3 = 0

have non-zero solutions.

Characteristic equation (setting the determinant of the coefficient matrix to zero)

1 =

∣∣∣∣∣∣∣

3−λ −3 1

2 −2−λ 2

−1 2 −λ

∣∣∣∣∣∣∣

3−λ −3

2 −2−λ

−1 2

= (3−λ)·(−2−λ)·(−λ) + (−3)·2·(−1) + 1·2·2− (−1)·(−2−λ)·1 − 2·2·(3−λ) − (−λ)·2·(−3)

= −λ3 + λ2 − 2 = −λ3 − λ2 + 2λ2 − 2

= −λ2(λ+1) + 2(λ−1)(λ+1) = −(λ+1)(λ2−2λ+2) = 0

32

Page 33: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Eigenvalues © Wei-Chau Xie

∴ (λ + 1)(λ2 − 2λ + 2) = 0

λ + 1 = 0 =⇒ λ = −1

λ2 − 2λ + 2 = 0:

λ = −(−2) ±√

(−2)2−4·1·22·1 = 2 ±

√−4

2= 1 ± i, i =

√−1

33

Page 34: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Eigenvalues © Wei-Chau Xie

Alternative Method for Solving the Characteristic Equation −λ3+λ2−2 = 0

By trial-and-error, find a root of the characteristic equation

−(−1)3 + (−1)2 − 2 = 0 =⇒ λ=−1 is a root =⇒ (λ+1) is a factor.

Use long division to find the other factor as follows

−λ2 + 2λ − 2

λ + 1∣∣∣ −λ3 + λ2 − 2

−λ3 − λ2 (−2λ2 − 2

2λ2 + 2λ (−− 2λ − 2

− 2λ − 2 (−0

The characteristic equation becomes (λ + 1)(−λ2 + 2λ − 2) = 0.

34

Page 35: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Eigenvalues and Eigenvectors © Wei-Chau Xie

Example

Find the eigenvalues λ and the corresponding eigenvectors of

(A − λI)x =[

1−λ 4

1 −2−λ

] {

x1

x2

}

={

0

0

}

The characteristic equation is∣∣∣∣∣

1−λ 4

1 −2−λ

∣∣∣∣∣= (1−λ)(−2−λ) − 1·4 = λ2 + λ − 6 = (λ+3)(λ−2) = 0

The two eigenvalues are λ1 = −3, λ2 = 2.

λ = λ1 = −3:

(A−λ1I)v1 =[

4 4

1 1

] {

v11

v21

}

= 0 =⇒ v11 + v21 = 0

Taking v21 = −1, then v11 = −v21 = 1 =⇒ v1 ={

v11

v21

}

={

1

−1

}

There is one equation for two unknowns.

One unknown can be solved in terms of the other unknown.35

Page 36: Algebra - UNENE · 2020. 3. 19. · 1b 2−a 2b 1)kˆ Avector Direction obtained using the right-hand rule: flatten the right hand, four fingers go along v 1, then curl the fingers

Linear Algebra — Eigenvalues and Eigenvectors © Wei-Chau Xie

λ = λ2 = 2:

(A−λ2I)v2 =[

−1 4

1 −4

] {

v12

v22

}

= 0 =⇒ v12 − 4v22 = 0

Taking v22 = 1, then v12 = 4v22 = 4 =⇒ v2 ={

v12

v22

}

={

4

1

}

36